

Abstract—Parallel programming models exist as an abstraction

of hardware and memory architectures. There are several parallel
programming models in commonly use; they are shared memory
model, thread model, message passing model, data parallel model,
hybrid model, Flynn’s models, embarrassingly parallel computations
model, pipelined computations model. These models are not specific
to a particular type of machine or memory architecture. This paper
expresses the model program for concurrent approach to data parallel
model through java programming.

Keywords—Concurrent, Data Parallel, JDK, Parallel, Thread

I. INTRODUCTION
HE term processor, or microprocessor, refers to the
central processing unit (CPU) [1]. It’s a single chip

responsible for the execution of instructions given by a
computer program, memory management and address
translation, integer and floating point operations, and cache
management. Uniprocessors have a single processor.
Application instructions and hardware calls are executed in
order, one at a time (sequentially). The system appears to run
concurrent processes, but the processor actually switches back
and forth between instructions.

Two events are said to be concurrent if they occur within
the same time interval. Two or more tasks executing over the
same time interval are said to execute concurrently. Tasks that
exist at the same time and perform in the same time period are
concurrent. Concurrent tasks [1] can execute in a single or
multiprocessing environment. In a single processing
environment, concurrent tasks exist at the same time and
execute within the same time period by context switching. In a
multiprocessor environment, if enough processors are free,
concurrent tasks may execute at the same instant over the
same time period. The determining factor for what makes an
acceptable time period for concurrency is relative to the
application.

Concurrency techniques [3], [6] are used to allow a
computer program to do more work over the same time period
or time interval. Rather than designing the program to do one
task at a time, the program is broken down in such a way that
some of the tasks can be executed concurrently. In some
situations, doing more work over the same time period is not
the goal. Rather, simplifying the programming solution is the
goal. Sometimes it makes more sense to think of the solution

Department of Computing, Mekelle University, Mekelle, Ethiopia
(Phone: +251 914740551; e-mail: dhanssoft@gmail.com).

to the problem as a set of concurrently executed tasks. This
technique is used in the parallel computer architectures.

Parallel programming and distributed programming [1] are
two basic approaches for achieving concurrency with a piece
of software. They are two different programming paradigms
that sometimes intersect. In the past programming life, we
were mostly using sequential programming. But, today’s life
style is going with more faster than the past decades. Also,
solving problems on the computers are enormous. Parallel
computer [1] can executes two or more job within a same
period of time.

Java is just a computer language [5] that has secure,
portable, object-oriented, multithreaded [3], [4], [6],
interpreted, byte-coded, garbage-collected, language with a
strongly typed exception-handling mechanism for writing
distributed programs [4]. Java is an object-oriented
programming language, which added the new features such as
overriding, interface and etc. Java supports multithreaded
programming, which allows you to do many things
simultaneously on the same time interval. Java enables the
creation of cross-platform programs by compiling into an
intermediate representation called java byte code. JVM (Java
Virtual Machine) is an interpreter for java. Java is designed
for the distributed environment on the Internet. Java has
technology called RMI (Remote Method Invocation) that
brings unparalleled level of abstraction to client / server
programming. Byte code is a highly optimized set of
instructions designed to be executed by the java run-time
system, which is called Java Virtual Machine (JVM). Java
handles de-allocation for you automatically, this technique
called garbage collection. The Java Developers Kit (JDK) is a
set of command-line tools that can be used to create Java
programs. The current release of the JDK is version 1.6

II. THE CONCEPT OF DATA PARALLEL MODEL
The data parallel model [7] has characteristics that most of

the parallel work focuses on performing operations on a data
set. The data set is typically organized into a common
structure, such as an array or cube. A set of tasks work
collectively on the same data structure, however, each task
works on a different partition of the same data structure.

The tasks can perform the same operation on their partition
of work. On the shared memory architectures, all tasks may
have access to the data structure through global memory. On
the distributed memory architectures the data structure is split

Bala Dhandayuthapani Veerasamy

Concurrent Approach to Data Parallel Model
using Java

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:4, 2010

653International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

75
1.

pd
f

up and resides as "chunks" in the local memory of each task.
Programming with the data parallel model is usually
accomplished by writing a program with data parallel
constructs. The constructs can be calls to a data parallel
subroutine library or, compiler directives recognized by a data
parallel compiler. Compiler directives allow the programmer
to specify the distribution and alignment of data. FORTRAN
implementations are available for most common parallel
platforms.

FORTRAN 90 and 95 (F90, F95): It is an ISO/ANSI
standard extension to Fortran 77. It contains everything that is
in Fortran 77. It has new source code format, additions to
character set, additions to program structure, commands,
variable additions methods, arguments, pointers, dynamic
memory allocation, array processing, recursive, intrinsic
functions and many other new features. These
implementations are available for most common parallel
platforms.

High Performance FORTRAN (HPF): It extensions to
Fortran 90 to support data parallel programming. It contains
everything in Fortran 90. It directives to tell compiler how to
distribute data added. It assertions that can improve
optimization of generated code added. The data parallel
constructs can be added. These implementations are available
for most common parallel platforms.

Distributed memory implementations of this model usually
have the compiler convert the program into standard code
with calls to a Message Passing Library (MPI) to distribute the
data to all the processes. All messages passing are done
invisibly to the programmer.

III. DATA PARALLEL PROGRAMMING IMPLEMENTATIONS
One of the characteristics that make Java a powerful

programming language is its support of multithreaded
programming [6] as an integrated part of the language. This is
unique because most modern programming languages either
do not offer multithreading or provide multithreading as a
non-integrated package. Java ever offers a single integrated
view of multithreading. Multithreading [6] is an extension of
the multitasking paradigm. But rather than multiple programs,
multithreading involves multiple threads of control within a
single program. Not only is the operating system running
multiple programs, each program can run multiple threads of
control within the program. For example, using a Web
browser, you can print one web page, download another, and
fill out a form in a third-all at the same time. A thread is a
single sequence of execution within a program. Thread
behavior is completely dependent on the state a thread is in.
The state of a thread defines its current mode of operation,
such as whether it is running or not. Thread states are New,
Runnable, Not running, and Dead. (See Fig. 1)

Fig. 1 State of Thread

A thread is in the "new" state when it is first created until its

start method is called. New threads are already initialized and
ready to get to work, but they haven't been given the cue to
take off and get busy. When the start method is called on a
new thread, the run method is in turn called and the thread
enters the "runnable" state. You may be thinking this state
should just be called "running," because the execution of the
run method means a thread is running. However, you have to
take into consideration the whole priority issue of threads
having to potentially share a single CPU. Even though every
thread may be running from an end-user perspective, in
actuality all but the one currently accessing the CPU are in a
"runnable" wait state at any particular instant. You can still
conceptually think of the "runnable" state as the "running"
state; just remember that all threads have to share system
resources. The "not running" state applies to all threads that
are temporarily halted for some reason. When a thread is in
this state, it is still available for use and is capable of re-
entering the "runnable" state at some point. For each of these
actions causing a thread to enter the "not running" state, there
is an equivalent response to get the thread running again. A
thread enters the "dead" state when it is no longer needed.
Dead threads cannot be revived and executed again. A thread
can enter the "dead" state through one of two approaches,
which the run method finishes executing or stop method is
called. The first approach is the natural way for a thread to
die; you can think of a thread dying when its run method
finishes executing as death by natural causes. In contrast to
this is a thread dying by way of the stop method; calling the
stop method kills a thread in an asynchronous fashion. Thread
class provides constructors, methods to use this concept.

The following program 1 represents the concurrent
approach to data parallel model. The result of the program is
given in Fig. 3. In the program, class DP consists of four
threads called “task1, task2, task2, and task4”. The DP class
consists of an array, initiated with totally 20 elements. In this,
the “task1” uses 0 to 4, “task2” uses 5 to 9, “task3” uses 10 to
14 and the “task4” uses 15 to 19. This is illustrated in the Fig.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:4, 2010

654International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

75
1.

pd
f

2. All the four tasks or threads will concurrently utilize the
array called data parallel programming model.

Fig. 2 Data Parallel Task Sharing on Array

Program 1. concurrent approach to Data Parallel

//DP.java
class DP implements Runnable{
int sum=0;
Thread t;
int aa[]=new int[20];
String name;
int beg, end;
static int ln=0;

DP(String str, int st,int en){
 t=new Thread(this,str);
 beg=st;
 end=en;
 name=str;
 t.start(); }

public void run(){
 try{ for(int i=beg; i<end;i++) {
 aa[i]=I; sum=aa[i];
 System.out.println(“Thread “+name +” “+sum);
 ln=ln+1;
 if(ln==4){

 System.out.println(“\n”);ln=0;}
 t.sleep(200);}
 }catch(Exception e){} }

public static void main(String BDP[]){

DP b1=new DP(“task1”,0,5);
DP b2=new DP(“task2”,5,10);
DP b3=new DP(“task3”,10,15);
DP b4=new DP(“task4”,15,20);
}}

Fig. 3 Result of the Data Parallel Model

IV. CONCLUSION
Data parallel model usually have data parallel constructs or

data sets. It allows accessing data values from data parallel
constructs through numerous tasks or jobs. While executing a
task over processor, it executes one task at a time. Though,
task has got a change of accessing its own data values on data
parallel constructs. Hence, this paper recommending you to
have concurrent execution of task, which allow tasks utilize
data parallel constructs at a time.

REFERENCES
[1] Hesham El-Rewini, Mostafa Abd-El-Barr, “Advanced Computer

Architecture and Parallel”, A John Wiley & Sons, Inc Publication, 2005.
[2] Tobias Wittwer, “An Introduction to Parallel Programming”, VSSD,

2006.
[3] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David

Holmes, Doug Lea, “Java Concurrency in Practice”, Addison Wesley
Professional, 2006.

[4] Charles W. Kann, “Creating Components: Object Oriented, Concurrent,
and Distributed Computing in Java”, Auerbach Publications, 2004.

[5] Peter Norton & Wiliam Stanek, “Java Programming”, Sams Publishing,
1996.

[6] Stephen J. Hartley, Concurrent Programming Using Java, Oxford
University Press, 1998.

[7] Geoffrey C. Fox, Roy D. Williams, Paul C. Messina, Parallel Computing
Works, Morgan Kaufmann Publishers, 1994.

Bala Dhandayuthapani Veerasamy was born in
Tamil Nadu, India in the year 1979. The author was
awarded his first masters degree M.S in Information
Technology from Bharathidasan University in 2002
and his second masters degree M.Tech in Information
Technology from Allahabad Agricultural Institute of
Deemed University in 2005. He has published more
than fifteen peer reviewed technical papers on various
international journals and conferences. He has

managed as technical chairperson of an international conference. He has an
active participation as a program committee member as well as an editorial
review board member in international conferences. He is also a member of an
editorial review board in international journals.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:4, No:4, 2010

655International Scholarly and Scientific Research & Innovation 4(4) 2010 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:4

, N
o:

4,
 2

01
0

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/5

75
1.

pd
f

