Search results for: steel plate shear wall
1187 Multi-threshold Approach for License Plate Recognition System
Authors: Siti Norul Huda Sheikh Abdullah, Farshid Pirahan Siah, Nor Hanisah Haji Zainal Abidin, Shahnorbanun Sahran
Abstract:
The objective of this paper is to propose an adaptive multi threshold for image segmentation precisely in object detection. Due to the different types of license plates being used, the requirement of an automatic LPR is rather different for each country. The proposed technique is applied on Malaysian LPR application. It is based on Multi Layer Perceptron trained by back propagation. The proposed adaptive threshold is introduced to find the optimum threshold values. The technique relies on the peak value from the graph of the number object versus specific range of threshold values. The proposed approach has improved the overall performance compared to current optimal threshold techniques. Further improvement on this method is in progress to accommodate real time system specification.
Keywords: Multi-threshold approach, license plate recognition system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25231186 An Experimental Investigation in Effect of Confining Stress and Matric Suction on the Mechanical Behavior of Sand with Different Fine Content
Authors: S. Asreazad
Abstract:
This paper presents the results that the soil volumetric strain and shear strength are closely related to the confining stress and initial matric suction under constant water content testing on the specimens of unsaturated sand with clay and silt fines contents. The silty sand specimens reached their peak strength after a very small axial strain followed by a post-peak softening towards an ultimate value. The post-peak drop in stress increased by an increment of the suction, while there is no peak strength for clayey sand specimens. The clayey sand shows compressibility and possesses ductile stress-strain behaviour. Shear strength increased nonlinearly with respect to matric suction for both soil types. When suction exceeds a certain range, the effect of suction on shear strength increment weakens gradually. Under the same confining stress, the dilatant tendencies in the silty sand increased under lower values of suction and decreased for higher suction values under the same confining stress. However, the amount of contraction increased with increasing initial suction for clayey sand specimens.
Keywords: Unsaturated soils, silty sand, clayey sand, triaxial test, constant water content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9921185 Effect of Zinc Oxide on Characteristics of Active Flux TIG Welds of 1050 Aluminum Plates
Authors: H. Fazlinejad, A. Halvaee
Abstract:
In this study, characteristics of ATIG welds using ZnO flux on aluminum was investigated and compared with TIG welds. Autogenously AC-ATIG bead on plate welding was applied on Al1050 plate with a coating of ZnO as the flux. Different levels of welding current and flux layer thickness was considered to study the effect of heat input and flux quantity on ATIG welds and was compared with those of TIG welds. Geometrical investigation of the weld cross sections revealed that penetration depth of the ATIG welds with ZnO flux, was increased up to 2 times in some samples compared to the TIG welds. Optical metallographic and Scanning Electron Microscopy (SEM) observations revealed similar microstructures in TIG and ATIG welds. Composition of the ATIG welds slag was also analyzed using X-ray diffraction. In both TIG and ATIG samples, the lowest values of microhardness were observed in the HAZ.
Keywords: ATIG, active flux, weld penetration, Al 1050, ZnO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8301184 Elastic Failure of Web-Cracked Plate Girder
Authors: Sebastian B. Mendes
Abstract:
The presence of a vertical fatigue crack in the web of a plate girder subjected to pure bending influences the bending moment capacity of the girder. The growth of the crack may lead to premature elastic failure due to flange local yielding, flange local buckling, or web local buckling. Approximate expressions for the bending moment capacities corresponding to these failure modes were formulated. Finite element analyses were then used to validate the expressions. The expressions were employed to assess the effects of crack length on the capacity. Neglecting brittle fracture, tension buckling, and ductile failure modes, it was found that typical girders are governed by the capacity associated with flange local yielding as influenced by the crack. Concluding, a possible use of the capacity expressions in girder design was demonstrated.Keywords: Fatigue crack, flange yielding, flange buckling, web buckling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22451183 The Effect of Ion Nitriding and Carbonitriding on Fretting Fatigue of Steels
Authors: V. Linhart, M.
Abstract:
The paper deals with the effect of ion nitriding and carbonitriding on fatigue strength of steel parts under the fretting conditions. Instrumented fatigue tests were carried out on surface treated flat bars from EA1N and EA4T steels with different strength. The chosen surfacing decrease importantly an unfavorable fretting effect. Nitridation suppressed the unfavorable effect of fretting almost entirely, while the influence of carbonitridation was less striking. The results were compared with those ones obtained on bars without surfacing. The causes of favorable influence of surfacing are discussed.Keywords: Carbonitriding, fatigue, fretting, nitriding, steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23771182 Effect of Thermal Radiation on Temperature Variation in 2-D Stagnation-Point flow
Authors: Vai Kuong Sin
Abstract:
Non-isothermal stagnation-point flow with consideration of thermal radiation is studied numerically. A set of partial differential equations that governing the fluid flow and energy is converted into a set of ordinary differential equations which is solved by Runge-Kutta method with shooting algorithm. Dimensionless wall temperature gradient and temperature boundary layer thickness for different combinaton of values of Prandtl number Pr and radiation parameter NR are presented graphically. Analyses of results show that the presence of thermal radiation in the stagnation-point flow is to increase the temperature boundary layer thickness and decrease the dimensionless wall temperature gradient.
Keywords: Stagnation-point flow, Similarity solution, Thermal radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15341181 Measurement of VIP Edge Conduction Using Vacuum Guarded Hot Plate
Authors: Bongsu Choi, Tae-Ho Song
Abstract:
Vacuum insulation panel (VIP) is a promising thermal insulator for buildings, refrigerator, LNG carrier and so on. In general, it has the thermal conductivity of 2~4 mW/m·K. However, this thermal conductivity is that measured at the center of VIP. The total effective thermal conductivity of VIP is larger than this value due to the edge conduction through the envelope. In this paper, the edge conduction of VIP is examined theoretically, numerically and experimentally. To confirm the existence of the edge conduction, numerical analysis is performed for simple two-dimensional VIP model and a theoretical model is proposed to calculate the edge conductivity. Also, the edge conductivity is measured using the vacuum guarded hot plate and the experiment is validated against numerical analysis. The results show that the edge conductivity is dependent on the width of panel and thickness of Al-foil. To reduce the edge conduction, it is recommended that the VIP should be made as big as possible or made of thin Al film envelope.
Keywords: Envelope, Edge conduction, Thermal conductivity, Vacuum insulation panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26671180 Conjugate Free Convection in a Square Cavity Filled with Nanofluid and Heated from Below by Spatial Wall Temperature
Authors: Ishak Hashim, Ammar Alsabery
Abstract:
The problem of conjugate free convection in a square cavity filled with nanofluid and heated from below by spatial wall temperature is studied numerically using the finite difference method. Water-based nanofluid with copper nanoparticles are chosen for the investigation. Governing equations are solved over a wide range of nanoparticle volume fraction (0 ≤ φ ≤ 0.2), wave number ((0 ≤ λ ≤ 4) and thermal conductivity ratio (0.44 ≤ Kr ≤ 6). The results presented for values of the governing parameters in terms of streamlines, isotherms and average Nusselt number. It is found that the flow behavior and the heat distribution are clearly enhanced with the increment of the non-uniform heating.Keywords: Conjugate free convection, nanofluid, spatial temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16481179 Numerical Evaluation of Turbulent Friction on Walls in the Penstock of the Trois-Gorges Dam by the Swamee-Jain Method
Authors: T. Tchawe Moukam, N. Ngongang François, D. Thomas, K. Bienvenu, T. -Toko Dénis
Abstract:
Since the expression of the coefficient of friction by Colebrook-White which turns out to be an implicit equation, equations have been developed to facilitate their applicability. In this work, this equation was applied to the penstock of the Three Gorges dam in order to observe the evolution of the turbulent boundary layer and the friction along the walls. Thus, the study is being carried out using a 3D digital approach in FLUENT in order to take into account the wall effects. It appears that according to the position of the portions, we have a variation in the evolutions of the turbulent friction and of the values of the boundary layer. We also observe that the inclination of the pipe has a significant influence on this turbulent friction; similarly, one could not make a fair evaluation of the latter without specifying the choice and location of the wall.
Keywords: Hydroelectric dam, penstock, turbulent friction, boundary layer, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4701178 Plate-Laminated Slotted-Waveguide Fed 2×3 Planar Inverted F Antenna Array
Authors: Badar Muneer, Waseem Shabir, Faisal Karim Shaikh
Abstract:
Substrate Integrated waveguide based 6-element array of Planar Inverted F antenna (PIFA) has been presented and analyzed parametrically in this paper. The antenna is fed with coupled transverse slots on a plate laminated waveguide cavity to ensure wide bandwidth and simplicity of feeding network. The two-layer structure has one layer dedicated for feeding network and the top layer dedicated for radiating elements. It has been demonstrated that the presented feeding technique for feeding such class of array antennas can be far simple in structure and miniaturized in size when it comes to designing large phased array antenna systems. A good return loss and standing wave ratio of 2:1 has been achieved while maintaining properties of typical PIFA.
Keywords: Feeding network, laminated waveguide, PIFA, transverse slots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9411177 Advantages of Combining Solar Greenhouse System and Trombe Wall in Hot and Dry Climate and Housing Design: The Case of Isfahan
Authors: Yalda Safaralipour, Seyed Ahmad Shahgoli
Abstract:
Nowadays over-consumption of fossil energy in buildings especially in residential buildings and also considering the increase in populations, the crisis of energy shortage in a near future is predictable. The recent performance of developed countries in construction with the aim of decreasing fossil energies shows that these countries have understood the incoming crisis and has taken reasonable and basic actions in this regard. However, Iranian architecture, with several thousands years of history, has acquired and executed invaluable experiences in designing, adapting and coordinating with the nature. Architectural studies during the recent decades show that imitating modern western architecture results in high energy wastage beside the fact that it not reasonably adaptable and corresponded with the habits and customs of people unlike the architecture in the past which was compatible and adaptable with the climatic conditions and this necessitates optimal using of renewable energies more than ever. This paper studies problems of design, execution and living in today's houses and reviews the characteristics of climatic elements paying special attention to the performance of trombe wall and solar greenhouse in traditional houses and offers some suggestions for combining these two elements and a climatic strategy.Keywords: Climatic Designing, Housing in Hot & Dry Area, Solar Greenhouse, Trombe Wall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23751176 Seismic Behavior Evaluation of Semi-Rigid Steel Frames with Knee Bracing by Modal Pushover Analysis (MPA)
Authors: Farzan Namvari, Panam Zarfam
Abstract:
Nowadays use of a new structural bracing system called 'Knee Bracing System' have taken the specialists attention too much. On the other hand nonlinear static analysis procedures in estimate structures performance in earthquake time have taken attention too much. One of these procedure is modal pushover analysis (MPA) procedure. The accuracy of MPA procedure for simple steel moment resisting frame has been verified and considered in Chintanapakdee and Chopra-s article in 2003. Since the accuracy of MPA procedure has not verified for semi-rigid steel frames with knee bracing, we are going to get through with this matter in this study. For this purpose, the selected structures are four frames with different heights, 5 to 20 stories, will be designed according to AISC criteria. Then MPA procedure is used for the same frames with different rigidity percentiles of connections. The results of seismic responses are compared with dynamic nonlinear response history analysis as exact procedure and accuracy of MPA procedure is evaluated. It seems that MPA procedure accuracy will come down by reduction of the rigidity percentiles of semi-rigid connections.Keywords: Knee Bracing, Modal Pushover Analysis, SeismicBehavior, Semi-Rigid Connections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21351175 Methods for Manufacture of Corrugated Wire Mesh Laminates
Authors: Jeongho Choi, Krishna Shankar, Alan Fien, Andrew Neely
Abstract:
Corrugated wire mesh laminates (CWML) are a class of engineered open cell structures that have potential for applications in many areas including aerospace and biomedical engineering. Two different methods of fabricating corrugated wire mesh laminates from stainless steel, one using a high temperature Lithobraze alloy and the other using a low temperature Eutectic solder for joining the corrugated wire meshes are described herein. Their implementation is demonstrated by manufacturing CWML samples of 304 and 316 stainless steel (SST). It is seen that due to the facility of employing wire meshes of different densities and wire diameters, it is possible to create CWML laminates with a wide range of effective densities. The fabricated laminates are tested under uniaxial compression. The variation of the compressive yield strength with relative density of the CWML is compared to the theory developed by Gibson and Ashby for open cell structures [22]. It is shown that the compressive strength of the corrugated wire mesh laminates can be described using the same equations by using an appropriate value for the linear coefficient in the Gibson-Ashby model.Keywords: cellular solids, corrugation, foam, open-cell, metal mesh, laminate, stainless steel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22081174 Study of MHD Oblique Stagnation Point Assisting Flow on Vertical Plate with Uniform Surface Heat Flux
Authors: Phool Singh, Ashok Jangid, N.S. Tomer, Deepa Sinha
Abstract:
The aim of this paper is to study the oblique stagnation point flow on vertical plate with uniform surface heat flux in presence of magnetic field. Using Stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained using Runge-Kutta Fehlberg method with the help of shooting technique. In the present work the effects of striking angle, magnetic field parameter, Grashoff number, the Prandtl number on velocity and heat transfer characteristics have been discussed. Effect of above mentioned parameter on the position of stagnation point are also studied.Keywords: Heat flux, Oblique stagnation point, Mixedconvection, Magneto hydrodynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19181173 Deicing and Corrosive Performances of Calcium Acetate Deicer Made from Bamboo-Vinegar
Authors: Xinyuan Jiang, Genan Li, Zhiping Wu
Abstract:
Calcium magnesium acetate (CMA) is environmentally benign deicing chemicals that can replace sodium chloride that is widely used on roads and highways at present for snow and ice control to provide safe driving conditions during winter. The price of CMA from petroleum-derived acetic acid is quite expensive. The bamboo vinegar is the by-product from bamboo charcoal production. The bamboo vinegar was used to prepare calcium acetate as raw materials, and its deicing and corrosive performances were studied in this paper. The results show that the freezing temperature of calcium acetate is lower than that of sodium chloride when they have same molar concentration, the deicing performance of calcium acetate is better than that of sodium chloride when they have same moles, while the deicing performance of sodium chloride is better than that of calcium acetate. The corrosion of sodium chloride on iron-nail and steel-nail is larger than that of calcium acetate whether they have same mass concentration or same molar concentration, and the corrosion of sodium chloride and calcium acetate on iron-nail is larger than that on steel-nail, and calcium acetate almost hasn't corrosion on steel-nail.Keywords: bamboo vinegar, calcium acetate, corrosion, deicer, deicing performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25591172 Study of the Tribological Behavior of a Pin on Disc Type of Contact
Authors: S. Djebali, S. Larbi, A. Bilek
Abstract:
The present work aims at contributing to the study of the complex phenomenon of wear of pin on disc contact in dry sliding friction between two material couples (bronze/steel and unsaturated polyester virgin and charged with graphite powder/steel). The work consists of the determination of the coefficient of friction, the study of the influence of the tribological parameters on this coefficient and the determination of the mass loss and the wear rate of the pin. This study is also widened to the highlighting of the influence of the addition of graphite powder on the tribological properties of the polymer constituting the pin. The experiments are carried out on a pin-disc type tribometer that we have designed and manufactured. Tests are conducted according to the standards DIN 50321 and DIN EN 50324. The discs are made of annealed XC48 steel and quenched and tempered XC48 steel. The main results are described here after. The increase of the normal load and the sliding speed causes the increase of the friction coefficient, whereas the increase of the percentage of graphite and the hardness of the disc surface contributes to its reduction. The mass loss also increases with the normal load. The influence of the normal load on the friction coefficient is more significant than that of the sliding speed. The effect of the sliding speed decreases for large speed values. The increase of the amount of graphite powder leads to a decrease of the coefficient of friction, the mass loss and the wear rate. The addition of graphite to the UP resin is beneficial; it plays the role of solid lubricant.
Keywords: Friction coefficients, mass loss, wear rate, bronze, polyester, graphite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12701171 High Performance Fibre Reinforced Alkali Activated Slag Concrete
Authors: A. Sivakumar, K. Srinivasan
Abstract:
The main objective of the study is focused in producing slag based geopolymer concrete obtained with the addition of alkali activator. Test results indicated that the reaction of silicates in slag is based on the reaction potential of sodium hydroxide and the formation of alumino-silicates. The study also comprises on the evaluation of the efficiency of polymer reaction in terms of the strength gain properties for different geopolymer mixtures. Geopolymer mixture proportions were designed for different binder to total aggregate ratio (0.3 & 0.45) and fine to coarse aggregate ratio (0.4 & 0.8). Geopolymer concrete specimens casted with normal curing conditions reported a maximum 28 days compressive strength of 54.75 MPa. The addition of glued steel fibres at 1.0% Vf in geopolymer concrete showed reasonable improvements on the compressive strength, split tensile strength and flexural properties of different geopolymer mixtures. Further, comparative assessment was made for different geopolymer mixtures and the reinforcing effects of steel fibres were investigated in different concrete matrix.
Keywords: Accelerators, Alkali activators, Geopolymer, Hot air oven curing, Polypropylene fibres, Slag, Steam curing, Steel fibres.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27951170 Seismic Response of Reinforced Concrete Buildings: Field Challenges and Simplified Code Formulas
Authors: Michel Soto Chalhoub
Abstract:
Building code-related literature provides recommendations on normalizing approaches to the calculation of the dynamic properties of structures. Most building codes make a distinction among types of structural systems, construction material, and configuration through a numerical coefficient in the expression for the fundamental period. The period is then used in normalized response spectra to compute base shear. The typical parameter used in simplified code formulas for the fundamental period is overall building height raised to a power determined from analytical and experimental results. However, reinforced concrete buildings which constitute the majority of built space in less developed countries pose additional challenges to the ones built with homogeneous material such as steel, or with concrete under stricter quality control. In the present paper, the particularities of reinforced concrete buildings are explored and related to current methods of equivalent static analysis. A comparative study is presented between the Uniform Building Code, commonly used for buildings within and outside the USA, and data from the Middle East used to model 151 reinforced concrete buildings of varying number of bays, number of floors, overall building height, and individual story height. The fundamental period was calculated using eigenvalue matrix computation. The results were also used in a separate regression analysis where the computed period serves as dependent variable, while five building properties serve as independent variables. The statistical analysis shed light on important parameters that simplified code formulas need to account for including individual story height, overall building height, floor plan, number of bays, and concrete properties. Such inclusions are important for reinforced concrete buildings of special conditions due to the level of concrete damage, aging, or materials quality control during construction. Overall results of the present analysis show that simplified code formulas for fundamental period and base shear may be applied but they require revisions to account for multiple parameters. The conclusion above is confirmed by the analytical model where fundamental periods were computed using numerical techniques and eigenvalue solutions. This recommendation is particularly relevant to code upgrades in less developed countries where it is customary to adopt, and mildly adapt international codes. We also note the necessity of further research using empirical data from buildings in Lebanon that were subjected to severe damage due to impulse loading or accelerated aging. However, we excluded this study from the present paper and left it for future research as it has its own peculiarities and requires a different type of analysis.
Keywords: Seismic behavior, reinforced concrete, simplified code formulas, equivalent static analysis, base shear, response spectra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27421169 Nonlinear Slow Shear Alfven Waves in Electron- Positron-Ion Plasma Including Full Ion Dynamics
Authors: B. Ghosh, H. Sahoo, K. K. Mondal
Abstract:
Propagation of arbitrary amplitude nonlinear Alfven waves has been investigated in low but finite β electron-positron-ion plasma including full ion dynamics. Using Sagdeev pseudopotential method an energy integral equation has been derived. The Sagdeev potential has been calculated for different plasma parameters and it has been shown that inclusion of ion parallel motion along the magnetic field changes the nature of slow shear Alfven wave solitons from dip type to hump type. The effects of positron concentration, plasma-β and obliqueness of the wave propagation on the solitary wave structure have also been examined.Keywords: Alfven waves, Sagdeev potential, Solitary waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19511168 Experimental Investigation on Flexural Behaviors in Framed Structure of PST Method
Authors: S. Hong, H. Kim, D. Cho, S. Park
Abstract:
Existing underground pipe jacking methods use a reinforcing rod in a steel tube to obtain structural stiffness. However, some problems such as inconvenience of works and expensive materials resulted from limited working space and reinforcing works are existed. To resolve these problems, a new pipe jacking method, namely PST (Prestressed Segment Tunnel) method, was developed which used joint to connect the steel segment and form erection structure. For evaluating the flexural capacity of the PST method structure, a experimental test was conducted. The parameters considered in the test were span-to-depth ratio of segment, diameter of steel tube at the corner, prestressing force, and welding of joint. The flexural behaviours with the effect of load capacity in serviceability state according to different parameters were examined.. The frame with long segments could increase flexural stiffness and the specimen with large diameter of concave corner showed excellent resistance ability to the negative moment. In addition, welding of joints increased the flexural capacity.Keywords: PST method, Pipe jacking method, Flexural behavior, Prestressed concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15631167 Microstructure and Mechanical Properties of Duplex Stainless steel for Anchor Bolt Application
Authors: Gil Hwan Na , Woo Young Jung , Tae Kwon Ha
Abstract:
Most buildings have been using anchor bolts commonly for installing outdoor advertising structures. Anchor bolts of common carbon steel are widely used and often installed indiscriminately by inadequate installation standards. In the area where strong winds frequently blow, falling accidents of outdoor advertising structures can occur and cause a serious disaster, which is very dangerous and to be prevented. In this regard, the development of high-performance anchor bolts is urgently required. In the present study, 25Cr-8Ni-1.5Si-1Mn-0.4C alloy was produced by traditional vacuum induction melting (VIM) for the application of anchor bolt. The alloy composition is revealed as a duplex microstructure from thermodynamic phase analysis by FactSage® and confirmed by metallographic experiment. Addition of Nitrogen to the alloy was found to reduce the ferritic phase domain and significantly increase the hardness and the tensile strength. Microstructure observation revealed mixed structure of austenite and ferrite with fine carbide distributed along the grain and phase boundaries.Keywords: Anchor bolt, Duplex stainless steel, FactSage®, Hardness, Thermodynamic phase analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28621166 Inverse Heat Transfer Analysis of a Melting Furnace Using Levenberg-Marquardt Method
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study presents a simple inverse heat transfer procedure for predicting the wall erosion and the time-varying thickness of the protective bank that covers the inside surface of the refractory brick wall of a melting furnace. The direct problem is solved by using the Finite-Volume model. The melting/solidification process is modeled using the enthalpy method. The inverse procedure rests on the Levenberg-Marquardt method combined with the Broyden method. The effect of the location of the temperature sensors and of the measurement noise on the inverse predictions is investigated. Recommendations are made concerning the location of the temperature sensor.Keywords: Melting furnace, inverse heat transfer, enthalpy method, Levenberg–Marquardt Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13171165 Effect of Mode Loading on FCRG Plate with Double Through Crack at Hole
Authors: M. Benachour, N. Benachour, M. Benguediab, A. Hadjoui
Abstract:
The knowledge of the nature of loading is very important in order to hold account on the total behavior such as vibration, shock, fatigue, etc. Fatigue present 90% of failure when loadings fatigues are very complex. In this paper a study of double through crack at hole for plate subjected to fatigue loading is presented. Various modes loading are studied where the applied load is the same one. The fatigue life is given where the effect of stress ratio is highlighted. This work is conducted on aluminum alloy 2024 T351 used for much aerospace and aeronautics applications. The fatigue crack growth behavior with constant amplitude is studied using the AFGROW code when Forman model is applied. The fatigue crack growth rate and fatigue life for different loading modes are compared with variation of others geometrical parameter such as thickness and dimensions of notch hole.Keywords: Fatigue crack, mode loading, aluminum alloy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15571164 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model
Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang
Abstract:
The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.
Keywords: Absorber plates, dual-phase-lag, non-Fourier, solar collector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13161163 Modelling, Simulation and Validation of Plastic Zone Size during Deformation of Mild Steel
Authors: S. O. Adeosun, E. I. Akpan, S. A. Balogun, O. O. Taiwo
Abstract:
A model to predict the plastic zone size for material under plane stress condition has been developed and verified experimentally. The developed model is a function of crack size, crack angle and material property (dislocation density). Simulation and validation results show that the model developed show good agreement with experimental results. Samples of low carbon steel (0.035%C) with included surface crack angles of 45o, 50o, 60o, 70o and 90o and crack depths of 2mm and 4mm were subjected to low strain rate between 0.48 x 10-3 s-1 – 2.38 x 10-3 s-1. The mechanical properties studied were ductility, tensile strength, modulus of elasticity, yield strength, yield strain, stress at fracture and fracture toughness. The experimental study shows that strain rate has no appreciable effect on the size of plastic zone while crack depth and crack angle plays an imperative role in determining the size of the plastic zone of mild steel materials.Keywords: Applied stress, crack angle, crack size, material property, plastic zone size, strain rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16091162 Thermal Treatments and Characteristics Study On Unalloyed Structural (AISI 1140) Steel
Authors: S. S. Sharma, P. R. Prabhu, Rajagopal Chadaga
Abstract:
The main emphasis of metallurgists has been to process the materials to obtain the balanced mechanical properties for the given application. One of the processing routes to alter the properties is heat treatment. Nearly 90% of the structural applications are related to the medium carbon an alloyed steels and hence are regarded as structural steels. The major requirement in the conventional steel is to improve workability, toughness, hardness and grain refinement. In this view, it is proposed to study the mechanical and tribological properties of unalloyed structural (AISI 1140) steel with different thermal (heat) treatments like annealing, normalizing, tempering and hardening and compared with as brought (cold worked) specimen. All heat treatments are carried out in atmospheric condition. Hardening treatment improves hardness of the material, a marginal decrease in hardness value with improved ductility is observed in tempering. Annealing and normalizing improve ductility of the specimen. Normalized specimen shows ultimate ductility. Hardened specimen shows highest wear resistance in the initial period of slide wear where as above 25KM of sliding distance, as brought steel dominates the hardened specimen. Both mild and severe wear regions are observed. Microstructural analysis shows the existence of pearlitic structure in normalized specimen, lath martensitic structure in hardened, pearlitic, ferritic structure in annealed specimen.
Keywords: Annealing, hardness, heat treatment, normalizing, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21131161 Seismic Behavior of Steel Moment-Resisting Frames for Uplift Permitted in Near-Fault Regions
Authors: M. Tehranizadeh, E. Shoushtari Rezvani
Abstract:
Seismic performance of steel moment-resisting frame structures is investigated considering nonlinear soil-structure interaction (SSI) effects. 10-, 15-, and 20-story planar building frames with aspect ratio of 3 are designed in accordance with current building codes. Inelastic seismic demands of the superstructure are considered using concentrated plasticity model. The raft foundation system is designed for different soil types. Beam-on-nonlinear Winkler foundation (BNWF) is used to represent dynamic impedance of the underlying soil. Two sets of pulse-like as well as no-pulse near-fault earthquakes are used as input ground motions. The results show that the reduction in drift demands due to nonlinear SSI is characterized by a more uniform distribution pattern along the height when compared to the fixed-base and linear SSI condition. It is also concluded that beneficial effects of nonlinear SSI on displacement demands is more significant in case of pulse-like ground motions and performance level of the steel moment-resisting frames can be enhanced.
Keywords: Soil-structure interaction, uplifting, soil plasticity, near-fault earthquake, tall building.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11381160 Evaluation of the Inhibitive Effect of Novel Quinoline Schiff Base on Corrosion of Mild Steel in HCl Solution
Authors: Smita Jauhari, Bhupendra Mistry
Abstract:
Schiff base (E)-2-methyl-N-(tetrazolo[1,5-a]quinolin-4-ylmethylene)aniline (QMA) was synthesized, and its inhibitive effect for mild steel in 1N HCl solution was investigated by weight loss measurement and electrochemical tests. From the weight loss measurements and electrochemical tests, it was observed that the inhibition efficiency increases with the increase in the Schiff base concentration and reaches a maximum at the optimum concentration. This is further confirmed by the decrease in corrosion rate. It is found that the system follows Langmuir adsorption isotherm.
Keywords: Schiff base, acid corrosion, electrochemical impedance spectroscopy, polarization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18851159 Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate
Authors: R. Joseph Raviselvan, K. Ramanathan, P. Perumal, M. R. Thansekhar
Abstract:
Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength, and corrosion resistance. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM).Keywords: Hardness, RSM, sputtering, TiN XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15801158 Structural Engineering Forensic Evaluation of Misdiagnosed Concrete Masonry Wall Cracking
Authors: W. C. Bracken
Abstract:
Given that concrete masonry walls are expected to experience shrinkage combined with thermal expansion and contraction, and in some cases even carbonation, throughout their service life, cracking is to be expected. However, after concrete masonry walls have been placed into service, originally anticipated and accounted for cracking is often misdiagnosed as a structural defect. Such misdiagnoses often result in or are used to support litigation. This paper begins by discussing the causes and types of anticipated cracking within concrete masonry walls followed by a discussion on the processes and analyses that exists for properly evaluating them and their significance. From here, the paper then presents a case of misdiagnosed concrete masonry cracking and the flawed logic employed to support litigation.Keywords: Concrete masonry, masonry wall cracking, structural defect, structural damage, construction defect, forensic investigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414