Search results for: Vicon physical data.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8486

Search results for: Vicon physical data.

7736 Application of Multi-Dimensional Principal Component Analysis to Medical Data

Authors: Naoki Yamamoto, Jun Murakami, Chiharu Okuma, Yutaro Shigeto, Satoko Saito, Takashi Izumi, Nozomi Hayashida

Abstract:

Multi-dimensional principal component analysis (PCA) is the extension of the PCA, which is used widely as the dimensionality reduction technique in multivariate data analysis, to handle multi-dimensional data. To calculate the PCA the singular value decomposition (SVD) is commonly employed by the reason of its numerical stability. The multi-dimensional PCA can be calculated by using the higher-order SVD (HOSVD), which is proposed by Lathauwer et al., similarly with the case of ordinary PCA. In this paper, we apply the multi-dimensional PCA to the multi-dimensional medical data including the functional independence measure (FIM) score, and describe the results of experimental analysis.

Keywords: multi-dimensional principal component analysis, higher-order SVD (HOSVD), functional independence measure (FIM), medical data, tensor decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502
7735 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management

Authors: M. Graus, K. Westhoff, X. Xu

Abstract:

The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.

Keywords: Data analytics, green production, industrial energy management, optimization, renewable energies, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
7734 Bread Quality Improvement with Special Novel Additives

Authors: Mónika Bartalné-Berceli, Eszter Izsó, Szilveszter Gergely, András Salgó

Abstract:

Presently a significant portion of the Earth's population does not have access to healthy food. Either because they cannot afford it or because they do not know which one are they. The aim of the VII th Framework Chance project (Nr. 266331) supported by the European Union has been to develop relatively cheap food with favourable nutritional value and it should have acceptable quality for consumers. As one task of the project we manufactured bread products as a basic food. We examined the enrichment of bread products with four kinds of bran, with a special milling product of grain industry (aleurone-rich flour) and with a soy-based sprouted additive. The applied concentration of the six mentioned additives has been optimized and the physical properties of the bread products were monitored. The weight/density of the enriched breads increased a bit, however the volume and height decreased slightly compared to the corresponding data of the control bread. The optimized composition of the final product is favourably affected by these additives having highly preferred composition from nutritional point of view.

Keywords: Aleurone-rich flour, Brans, Bread products, Sprouted soybean, YASO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
7733 Dynamic Data Partition Algorithm for a Parallel H.264 Encoder

Authors: Juntae Kim, Jaeyoung Park, Kyoungkun Lee, Jong Tae Kim

Abstract:

The H.264/AVC standard is a highly efficient video codec providing high-quality videos at low bit-rates. As employing advanced techniques, the computational complexity has been increased. The complexity brings about the major problem in the implementation of a real-time encoder and decoder. Parallelism is the one of approaches which can be implemented by multi-core system. We analyze macroblock-level parallelism which ensures the same bit rate with high concurrency of processors. In order to reduce the encoding time, dynamic data partition based on macroblock region is proposed. The data partition has the advantages in load balancing and data communication overhead. Using the data partition, the encoder obtains more than 3.59x speed-up on a four-processor system. This work can be applied to other multimedia processing applications.

Keywords: H.264/AVC, video coding, thread-level parallelism, OpenMP, multimedia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
7732 Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining

Authors: Hina Kausher, Sangita Srivastava

Abstract:

In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which cover the variety of figure proportions in both height and girth. 3,000 data have been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from the some states of India to produce the sizing system suitable for clothing manufacture and retailing. The data are used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from the large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.

Keywords: Anthropometric data, data mining, decision tree, garments manufacturing, ready-made garments, sizing systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
7731 XML Schema Automatic Matching Solution

Authors: Huynh Quyet Thang, Vo Sy Nam

Abstract:

Schema matching plays a key role in many different applications, such as schema integration, data integration, data warehousing, data transformation, E-commerce, peer-to-peer data management, ontology matching and integration, semantic Web, semantic query processing, etc. Manual matching is expensive and error-prone, so it is therefore important to develop techniques to automate the schema matching process. In this paper, we present a solution for XML schema automated matching problem which produces semantic mappings between corresponding schema elements of given source and target schemas. This solution contributed in solving more comprehensively and efficiently XML schema automated matching problem. Our solution based on combining linguistic similarity, data type compatibility and structural similarity of XML schema elements. After describing our solution, we present experimental results that demonstrate the effectiveness of this approach.

Keywords: XML Schema, Schema Matching, SemanticMatching, Automatic XML Schema Matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
7730 Comparative Study of Conventional and Satellite Based Agriculture Information System

Authors: Rafia Hassan, Ali Rizwan, Sadaf Farhan, Bushra Sabir

Abstract:

The purpose of this study is to compare the conventional crop monitoring system with the satellite based crop monitoring system in Pakistan. This study is conducted for SUPARCO (Space and Upper Atmosphere Research Commission). The study focused on the wheat crop, as it is the main cash crop of Pakistan and province of Punjab. This study will answer the following: Which system is better in terms of cost, time and man power? The man power calculated for Punjab CRS is: 1,418 personnel and for SUPARCO: 26 personnel. The total cost calculated for SUPARCO is almost 13.35 million and CRS is 47.705 million. The man hours calculated for CRS (Crop Reporting Service) are 1,543,200 hrs (136 days) and man hours for SUPARCO are 8, 320hrs (40 days). It means that SUPARCO workers finish their work 96 days earlier than CRS workers. The results show that the satellite based crop monitoring system is efficient in terms of manpower, cost and time as compared to the conventional system, and also generates early crop forecasts and estimations. The research instruments used included: Interviews, physical visits, group discussions, questionnaires, study of reports and work flows. A total of 93 employees were selected using Yamane’s formula for data collection, which is done with the help questionnaires and interviews. Comparative graphing is used for the analysis of data to formulate the results of the research. The research findings also demonstrate that although conventional methods have a strong impact still in Pakistan (for crop monitoring) but it is the time to bring a change through technology, so that our agriculture will also be developed along modern lines.

Keywords: Crop reporting service, SRS/GIS, satellite remote sensing/geographic information system, area frame, sample frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
7729 Determination of Cd, Zn, K, pH, TNV, Organic Material and Electrical Conductivity (EC) Distribution in Agricultural Soils using Geostatistics and GIS (Case Study: South- Western of Natanz- Iran)

Authors: Abbas Hani, Seyed Ali Hoseini Abari

Abstract:

Soil chemical and physical properties have important roles in compartment of the environment and agricultural sustainability and human health. The objectives of this research is determination of spatial distribution patterns of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) in agricultural soils of Natanz region in Esfehan province. In this study geostatistic and non-geostatistic methods were used for prediction of spatial distribution of these parameters. 64 composite soils samples were taken at 0-20 cm depth. The study area is located in south of NATANZ agricultural lands with area of 21660 hectares. Spatial distribution of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) was determined using geostatistic and geographic information system. Results showed that Cd, pH, TNV and K data has normal distribution and Zn, OC and EC data had not normal distribution. Kriging, Inverse Distance Weighting (IDW), Local Polynomial Interpolation (LPI) and Redial Basis functions (RBF) methods were used to interpolation. Trend analysis showed that organic carbon in north-south and east to west did not have trend while K and TNV had second degree trend. We used some error measurements include, mean absolute error(MAE), mean squared error (MSE) and mean biased error(MBE). Ordinary kriging(exponential model), LPI(Local polynomial interpolation), RBF(radial basis functions) and IDW methods have been chosen as the best methods to interpolating of the soil parameters. Prediction maps by disjunctive kriging was shown that in whole study area was intensive shortage of organic matter and more than 63.4 percent of study area had shortage of K amount.

Keywords: Electrical conductivity, Geostatistics, Geographical Information System, TNV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700
7728 Mathematical Expression for Machining Performance

Authors: Md. Ashikur Rahman Khan, M. M. Rahman

Abstract:

In electrical discharge machining (EDM), a complete and clear theory has not yet been established. The developed theory (physical models) yields results far from reality due to the complexity of the physics. It is difficult to select proper parameter settings in order to achieve better EDM performance. However, modelling can solve this critical problem concerning the parameter settings. Therefore, the purpose of the present work is to develop mathematical model to predict performance characteristics of EDM on Ti-5Al-2.5Sn titanium alloy. Response surface method (RSM) and artificial neural network (ANN) are employed to develop the mathematical models. The developed models are verified through analysis of variance (ANOVA). The ANN models are trained, tested, and validated utilizing a set of data. It is found that the developed ANN and mathematical model can predict performance of EDM effectively. Thus, the model has found a precise tool that turns EDM process cost-effective and more efficient.

Keywords: Analysis of variance, artificial neural network, material removal rate, modelling, response surface method, surface finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
7727 Data Oriented Model of Image: as a Framework for Image Processing

Authors: A. Habibizad Navin, A. Sadighi, M. Naghian Fesharaki, M. Mirnia, M. Teshnelab, R. Keshmiri

Abstract:

This paper presents a new data oriented model of image. Then a representation of it, ADBT, is introduced. The ability of ADBT is clustering, segmentation, measuring similarity of images etc, with desired precision and corresponding speed.

Keywords: Data oriented modelling, image, clustering, segmentation, classification, ADBT and image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
7726 MIBiClus: Mutual Information based Biclustering Algorithm

Authors: Neelima Gupta, Seema Aggarwal

Abstract:

Most of the biclustering/projected clustering algorithms are based either on the Euclidean distance or correlation coefficient which capture only linear relationships. However, in many applications, like gene expression data and word-document data, non linear relationships may exist between the objects. Mutual Information between two variables provides a more general criterion to investigate dependencies amongst variables. In this paper, we improve upon our previous algorithm that uses mutual information for biclustering in terms of computation time and also the type of clusters identified. The algorithm is able to find biclusters with mixed relationships and is faster than the previous one. To the best of our knowledge, none of the other existing algorithms for biclustering have used mutual information as a similarity measure. We present the experimental results on synthetic data as well as on the yeast expression data. Biclusters on the yeast data were found to be biologically and statistically significant using GO Tool Box and FuncAssociate.

Keywords: Biclustering, mutual information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
7725 Transient Free Laminar Convection in the Vicinity of a Thermal Conductive Vertical Plate

Authors: Anna Bykalyuk, Frédéric Kuznik, Kévyn Johannes

Abstract:

In this paper the influence of a vertical plate’s thermal capacity is numerically investigated in order to evaluate the evolution of the thermal boundary layer structure, as well as the convective heat transfer coefficient and the velocity and temperature profiles. Whereas the heat flux of the heated vertical plate is evaluated under time depending boundary conditions. The main important feature of this problem is the unsteadiness of the physical phenomena. A 2D CFD model is developed with the Ansys Fluent 14.0 environment and is validated using unsteady data obtained for plasterboard studied under a dynamic temperature evolution. All the phenomena produced in the vicinity of the thermal conductive vertical plate (plasterboard) are analyzed and discussed. This work is the first stage of a holistic research on transient free convection that aims, in the future, to study the natural convection in the vicinity of a vertical plate containing Phase Change Materials (PCM).

Keywords: CFD modeling, natural convection, thermal conductive plate, time-depending boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
7724 Spatio-Temporal Data Mining with Association Rules for Lake Van

Authors: T. Aydin, M. F. Alaeddinoglu

Abstract:

People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatiotemporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newlyformed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.

Keywords: Apriori algorithm, association rules, data mining, spatio-temporal data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
7723 Development and Characterization of Wheat Bread with Lupin Flour

Authors: Paula M. R. Correia, Marta Gonzaga, Luis M. Batista, Luísa Beirão-Costa, Raquel F. P. Guiné

Abstract:

The purpose of the present work was to develop an innovative food product with good textural and sensorial characteristics. The product, a new type of bread, was prepared with wheat (90%) and lupin (10%) flours, without the addition of any conservatives. Several experiences were also done to find the most appropriate proportion of lupin flour. The optimized product was characterized considering the rheological, physical-chemical and sensorial properties. The water absorption of wheat flour with 10% of lupin was higher than that of the normal wheat flours, and Wheat Ceres flour presented the lower value, with lower dough development time and high stability time. The breads presented low moisture but a considerable water activity. The density of bread decreased with the introduction of lupin flour. The breads were quite white, and during storage the colour parameters decreased. The lupin flour clearly increased the number of alveolus, but the total area increased significantly just for the Wheat Cerealis bread. The addition of lupin flour increased the hardness and chewiness of breads, but the elasticity did not vary significantly. Lupin bread was sensorially similar to wheat bread produced with WCerealis flour, and the main differences are the crust rugosity, colour and alveolus characteristics.

Keywords: Lupin flour, physical-chemical properties, sensorial analysis, wheat flour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
7722 Data Extraction of XML Files using Searching and Indexing Techniques

Authors: Sushma Satpute, Vaishali Katkar, Nilesh Sahare

Abstract:

XML files contain data which is in well formatted manner. By studying the format or semantics of the grammar it will be helpful for fast retrieval of the data. There are many algorithms which describes about searching the data from XML files. There are no. of approaches which uses data structure or are related to the contents of the document. In these cases user must know about the structure of the document and information retrieval techniques using NLPs is related to content of the document. Hence the result may be irrelevant or not so successful and may take more time to search.. This paper presents fast XML retrieval techniques by using new indexing technique and the concept of RXML. When indexing an XML document, the system takes into account both the document content and the document structure and assigns the value to each tag from file. To query the system, a user is not constrained about fixed format of query.

Keywords: XML Retrieval, Indexed Search, Information Retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
7721 Physical and Mechanical Performance of Mortars with Ashes from Straw and Bagasse Sugarcane

Authors: Débora C. G. Oliveira, Julio D. Salles, Bruna A. Moriy, João A. Rossignolo, Holmer Savastano JR.

Abstract:

The objective of this study was to identify the optimal level of partial replacement of Portland cement by the ashes originating from burning straw and bagasse from sugar cane (ASB). Order to this end, were made five series of flat plates and cylindrical bodies: control and others with the partial replacement in 20, 30, 40 and 50% of ASB in relation to the mass of the Ordinary Portland cement, and conducted a mechanical testing of simple axial compression (cylindrical bodies) and the four-point bending (flat plates) and determined water absorption (WA), bulk density (BD) and apparent void volume (AVV) on both types of specimens. Based on the data obtained, it may be noted that the control treatment containing only Portland cement, obtained the best results. However, the cylindrical bodies with 20% ashes showed better results compared to the other treatments. And in the formulations plates, the treatment which showed the best results was 30% cement replacement by ashes.

Keywords: Modulus of rupture, simple axial compression, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
7720 GeNS: a Biological Data Integration Platform

Authors: Joel Arrais, João E. Pereira, João Fernandes, José Luís Oliveira

Abstract:

The scientific achievements coming from molecular biology depend greatly on the capability of computational applications to analyze the laboratorial results. A comprehensive analysis of an experiment requires typically the simultaneous study of the obtained dataset with data that is available in several distinct public databases. Nevertheless, developing a centralized access to these distributed databases rises up a set of challenges such as: what is the best integration strategy, how to solve nomenclature clashes, how to solve database overlapping data and how to deal with huge datasets. In this paper we present GeNS, a system that uses a simple and yet innovative approach to address several biological data integration issues. Compared with existing systems, the main advantages of GeNS are related to its maintenance simplicity and to its coverage and scalability, in terms of number of supported databases and data types. To support our claims we present the current use of GeNS in two concrete applications. GeNS currently contains more than 140 million of biological relations and it can be publicly downloaded or remotely access through SOAP web services.

Keywords: Data integration, biological databases

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
7719 A Modified Run Length Coding Technique for Test Data Compression Based on Multi-Level Selective Huffman Coding

Authors: C. Kalamani, K. Paramasivam

Abstract:

Test data compression is an efficient method for reducing the test application cost. The problem of reducing test data has been addressed by researchers in three different aspects: Test Data Compression, Built-in-Self-Test (BIST) and Test set compaction. The latter two methods are capable of enhancing fault coverage with cost of hardware overhead. The drawback of the conventional methods is that they are capable of reducing the test storage and test power but when test data have redundant length of runs, no additional compression method is followed. This paper presents a modified Run Length Coding (RLC) technique with Multilevel Selective Huffman Coding (MLSHC) technique to reduce test data volume, test pattern delivery time and power dissipation in scan test applications where redundant length of runs is encountered then the preceding run symbol is replaced with tiny codeword. Experimental results show that the presented method not only improves the test data compression but also reduces the overall test data volume compared to recent schemes. Experiments for the six largest ISCAS-98 benchmarks show that our method outperforms most known techniques.

Keywords: Modified run length coding, multilevel selective Huffman coding, built-in-self-test modified selective Huffman coding, automatic test equipment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274
7718 EEIA: Energy Efficient Indexed Aggregation in Smart Wireless Sensor Networks

Authors: Mohamed Watfa, William Daher, Hisham Al Azar

Abstract:

The main idea behind in network aggregation is that, rather than sending individual data items from sensors to sinks, multiple data items are aggregated as they are forwarded by the sensor network. Existing sensor network data aggregation techniques assume that the nodes are preprogrammed and send data to a central sink for offline querying and analysis. This approach faces two major drawbacks. First, the system behavior is preprogrammed and cannot be modified on the fly. Second, the increased energy wastage due to the communication overhead will result in decreasing the overall system lifetime. Thus, energy conservation is of prime consideration in sensor network protocols in order to maximize the network-s operational lifetime. In this paper, we give an energy efficient approach to query processing by implementing new optimization techniques applied to in-network aggregation. We first discuss earlier approaches in sensors data management and highlight their disadvantages. We then present our approach “Energy Efficient Indexed Aggregation" (EEIA) and evaluate it through several simulations to prove its efficiency, competence and effectiveness.

Keywords: Sensor Networks, Data Base, Data Fusion, Aggregation, Indexing, Energy Efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
7717 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece

Authors: N. Samarinas, C. Evangelides, C. Vrekos

Abstract:

The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.

Keywords: Classification, fuzzy logic, tolerance relations, rainfall data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1026
7716 Numerical Investigation of the Thermal Separation in a Vortex Tube

Authors: N.Pourmahmoud, S.Akhesmeh

Abstract:

This work has been carried out in order to provide an understanding of the physical behaviors of the flow variation of pressure and temperature in a vortex tube. A computational fluid dynamics model is used to predict the flow fields and the associated temperature separation within a Ranque–Hilsch vortex tube. The CFD model is a steady axisymmetric model (with swirl) that utilizes the standard k-ε turbulence model. The second–order numerical schemes, was used to carry out all the computations. Vortex tube with a circumferential inlet stream and an axial (cold) outlet stream and a circumferential (hot) outlet stream was considered. Performance curves (temperature separation versus cold outlet mass fraction) were obtained for a specific vortex tube with a given inlet mass flow rate. Simulations have been carried out for varying amounts of cold outlet mass flow rates. The model results have a good agreement with experimental data.

Keywords: Ranque–Hilsch vortex tube, Temperature separation, k–ε model, cold mass fraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426
7715 Eating Habits of Children Aged 10-15 Years in Reference to Nutrition Status

Authors: M. Hetmańczyk, R. Polaniak, K. Brukało, E. Grochowska-Niedworok

Abstract:

Eating behaviours of people are determined by knowledge gained at different stages of life. Children’s diet is especially important. They have to eat meals regularly. Meals should consist of protein, carbohydrates and fat, and drinking the right amount of water. Mistakes in children’s diets affect their health and may lead to health issues such as diabetes, overweight, obesity or malnutrition. The aim of the study was to assess the eating habits among 10-15-year-old children. To achieve this aim, the study included children aged 10-15 years living in Silesia Province, Poland; the participants consisted of 52.08% girls and 47.92% boys. Authorial questionnaire contains 28 questions about eating habits. The results of 192 students were subjected to analysis. The results show that half of the surveyed students participated in physical activity every day. Most children ate 4-5 meals every day, but the breaks between them were too long (four and more hours). Children generally ate cooked meals. Most children ate first breakfast every day, but only one third of studied children ate a second breakfast daily, while 93.75% ate vegetables at least once a day, 94.79% ate fruit at least once a day, and 79.17% drink a daily glass of milk or more. The study found that the eating behaviours of the surveyed children were unsatisfying. While the children did not participate in physical activity often enough, girls took part slightly more often. Children eat second breakfast not often enough. Younger children (10-12 years old) are doing it more often than the older children (13-15 years old). Gender is not a determinant of the frequency of second breakfast consumption.

Keywords: Eating habits, children, diet, nutrition status.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
7714 Non-negative Principal Component Analysis for Face Recognition

Authors: Zhang Yan, Yu Bin

Abstract:

Principle component analysis is often combined with the state-of-art classification algorithms to recognize human faces. However, principle component analysis can only capture these features contributing to the global characteristics of data because it is a global feature selection algorithm. It misses those features contributing to the local characteristics of data because each principal component only contains some levels of global characteristics of data. In this study, we present a novel face recognition approach using non-negative principal component analysis which is added with the constraint of non-negative to improve data locality and contribute to elucidating latent data structures. Experiments are performed on the Cambridge ORL face database. We demonstrate the strong performances of the algorithm in recognizing human faces in comparison with PCA and NREMF approaches.

Keywords: classification, face recognition, non-negativeprinciple component analysis (NPCA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
7713 Concurrent Approach to Data Parallel Model using Java

Authors: Bala Dhandayuthapani Veerasamy

Abstract:

Parallel programming models exist as an abstraction of hardware and memory architectures. There are several parallel programming models in commonly use; they are shared memory model, thread model, message passing model, data parallel model, hybrid model, Flynn-s models, embarrassingly parallel computations model, pipelined computations model. These models are not specific to a particular type of machine or memory architecture. This paper expresses the model program for concurrent approach to data parallel model through java programming.

Keywords: Concurrent, Data Parallel, JDK, Parallel, Thread

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
7712 Adjusted Ratio and Regression Type Estimators for Estimation of Population Mean when some Observations are missing

Authors: Nuanpan Nangsue

Abstract:

Ratio and regression type estimators have been used by previous authors to estimate a population mean for the principal variable from samples in which both auxiliary x and principal y variable data are available. However, missing data are a common problem in statistical analyses with real data. Ratio and regression type estimators have also been used for imputing values of missing y data. In this paper, six new ratio and regression type estimators are proposed for imputing values for any missing y data and estimating a population mean for y from samples with missing x and/or y data. A simulation study has been conducted to compare the six ratio and regression type estimators with a previous estimator of Rueda. Two population sizes N = 1,000 and 5,000 have been considered with sample sizes of 10% and 30% and with correlation coefficients between population variables X and Y of 0.5 and 0.8. In the simulations, 10 and 40 percent of sample y values and 10 and 40 percent of sample x values were randomly designated as missing. The new ratio and regression type estimators give similar mean absolute percentage errors that are smaller than the Rueda estimator for all cases. The new estimators give a large reduction in errors for the case of 40% missing y values and sampling fraction of 30%.

Keywords: Auxiliary variable, missing data, ratio and regression type estimators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
7711 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining

Authors: Tatjana Eitrich, Bruno Lang

Abstract:

This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.

Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
7710 Software Test Data Generation using Ant Colony Optimization

Authors: Huaizhong Li, C.Peng Lam

Abstract:

State-based testing is frequently used in software testing. Test data generation is one of the key issues in software testing. A properly generated test suite may not only locate the errors in a software system, but also help in reducing the high cost associated with software testing. It is often desired that test data in the form of test sequences within a test suite can be automatically generated to achieve required test coverage. This paper proposes an Ant Colony Optimization approach to test data generation for the state-based software testing.

Keywords: Software testing, ant colony optimization, UML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3459
7709 Natural Language News Generation from Big Data

Authors: Bastian Haarmann, Lukas Sikorski

Abstract:

In this paper, we introduce an NLG application for the automatic creation of ready-to-publish texts from big data. The resulting fully automatic generated news stories have a high resemblance to the style in which the human writer would draw up such a story. Topics include soccer games, stock exchange market reports, and weather forecasts. Each generated text is unique. Readyto-publish stories written by a computer application can help humans to quickly grasp the outcomes of big data analyses, save timeconsuming pre-formulations for journalists and cater to rather small audiences by offering stories that would otherwise not exist. 

Keywords: Big data, natural language generation, publishing, robotic journalism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
7708 Yield Prediction Using Support Vectors Based Under-Sampling in Semiconductor Process

Authors: Sae-Rom Pak, Seung Hwan Park, Jeong Ho Cho, Daewoong An, Cheong-Sool Park, Jun Seok Kim, Jun-Geol Baek

Abstract:

It is important to predict yield in semiconductor test process in order to increase yield. In this study, yield prediction means finding out defective die, wafer or lot effectively. Semiconductor test process consists of some test steps and each test includes various test items. In other world, test data has a big and complicated characteristic. It also is disproportionably distributed as the number of data belonging to FAIL class is extremely low. For yield prediction, general data mining techniques have a limitation without any data preprocessing due to eigen properties of test data. Therefore, this study proposes an under-sampling method using support vector machine (SVM) to eliminate an imbalanced characteristic. For evaluating a performance, randomly under-sampling method is compared with the proposed method using actual semiconductor test data. As a result, sampling method using SVM is effective in generating robust model for yield prediction.

Keywords: Yield Prediction, Semiconductor Test Process, Support Vector Machine, Under Sampling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
7707 A New Model for Discovering XML Association Rules from XML Documents

Authors: R. AliMohammadzadeh, M. Rahgozar, A. Zarnani

Abstract:

The inherent flexibilities of XML in both structure and semantics makes mining from XML data a complex task with more challenges compared to traditional association rule mining in relational databases. In this paper, we propose a new model for the effective extraction of generalized association rules form a XML document collection. We directly use frequent subtree mining techniques in the discovery process and do not ignore the tree structure of data in the final rules. The frequent subtrees based on the user provided support are split to complement subtrees to form the rules. We explain our model within multi-steps from data preparation to rule generation.

Keywords: XML, Data Mining, Association Rule Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631