Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32734
Javanese Character Recognition Using Hidden Markov Model

Authors: Anastasia Rita Widiarti, Phalita Nari Wastu


Hidden Markov Model (HMM) is a stochastic method which has been used in various signal processing and character recognition. This study proposes to use HMM to recognize Javanese characters from a number of different handwritings, whereby HMM is used to optimize the number of state and feature extraction. An 85.7 % accuracy is obtained as the best result in 16-stated vertical model using pure HMM. This initial result is satisfactory for prompting further research.

Keywords: Character recognition, off-line handwritingrecognition, Hidden Markov Model.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934


[1] T.E. Behren, A. S─ørat Jatiswara: Struktur dan Perubahan di dalam Puisi Jawa 1600-1930. Jakarta: Indonesian-Netherlands Cooperation in Islamic Studies (INIS), 1995.
[2] Sam Muharto, and W. Nataatmaja, Trampil Basa Jawa 5: Jilid 5 kangge Kelas V SD/ MI. Solo: PT. Tiga Serangkai Pustaka Mandiri, 2008.
[3] Roongroj Nopsuwanchai, and Dan Povey, "Discriminative Training for HMM-Based Offline Handwritten Character Recognition". IEEE in the Seventh International Conference on Document Analysis and Recognition (ICDAR 2003).
[4] Teresa M. Przytycka, Encyclopedia of The Human Genome: Hidden Markov Models. USA: Nature Publishing Group, 2007.
[5] T. Theeramunkong, C. Wongtapan, and S. Sinthupinyo, "Off-line Isolated Handwritten Thai OCR Using Islandbased Projection with Ngram Models and Hidden Markov Models," IEEE. 2001.
[6] L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proceeding of the IEEE, vol 77, pp. 257-286, 1989.
[7] R. Ngabehi Yasadipura I, Menak China II. Bantanisentrem: Bale Pustaka, 1934.
[8] R. Ngabehi Yasadipura I, Menak Sorangan. Batavia: Bale Pustaka, 1936.