Search results for: production rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4580

Search results for: production rate

3830 Photo-Fenton Treatment of 1,3-dichloro-2- Propanol Aqueous Solutions Using UV Radiation and H2O2 – A Kinetic Study

Authors: Maria D. Nikolaki, Katerina N. Zerva, Constantine. J. Philippopoulos

Abstract:

The photochemical and photo-Fenton oxidation of 1,3-dichloro-2-propanol was performed in a batch reactor, at room temperature, using UV radiation, H2O2 as oxidant, and Fenton-s reagent. The effect of the oxidative agent-s initial concentration was investigated as well as the effect of the initial concentration of Fe(II) by following the target compound degradation, the total organic carbon removal and the chloride ion production. Also, from the kinetic analysis conducted and proposed reaction scheme it was deduced that the addition of Fe(II) significantly increases the production and the further oxidation of the chlorinated intermediates.

Keywords: 1, 3-dichloro-2-propanol, hydrogen peroxide, photo- Fenton, UV .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
3829 Detection and Correction of Ectopic Beats for HRV Analysis Applying Discrete Wavelet Transforms

Authors: Desmond B. Keenan

Abstract:

The clinical usefulness of heart rate variability is limited to the range of Holter monitoring software available. These software algorithms require a normal sinus rhythm to accurately acquire heart rate variability (HRV) measures in the frequency domain. Premature ventricular contractions (PVC) or more commonly referred to as ectopic beats, frequent in heart failure, hinder this analysis and introduce ambiguity. This investigation demonstrates an algorithm to automatically detect ectopic beats by analyzing discrete wavelet transform coefficients. Two techniques for filtering and replacing the ectopic beats from the RR signal are compared. One technique applies wavelet hard thresholding techniques and another applies linear interpolation to replace ectopic cycles. The results demonstrate through simulation, and signals acquired from a 24hr ambulatory recorder, that these techniques can accurately detect PVC-s and remove the noise and leakage effects produced by ectopic cycles retaining smooth spectra with the minimum of error.

Keywords: Heart rate variability, vagal tone, sympathetic, parasympathetic, wavelets, ectopic beats, spectral analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
3828 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.

Keywords: Air bubbles, CFD simulation, jet pump, practical applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
3827 Application of Costing System in the Small and Medium Sized Enterprises (SME) in Turkey

Authors: Hamide Özyürek, Metin Yılmaz

Abstract:

Standard processes, similar and limited production lines, the production of high direct costs will be more accurate than the use of parts of the traditional cost systems in the literature. However, direct costs, overhead expenses, in turn, decrease the burden of increasingly sophisticated production facilities, a situation that led the researchers to look for the cost of traditional systems of alternative techniques. Variety cost management approaches for example Total quality management (TQM), just-in-time (JIT), benchmarking, kaizen costing, targeting cost, life cycle costs (LLC), activity-based costing (ABC) value engineering have been introduced. Management and cost applications have changed over the past decade and will continue to change. Modern cost systems can provide relevant and accurate cost information. These methods provide the decisions about customer, product and process improvement. The aim of study is to describe and explain the adoption and application of costing systems in SME. This purpose reports on a survey conducted during 2014 small and medium sized enterprises (SME) in Ankara. The survey results were evaluated using SPSS18 package program.

Keywords: Cost Accounting, Costing, Modern Costing Systems, Managerial Accounting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5330
3826 Optimum Conditions for Effective Decomposition of Toluene as VOC Gas by Pilot-Scale Regenerative Thermal Oxidizer

Authors: S. Iijima, K. Nakayama, D. Kuchar, M. Kubota, H. Matsuda

Abstract:

Regenerative Thermal Oxidizer (RTO) is one of the best solutions for removal of Volatile Organic Compounds (VOC) from industrial processes. In the RTO, VOC in a raw gas are usually decomposed at 950-1300 K and the combustion heat of VOC is recovered by regenerative heat exchangers charged with ceramic honeycombs. The optimization of the treatment of VOC leads to the reduction of fuel addition to VOC decomposition, the minimization of CO2 emission and operating cost as well. In the present work, the thermal efficiency of the RTO was investigated experimentally in a pilot-scale RTO unit using toluene as a typical representative of VOC. As a result, it was recognized that the radiative heat transfer was dominant in the preheating process of a raw gas when the gas flow rate was relatively low. Further, it was found that a minimum heat exchanger volume to achieve self combustion of toluene without additional heating of the RTO by fuel combustion was dependent on both the flow rate of a raw gas and the concentration of toluene. The thermal efficiency calculated from fuel consumption and the decomposed toluene ratio, was found to have a maximum value of 0.95 at a raw gas mass flow rate of 1810 kg·h-1 and honeycombs height of 1.5m.

Keywords: Regenerative Heat Exchange, Self Combustion, Toluene, Volatile Organic Compounds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2442
3825 A Numerical Model to Study the Rapid Buffering Approximation near an Open Ca2+ Channel for an Unsteady State Case

Authors: Leena Sharma

Abstract:

Chemical reaction and diffusion are important phenomena in quantitative neurobiology and biophysics. The knowledge of the dynamics of calcium Ca2+ is very important in cellular physiology because Ca2+ binds to many proteins and regulates their activity and interactions Calcium waves propagate inside cells due to a regenerative mechanism known as calcium-induced calcium release. Buffer-mediated calcium diffusion in the cytosol plays a crucial role in the process. A mathematical model has been developed for calcium waves by assuming the buffers are in equilibrium with calcium i.e., the rapid buffering approximation for a one dimensional unsteady state case. This model incorporates important physical and physiological parameters like dissociation rate, diffusion rate, total buffer concentration and influx. The finite difference method has been employed to predict [Ca2+] and buffer concentration time course regardless of the calcium influx. The comparative studies of the effect of the rapid buffered diffusion and kinetic parameters of the model on the concentration time course have been performed.

Keywords: Calcium Profile, Rapid Buffering Approximation, Influx, Dissociation rate constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
3824 Assessment of the Biological Nitrogen Fixation in Soybean Sown in Different Types of Moroccan Soils

Authors: F. Z. Aliyat, B. Ben Messaoud, L. Nassiri, E. Bouiamrine, J. Ibijbijen

Abstract:

The present study aims to assess the biological nitrogen fixation in the soybean tested in different Moroccan soils combined with the rhizobial inoculation. These effects were evaluated by the plant growth mainly by the aerial biomass production, total nitrogen content and the proportion of the nitrogen fixed. This assessment clearly shows that the inoculation with bacteria increases the growth of soybean. Five different soils and a control (peat) were used. The rhizobial inoculation was performed by applying the peat that contained a mixture of 2 strains Sinorhizobium fredii HH103 and Bradyrhizobium. The biomass, the total nitrogen content and the proportion of nitrogen fixed were evaluated under different treatments. The essay was realized at the greenhouse the Faculty of Sciences, Moulay Ismail University. The soybean has shown a great response for the parameters assessed. Moreover, the best response was reported by the inoculated plants compared to non- inoculated and to the absolute control. Finally, good production and the best biological nitrogen fixation present an important ecological technology to improve the sustainable production of soybean and to ensure the increase of the fertility of soils.

Keywords: Biological nitrogen fixation, inoculation, rhizobium, soybean.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748
3823 Management of Municipal Solid Waste in Baghdad, Iraq

Authors: Ayad Sleibi Mustafa, Ahmed Abdulkadhim Mohsin, Layth Noori Ali

Abstract:

The deterioration of solid waste management in Baghdad city is considered as a great challenge in terms of human health and environment. Baghdad city is divided into thirteen districts which are distributed on both Tigris River banks. The west bank is Al-Karkh and the east bank is Al-Rusafa. Municipal Solid Waste Management is one of the most complicated problems facing the environment in Iraq. Population growth led to increase waste production and more load of the waste to the limited capacity infrastructure. The problems of municipal solid waste become more serious after the war in 2003. More waste is disposed in underground landfills in Baghdad with little or no concern for both human health and environment. The results showed that the total annually predicted solid waste is increasing for the period 2015-2030. Municipal solid waste in 2030 will be 6,427,773 tons in Baghdad city according to the population growth rate of 2.4%. This increase is estimated to be approximately 30%.

Keywords: Municipal solid waste, solid waste composition and characteristics, Baghdad city, environment, human health.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
3822 Periodic Control of a Wastewater Treatment Process to Improve Productivity

Authors: Muhammad Rizwan Azhar, Emadadeen Ali

Abstract:

In this paper, periodic force operation of a wastewater treatment process has been studied for the improved process performance. A previously developed dynamic model for the process is used to conduct the performance analysis. The static version of the model was utilized first to determine the optimal productivity conditions for the process. Then, feed flow rate in terms of dilution rate i.e. (D) is transformed into sinusoidal function. Nonlinear model predictive control algorithm is utilized to regulate the amplitude and period of the sinusoidal function. The parameters of the feed cyclic functions are determined which resulted in improved productivity than the optimal productivity under steady state conditions. The improvement in productivity is found to be marginal and is satisfactory in substrate conversion compared to that of the optimal condition and to the steady state condition, which corresponds to the average value of the periodic function. Successful results were also obtained in the presence of modeling errors and external disturbances.

Keywords: Dilution rate, nonlinear model predictive control, sinusoidal function, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
3821 Experimental Film Class: Watbangkapom School, Samut Songkhram

Authors: Areerut J.

Abstract:

Experimental Film Class Project is supported by the Institute for Research and Development at Suan Sunandha Rajabhat University. This project is purported to provide academic and professional services to improve the quality standards of the community and locals in accordance with the mission of the university, which is to improve and expand knowledge for the community and to develop and transfer such knowledge and professions to the next generation. Eventually, it leads to sustainable development because the development of human resources is deemed as the key for sustainable development. Moreover, the Experimental Film Class is an integral part of the teaching of film production at Suan Sunandha International School of Art (SISA). By means of giving opportunities to students for participation in projects by sharing experience, skill and knowledge and participation in field activities, it helps students in the film production major to enhance their abilities and potentials as preparation for their readiness in the marketplace. Additionally, in this class, we provide basic film knowledge, screenwriting techniques, editing and subtitles including uploading videos on social media such as YouTube and Facebook for the participant students.

Keywords: Experimental Film Class, Watbangkapom School, Participant students, Basic of film production, Film Workshop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
3820 High Temperature Deformation Behavior of Cr-containing Superplastic Iron Aluminide

Authors: Seok Hong Min, Woo Young Jung, Tae Kwon Ha

Abstract:

Superplastic deformation and high temperature load relaxation behavior of coarse-grained iron aluminides with the composition of Fe-28 at.% Al have been investigated. A series of load relaxation and tensile tests were conducted at temperatures ranging from 600 to 850oC. The flow curves obtained from load relaxation tests were found to have a sigmoidal shape and to exhibit stress vs. strain rate data in a very wide strain rate range from 10-7/s to 10-2/s. Tensile tests have been conducted at various initial strain rates ranging from 3×10-5/s to 1×10-2/s. Maximum elongation of ~500 % was obtained at the initial strain rate of 3×10-5/s and the maximum strain rate sensitivity was found to be 0.68 at 850oC in binary Fe-28Al alloy. Microstructure observation through the optical microscopy (OM) and the electron back-scattered diffraction (EBSD) technique has been carried out on the deformed specimens and it has revealed the evidences for grain boundary migration and grain refinement to occur during superplastic deformation, suggesting the dynamic recrystallization mechanism. The addition of Cr by the amount of 5 at.% appeared to deteriorate the superplasticity of the binary iron aluminide. By applying the internal variable theory of structural superplasticity, the addition of Cr has been revealed to lower the contribution of the frictional resistance to dislocation glide during high temperature deformation of the Fe3Al alloy.

Keywords: Iron aluminide (Fe3Al), large grain size, structural superplasticity, dynamic recrystallization, chromium (Cr).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
3819 Rain Cell Ratio Technique in Path Attenuation for Terrestrial Radio Links

Authors: Peter Odero Akuon

Abstract:

A rain cell ratio model is proposed that computes attenuation of the smallest rain cell which represents the maximum rain rate value i.e. the cell size when rainfall rate is exceeded 0.01% of the time, R0.01 and predicts attenuation for other cells as the ratio with this maximum. This model incorporates the dependence of the path factor r on the ellipsoidal path variation of the Fresnel zone at different frequencies. In addition, the inhomogeneity of rainfall is modeled by a rain drop packing density factor. In order to derive the model, two empirical methods that can be used to find rain cell size distribution Dc are presented. Subsequently, attenuation measurements from different climatic zones for terrestrial radio links with frequencies F in the range 7-38 GHz are used to test the proposed model. Prediction results show that the path factor computed from the rain cell ratio technique has improved reliability when compared with other path factor and effective rain rate models, including the current ITU-R 530-15 model of 2013.

Keywords: Packing density of rain drops, prediction model, rain attenuation, rain cell ratio technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698
3818 Twin-Screw Extruder and Effective Parameters on the HDPE Extrusion Process

Authors: S. A. Razavi Alavi, M. Torabi Angaji, Z. Gholami

Abstract:

In the process of polyethylene extrusion polymer material similar to powder or granule is under compression, melting and transmission operation and on base of special form, extrudate has been produced. Twin-screw extruders are applicable in industries because of their high capacity. The powder mixing with chemical additives and melting with thermal and mechanical energy in three zones (feed, compression and metering zone) and because of gear pump and screw's pressure, converting to final product in latest plate. Extruders with twin-screw and short distance between screws are better than other types because of their high capacity and good thermal and mechanical stress. In this paper, process of polyethylene extrusion and various tapes of extruders are studied. It is necessary to have an exact control on process to producing high quality products with safe operation and optimum energy consumption. The granule size is depending on granulator motor speed. Results show at constant feed rate a decrease in granule size was found whit Increase in motor speed. Relationships between HDPE feed rate and speed of granulator motor, main motor and gear pump are calculated following as: x = HDPE feed flow rate, yM = Main motor speed yM = (-3.6076e-3) x^4+ (0.24597) x^3+ (-5.49003) x^2+ (64.22092) x+61.66786 (1) x = HDPE feed flow rate, yG = Gear pump speed yG = (-2.4996e-3) x^4+ (0.18018) x^3+ (-4.22794) x^2+ (48.45536) x+18.78880 (2) x = HDPE feed flow rate, y = Granulator motor speed 10th Degree Polynomial Fit: y = a+bx+cx^2+dx^3... (3) a = 1.2751, b = 282.4655, c = -165.2098, d = 48.3106, e = -8.18715, f = 0.84997 g = -0.056094, h = 0.002358, i = -6.11816e-5 j = 8.919726e-7, k = -5.59050e-9

Keywords: Extrusion, Extruder, Granule, HDPE, Polymer, Twin-Screw extruder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4979
3817 Optimization of Process Parameters in Wire Electrical Discharge Machining of Inconel X-750 for Dimensional Deviation Using Taguchi Technique

Authors: Mandeep Kumar, Hari Singh

Abstract:

The effective optimization of machining process parameters affects dramatically the cost and production time of machined components as well as the quality of the final products. This paper presents the optimization aspects of a Wire Electrical Discharge Machining operation using Inconel X-750 as work material. The objective considered in this study is minimization of the dimensional deviation. Six input process parameters of WEDM namely spark gap voltage, pulse-on time, pulse-off time, wire feed rate, peak current and wire tension, were chosen as variables to study the process performance. Taguchi's design of experiments methodology has been used for planning and designing the experiments. The analysis of variance was carried out for raw data as well as for signal to noise ratio. Four input parameters and one two-factor interaction have been found to be statistically significant for their effects on the response of interest. The confirmation experiments were also performed for validating the predicted results.

Keywords: ANOVA, DOE, inconel, machining, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
3816 Optimization of Gentamicin Production: Comparison of ANN and RSM Techniques

Authors: M.Rajasimman, S.Subathra

Abstract:

In this work, statistical experimental design was applied for the optimization of medium constituents for Gentamicin production by Micromsonospora echinospora subs pallida (MTCC 708) in a batch reactor and the results are compared with the ANN predicted values. By central composite design, 50 experiments are carried out for five test variables: Starch, Soya bean meal, K2HPO4, CaCO3 and FeSO4. The optimum condition was found to be: Starch (8.9,g/L), Soya bean meal (3.3 g/L), K2HPO4 (0.8 g/L), CaCO3 (4 g/L) and FeSO4 (0.03 g/L). At these optimized conditions, the yield of gentamicin was found to be 1020 mg/L. The R2 values were found to be 1 for ANN training set, 0.9953 for ANN test set, and 0.9286 for RSM.

Keywords: Gentamicin, optimization, Micromonospora echinospora, ANN, RSM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
3815 Random Projections for Dimensionality Reduction in ICA

Authors: Sabrina Gaito, Andrea Greppi, Giuliano Grossi

Abstract:

In this paper we present a technique to speed up ICA based on the idea of reducing the dimensionality of the data set preserving the quality of the results. In particular we refer to FastICA algorithm which uses the Kurtosis as statistical property to be maximized. By performing a particular Johnson-Lindenstrauss like projection of the data set, we find the minimum dimensionality reduction rate ¤ü, defined as the ratio between the size k of the reduced space and the original one d, which guarantees a narrow confidence interval of such estimator with high confidence level. The derived dimensionality reduction rate depends on a system control parameter β easily computed a priori on the basis of the observations only. Extensive simulations have been done on different sets of real world signals. They show that actually the dimensionality reduction is very high, it preserves the quality of the decomposition and impressively speeds up FastICA. On the other hand, a set of signals, on which the estimated reduction rate is greater than 1, exhibits bad decomposition results if reduced, thus validating the reliability of the parameter β. We are confident that our method will lead to a better approach to real time applications.

Keywords: Independent Component Analysis, FastICA algorithm, Higher-order statistics, Johnson-Lindenstrauss lemma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
3814 Catalytic Gasification of Olive Mill Wastewater as a Biomass Source under Supercritical Conditions

Authors: Ekin Kıpçak, Mesut Akgün

Abstract:

Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which have a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water.

Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation.

In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water conditions is investigated with the use of Ru/Al2O3 catalyst. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production.

The catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (30, 60, 90, 120 and 150s), under a constant pressure of 25MPa. Through these experiments, the effects of reaction temperature and time on the gasification yield, gaseous product composition and OMW treatment efficiency were investigated.

Keywords: Catalyst, Gasification, Olive mill wastewater, Ru/Al2O3, Supercritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
3813 Influence of the Flow Rate Ratio in a Jet Pump on the Size of Air Bubbles

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

In wastewater treatment processes, aeration introduces air into a liquid. In these systems, air is introduced by different devices submerged in the wastewater. Smaller bubbles result in more bubble surface area per unit of volume and higher oxygen transfer efficiency. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. The principle of jet pumps is their ability to transfer energy of one fluid, called primary or motive, into a secondary fluid or gas. These pumps have no moving parts and are able to work in remote areas under extreme conditions. The objective of this work is to study experimentally the characteristics of the jet pump and the size of air bubbles in the laboratory water tank. The effect of flow rate ratio on pump performance is investigated in order to have a better understanding about pump behavior under various conditions, in order to determine the efficiency of receiving air bubbles different sizes. The experiments show that we should take care when increasing the flow rate ratio while seeking to decrease bubble size in the outlet flow. This study will help improve and extend the use of the jet pump in many practical applications.

Keywords: Jet pump, air bubbles size, retention time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989
3812 Numerical Study of Oxygen Enrichment on NO Pollution Spread in a Combustion Chamber

Authors: Zohreh Orshesh

Abstract:

In this study, a 3D combustion chamber was simulated using FLUENT 6.32. Aim to obtain detailed information on combustion characteristics and _ nitrogen oxides in the furnace and the effect of oxygen enrichment in a combustion process. Oxygenenriched combustion is an effective way to reduce emissions. This paper analyzes NO emission, including thermal NO and prompt NO. Flow rate ratio of air to fuel is varied as 1.3, 3.2 and 5.1 and the oxygen enriched flow rates are 28, 54 and 68 lit/min. The 3D Reynolds Averaged Navier Stokes (RANS) equations with standard k-ε turbulence model are solved together by Fluent 6.32 software. First order upwind scheme is used to model governing equations and the SIMPLE algorithm is used as pressure velocity coupling. Results show that for AF=1.3, increase the oxygen flow rate of oxygen reduction in NO emissions is Lance. Moreover, in a fixed oxygen enrichment condition, increasing the air to fuel ratio will increase the temperature peak, but not the NO emission rate. As a result, oxygen enrichment can reduce the NO emission at this kind of furnace in low air to fuel rates.

Keywords: Combustion chamber, Oxygen enrichment, Reynolds Averaged Navier- Stokes, NO emission

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
3811 An Evaluation of Carbon Dioxide Emissions Trading among Enterprises -The Tokyo Cap and Trade Program-

Authors: Hiroki Satou, Kayoko Yamamoto

Abstract:

This study aims to propose three evaluation methods to evaluate the Tokyo Cap and Trade Program when emissions trading is performed virtually among enterprises, focusing on carbon dioxide (CO2), which is the only emitted greenhouse gas that tends to increase. The first method clarifies the optimum reduction rate for the highest cost benefit, the second discusses emissions trading among enterprises through market trading, and the third verifies long-term emissions trading during the term of the plan (2010-2019), checking the validity of emissions trading partly using Geographic Information Systems (GIS). The findings of this study can be summarized in the following three points. 1. Since the total cost benefit is the greatest at a 44% reduction rate, it is possible to set it more highly than that of the Tokyo Cap and Trade Program to get more total cost benefit. 2. At a 44% reduction rate, among 320 enterprises, 8 purchasing enterprises and 245 sales enterprises gain profits from emissions trading, and 67 enterprises perform voluntary reduction without conducting emissions trading. Therefore, to further promote emissions trading, it is necessary to increase the sales volumes of emissions trading in addition to sales enterprises by increasing the number of purchasing enterprises. 3. Compared to short-term emissions trading, there are few enterprises which benefit in each year through the long-term emissions trading of the Tokyo Cap and Trade Program. Only 81 enterprises at the most can gain profits from emissions trading in FY 2019. Therefore, by setting the reduction rate more highly, it is necessary to increase the number of enterprises that participate in emissions trading and benefit from the restraint of CO2 emissions.

Keywords: Emissions Trading, Tokyo Cap and Trade Program, Carbon Dioxide (CO2), Global Warming, Geographic Information Systems (GIS)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
3810 A Novel Computer Vision Method for Evaluating Deformations of Fibers Cross Section in False Twist Textured Yarns

Authors: Dariush Semnani, Mehdi Ahangareianabhari, Hossein Ghayoor

Abstract:

In recent five decades, textured yarns of polyester fiber produced by false twist method are the most important and mass-produced manmade fibers. There are many parameters of cross section which affect the physical and mechanical properties of textured yarns. These parameters are surface area, perimeter, equivalent diameter, large diameter, small diameter, convexity, stiffness, eccentricity, and hydraulic diameter. These parameters were evaluated by digital image processing techniques. To find trends between production criteria and evaluated parameters of cross section, three criteria of production line have been adjusted and different types of yarns were produced. These criteria are temperature, drafting ratio, and D/Y ratio. Finally the relations between production criteria and cross section parameters were considered. The results showed that the presented technique can recognize and measure the parameters of fiber cross section in acceptable accuracy. Also, the optimum condition of adjustments has been estimated from results of image analysis evaluation.

Keywords: Computer Vision, Cross Section Analysis, Fibers Deformation, Textured Yarn

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
3809 Analysis and Circuit Modeling of APDs

Authors: A. Ahadpour Shal, A. Ghadimi, A. Azadbar

Abstract:

In this paper a new method for increasing the speed of SAGCM-APD is proposed. Utilizing carrier rate equations in different regions of the structure, a circuit model for the structure is obtained. In this research, in addition to frequency response, the effect of added new charge layer on some transient parameters like slew-rate, rising and falling times have been considered. Finally, by trading-off among some physical parameters such as different layers widths and droppings, a noticeable decrease in breakdown voltage has been achieved. The results of simulation, illustrate some features of proposed structure improvement in comparison with conventional SAGCM-APD structures.

Keywords: Optical communication systems (OCS), Circuit modeling, breakdown voltage, SAGCM APD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
3808 Life Cycle Assessment of Seawater Desalinization in Western Australia

Authors: Wahidul K. Biswas

Abstract:

Perth will run out of available sustainable natural water resources by 2015 if nothing is done to slow usage rates, according to a Western Australian study [1]. Alternative water technology options need to be considered for the long-term guaranteed supply of water for agricultural, commercial, domestic and industrial purposes. Seawater is an alternative source of water for human consumption, because seawater can be desalinated and supplied in large quantities to a very high quality. While seawater desalination is a promising option, the technology requires a large amount of energy which is typically generated from fossil fuels. The combustion of fossil fuels emits greenhouse gases (GHG) and, is implicated in climate change. In addition to environmental emissions from electricity generation for desalination, greenhouse gases are emitted in the production of chemicals and membranes for water treatment. Since Australia is a signatory to the Kyoto Protocol, it is important to quantify greenhouse gas emissions from desalinated water production. A life cycle assessment (LCA) has been carried out to determine the greenhouse gas emissions from the production of 1 gigalitre (GL) of water from the new plant. In this LCA analysis, a new desalination plant that will be installed in Bunbury, Western Australia, and known as Southern Seawater Desalinization Plant (SSDP), was taken as a case study. The system boundary of the LCA mainly consists of three stages: seawater extraction, treatment and delivery. The analysis found that the equivalent of 3,890 tonnes of CO2 could be emitted from the production of 1 GL of desalinated water. This LCA analysis has also identified that the reverse osmosis process would cause the most significant greenhouse emissions as a result of the electricity used if this is generated from fossil fuels

Keywords: Desalinization, Greenhouse gas emissions, life cycle assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4115
3807 ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context

Authors: Mangesh R. Phate, V. H. Tatwawadi

Abstract:

This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment.

The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.

Keywords: Field data based model, Artificial neural network, Simulation, Convectional Turning, Material removal rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
3806 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718

Authors: Pushpendra S. Bharti, S. Maheshwari

Abstract:

Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.

Keywords: EDM, material removal rate, multi-response signal-to-noise ratio, optimization, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
3805 Effect of Cooling Approaches on Chemical Compositions, Phases, and Acidolysis of Panzhihua Titania Slag

Authors: Bing Song, Kexi Han, Xuewei Lv

Abstract:

Titania slag is a high quality raw material containing titanium in the subsequent process of titanium pigment. The effects of cooling approaches of granulating, water cooling, and air cooling on chemical, phases, and acidolysis of Panzhihua titania slag were investigated. Compared to the original slag which was prepared by the conventional processing route, the results show that the titania slag undergoes oxidation of Ti3+during different cooling ways. The Ti2O3 content is 17.50% in the original slag, but it is 16.55% and 16.84% in water cooled and air-cooled slag, respectively. Especially, the Ti2O3 content in granulated slag is decreased about 27.6%. The content of Fe2O3 in granulated slag is approximately 2.86% also obviously higher than water (<0.5%) or air-cooled slag (<0.5%). Rutile in cooled titania slag was formed because of the oxidation of Ti3+. The rutile phase without a noticeable change in water cooled and air-cooled slag after the titania slag was cooled, but increased significantly in the granulated slag. The rate of sulfuric acid acidolysis of cooled slag is less than the original slag. The rate of acidolysis is 90.61% and 92.46% to the water-cooled slag and air-cooled slag, respectively. However, the rate of acidolysis of the granulated slag is less than that of industry slag about 20%, only 74.72%.

Keywords: Cooling approaches, titania slag, granulating, sulfuric acid acidolysis,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 860
3804 Power Minimization in Decode-and-XOR-Forward Two-Way Relay Networks

Authors: Dong-Woo Lim, Chang-Jae Chun, Hyung-Myung Kim

Abstract:

We consider a two-way relay network where two sources exchange information. A relay helps the two sources exchange information using the decode-and-XOR-forward protocol. We investigate the power minimization problem with minimum rate constraints. The system needs two time slots and in each time slot the required rate pair should be achievable. The power consumption is minimized in each time slot and we obtained the closed form solution. The simulation results confirm that the proposed power allocation scheme consumes lower total power than the conventional schemes.

Keywords: Decode-and-XOR-forward, power minimization, two-way relay

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
3803 Integrated Approaches to Enhance Aggregate Production Planning with Inventory Uncertainty Based On Improved Harmony Search Algorithm

Authors: P. Luangpaiboon, P. Aungkulanon

Abstract:

This work presents a multiple objective linear programming (MOLP) model based on the desirability function approach for solving the aggregate production planning (APP) decision problem upon Masud and Hwang-s model. The proposed model minimises total production costs, carrying or backordering costs and rates of change in labor levels. An industrial case demonstrates the feasibility of applying the proposed model to the APP problems with three scenarios of inventory levels. The proposed model yields an efficient compromise solution and the overall levels of DM satisfaction with the multiple combined response levels. There has been a trend to solve complex planning problems using various metaheuristics. Therefore, in this paper, the multi-objective APP problem is solved by hybrid metaheuristics of the hunting search (HuSIHSA) and firefly (FAIHSA) mechanisms on the improved harmony search algorithm. Results obtained from the solution of are then compared. It is observed that the FAIHSA can be used as a successful alternative solution mechanism for solving APP problems over three scenarios. Furthermore, the FAIHSA provides a systematic framework for facilitating the decision-making process, enabling a decision maker interactively to modify the desirability function approach and related model parameters until a good optimal solution is obtained with proper selection of control parameters when compared.

Keywords: Aggregate Production Planning, Desirability Function Approach, Improved Harmony Search Algorithm, Hunting Search Algorithm and Firefly Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
3802 Prospects in Waste Oil Shale Ash Sustainable Valorization

Authors: Olga Velts, Mai Uibu, Juha Kallas, Rein Kuusik

Abstract:

An innovative approach utilizing highly alkaline oil shale waste ash and carbon dioxide gas (CO2), associated with power production, as a resource for production of precipitated calcium carbonate (PCC) is introduced in this paper. The specifics and feasibility of the integrated ash valorization and CO2 sequestration process by indirect aqueous carbonation of lime-consisting ash were elaborated and the main parameters established. Detailed description of the formed precipitates was included. Complimentary carbonation experiments with commercial CaO fine powder were conducted for comparative characterization of the final products obtained on the basis of two different raw materials. Finally, the expected CO2 uptake was evaluated.

Keywords: Calcium Carbonate, Carbon Dioxide Sequestration, Oil Shale Ash, Waste Valorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
3801 Application of Legendre Transformation to Portfolio Optimization

Authors: Peter Benneth, Tsaroh N. Theophilus, Prince Benjamin

Abstract:

This research work aims at studying the application of Legendre Transformation Method (LTM) to Hamilton Jacobi Bellman (HJB) equation which is an example of optimal control problem. We discuss the steps involved in modelling the HJB equation as it relates to mathematical finance by applying the Ito’s lemma and maximum principle theorem. By applying the LTM and dual theory, the resultant HJB equation is transformed to a linear Partial Differential Equation (PDE). Also, the Optimal Investment Strategy (OIS) and the optimal value function were obtained under the exponential utility function. Furthermore, some numerical results were also presented with observations that the OIS under exponential utility is directly proportional to the appreciation rate of the risky asset and inversely proportional to the instantaneous volatility, predetermined interest rate, risk averse coefficient. Finally, it was observed that the optimal fund size is an increasing function of the risk free interest rate. This result is consistent with some existing results.

Keywords: Legendre transformation method, Optimal investment strategy, Ito’s lemma, Hamilton Jacobi Bellman equation, Geometric Brownian motion, financial market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67