Search results for: Brain Machine Interfaces
846 Performance Comparison and Analysis of Table-Driven and On-Demand Routing Protocols for Mobile Ad-hoc Networks
Authors: Narendra Singh Yadav, R.P.Yadav
Abstract:
Mobile ad hoc network is a collection of mobile nodes communicating through wireless channels without any existing network infrastructure or centralized administration. Because of the limited transmission range of wireless network interfaces, multiple "hops" may be needed to exchange data across the network. In order to facilitate communication within the network, a routing protocol is used to discover routes between nodes. The primary goal of such an ad hoc network routing protocol is correct and efficient route establishment between a pair of nodes so that messages may be delivered in a timely manner. Route construction should be done with a minimum of overhead and bandwidth consumption. This paper examines two routing protocols for mobile ad hoc networks– the Destination Sequenced Distance Vector (DSDV), the table- driven protocol and the Ad hoc On- Demand Distance Vector routing (AODV), an On –Demand protocol and evaluates both protocols based on packet delivery fraction, normalized routing load, average delay and throughput while varying number of nodes, speed and pause time.Keywords: AODV, DSDV, MANET, relative performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3762845 Diagnosis of Intermittent High Vibration Peaks in Industrial Gas Turbine Using Advanced Vibrations Analysis
Authors: Abubakar Rashid, Muhammad Saad, Faheem Ahmed
Abstract:
This paper provides a comprehensive study pertaining to diagnosis of intermittent high vibrations on an industrial gas turbine using detailed vibrations analysis, followed by its rectification. Engro Polymer & Chemicals Limited, a Chlor-Vinyl complex located in Pakistan has a captive combined cycle power plant having two 28 MW gas turbines (make Hitachi) & one 15 MW steam turbine. In 2018, the organization faced an issue of high vibrations on one of the gas turbines. These high vibration peaks appeared intermittently on both compressor’s drive end (DE) & turbine’s non-drive end (NDE) bearing. The amplitude of high vibration peaks was between 150-170% on the DE bearing & 200-300% on the NDE bearing from baseline values. In one of these episodes, the gas turbine got tripped on “High Vibrations Trip” logic actuated at 155µm. Limited instrumentation is available on the machine, which is monitored with GE Bently Nevada 3300 system having two proximity probes installed at Turbine NDE, Compressor DE &at Generator DE & NDE bearings. Machine’s transient ramp-up & steady state data was collected using ADRE SXP & DSPI 408. Since only 01 key phasor is installed at Turbine high speed shaft, a derived drive key phasor was configured in ADRE to obtain low speed shaft rpm required for data analysis. By analyzing the Bode plots, Shaft center line plot, Polar plot & orbit plots; rubbing was evident on Turbine’s NDE along with increased bearing clearance of Turbine’s NDE radial bearing. The subject bearing was then inspected & heavy deposition of carbonized coke was found on the labyrinth seals of bearing housing with clear rubbing marks on shaft & housing covering at 20-25 degrees on the inner radius of labyrinth seals. The collected coke sample was tested in laboratory & found to be the residue of lube oil in the bearing housing. After detailed inspection & cleaning of shaft journal area & bearing housing, new radial bearing was installed. Before assembling the bearing housing, cleaning of bearing cooling & sealing air lines was also carried out as inadequate flow of cooling & sealing air can accelerate coke formation in bearing housing. The machine was then taken back online & data was collected again using ADRE SXP & DSPI 408 for health analysis. The vibrations were found in acceptable zone as per ISO standard 7919-3 while all other parameters were also within vendor defined range. As a learning from subject case, revised operating & maintenance regime has also been proposed to enhance machine’s reliability.
Keywords: ADRE, bearing, gas turbine, GE Bently Nevada, Hitachi, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 678844 Research on User Experience and Brand Attitudes of Chatbots
Authors: Shu-Yin Yu
Abstract:
With the advancement of artificial intelligence technology, most companies are aware of the profound potential of artificial intelligence in commercial marketing. Man-machine dialogue has become the latest trend in marketing customer service. However, chatbots are often considered to be lack of intelligent or unfriendly conversion, which instead reduces the communication effect of chatbots. To ensure that chatbots represent the brand image and provide a good user experience, companies and users attach great importance. In this study, customer service chatbot was used as the research sample. The research variables are based on the theory of artificial intelligence emotions, integrating the technology acceptance model and innovation diffusion theory, and the three aspects of pleasure, arousal, and dominance of the human-machine PAD (Pleasure, Arousal and Dominance) dimension. The results show that most of the participants have a higher acceptance of innovative technologies and are high pleasure and arousal in the user experience. Participants still have traditional gender (female) service stereotypes about customer service chatbots. Users who have high trust in using chatbots can easily enhance brand acceptance and easily accept brand messages, extend the trust of chatbots to trust in the brand, and develop a positive attitude towards the brand.
Keywords: Brand attitude, chatbot, emotional interaction, user experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817843 Addressing Scalability Issues of Named Entity Recognition Using Multi-Class Support Vector Machines
Authors: Mona Soliman Habib
Abstract:
This paper explores the scalability issues associated with solving the Named Entity Recognition (NER) problem using Support Vector Machines (SVM) and high-dimensional features. The performance results of a set of experiments conducted using binary and multi-class SVM with increasing training data sizes are examined. The NER domain chosen for these experiments is the biomedical publications domain, especially selected due to its importance and inherent challenges. A simple machine learning approach is used that eliminates prior language knowledge such as part-of-speech or noun phrase tagging thereby allowing for its applicability across languages. No domain-specific knowledge is included. The accuracy measures achieved are comparable to those obtained using more complex approaches, which constitutes a motivation to investigate ways to improve the scalability of multiclass SVM in order to make the solution more practical and useable. Improving training time of multi-class SVM would make support vector machines a more viable and practical machine learning solution for real-world problems with large datasets. An initial prototype results in great improvement of the training time at the expense of memory requirements.Keywords: Named entity recognition, support vector machines, language independence, bioinformatics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690842 Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems
Authors: Ali Reza Mehrabian, Caro Lucas
Abstract:
In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.Keywords: Learning control systems, emotional decision making, nonlinear systems, adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090841 An Implementation of EURORADIO Protocol for ERTMS Systems
Authors: Gabriele Cecchetti, Anna Lina Ruscelli, Filippo Cugini, Piero Castoldi
Abstract:
European Rail Traffic Management System (ERTMS) is the European reference for interoperable and safer signaling systems to efficiently manage trains running. If implemented, it allows trains cross seamlessly intra-European national borders. ERTMS has defined a secure communication protocol, EURORADIO, based on open communication networks. Its RadioInfill function can improve the reaction of the signaling system to changes in line conditions, avoiding unnecessary braking: its advantages in terms of power saving and travel time has been analyzed. In this paper a software implementation of the EURORADIO protocol with RadioInfill for ERTMS Level 1 using GSM-R is illustrated as part of the SR-Secure Italian project. In this building-blocks architecture the EURORADIO layers communicates together through modular Application Programm Interfaces. Security coding rules and railway industry requirements specified by EN 50128 standard have been respected. The proposed implementation has successfully passed conformity tests and has been tested on a computer-based simulator.
Keywords: ERTMS, ETCS signalling, EURORADIO protocol, radio infill function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4431840 Elevating User Experience for Thailand Drivers: Dash-Board Design Analysis in Electric Vehicles
Authors: Poom Thiparpakul, Tanat Jiravansirikul, Pakpoom Thongsari
Abstract:
This study explores the design of electric vehicle (EV) dashboards with a focus on user interaction. Findings from a Thai sample reveal a preference for physical buttons over touch interfaces due to their immediate feedback. Touchscreens lack this assurance, leading to potential uncertainty. Users' smartphone experiences create a learning curve that does not translate well to in-car touch systems. Gender-wise, females exhibit slightly longer decision times. Designing EV dashboards should consider these factors, prioritizing user experience while avoiding overreliance on smartphone principles. A successful example is Subaru XV's design, which calculates screen angles and button positions for targeted users. In summary, EV dashboards should be intuitive, minimize touch dependency, and accommodate user habits. Balancing modernity with functionality can enhance driving experiences while ensuring safety. A user-centered approach, acknowledging gender differences, will yield efficient and safe driving environments.
Keywords: User Experience Design, User Experience, Electric Vehicle, Dashboard Design, Thailand driver.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78839 Breast Skin-Line Estimation and Breast Segmentation in Mammograms using Fast-Marching Method
Authors: Roshan Dharshana Yapa, Koichi Harada
Abstract:
Breast skin-line estimation and breast segmentation is an important pre-process in mammogram image processing and computer-aided diagnosis of breast cancer. Limiting the area to be processed into a specific target region in an image would increase the accuracy and efficiency of processing algorithms. In this paper we are presenting a new algorithm for estimating skin-line and breast segmentation using fast marching algorithm. Fast marching is a partial-differential equation based numerical technique to track evolution of interfaces. We have introduced some modifications to the traditional fast marching method, specifically to improve the accuracy of skin-line estimation and breast tissue segmentation. Proposed modifications ensure that the evolving front stops near the desired boundary. We have evaluated the performance of the algorithm by using 100 mammogram images taken from mini-MIAS database. The results obtained from the experimental evaluation indicate that this algorithm explains 98.6% of the ground truth breast region and accuracy of the segmentation is 99.1%. Also this algorithm is capable of partially-extracting nipple when it is available in the profile.
Keywords: Mammogram, fast marching method, mathematical morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675838 FSM-based Recognition of Dynamic Hand Gestures via Gesture Summarization Using Key Video Object Planes
Authors: M. K. Bhuyan
Abstract:
The use of human hand as a natural interface for humancomputer interaction (HCI) serves as the motivation for research in hand gesture recognition. Vision-based hand gesture recognition involves visual analysis of hand shape, position and/or movement. In this paper, we use the concept of object-based video abstraction for segmenting the frames into video object planes (VOPs), as used in MPEG-4, with each VOP corresponding to one semantically meaningful hand position. Next, the key VOPs are selected on the basis of the amount of change in hand shape – for a given key frame in the sequence the next key frame is the one in which the hand changes its shape significantly. Thus, an entire video clip is transformed into a small number of representative frames that are sufficient to represent a gesture sequence. Subsequently, we model a particular gesture as a sequence of key frames each bearing information about its duration. These constitute a finite state machine. For recognition, the states of the incoming gesture sequence are matched with the states of all different FSMs contained in the database of gesture vocabulary. The core idea of our proposed representation is that redundant frames of the gesture video sequence bear only the temporal information of a gesture and hence discarded for computational efficiency. Experimental results obtained demonstrate the effectiveness of our proposed scheme for key frame extraction, subsequent gesture summarization and finally gesture recognition.
Keywords: Hand gesture, MPEG-4, Hausdorff distance, finite state machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027837 Stress Analysis of Adhesively Bonded Double- Lap Joints Subjected to Combined Loading
Authors: Solyman Sharifi, Naghdali Choupani
Abstract:
Adhesively bonded joints are preferred over the conventional methods of joining such as riveting, welding, bolting and soldering. Some of the main advantages of adhesive joints compared to conventional joints are the ability to join dissimilar materials and damage-sensitive materials, better stress distribution, weight reduction, fabrication of complicated shapes, excellent thermal and insulation properties, vibration response and enhanced damping control, smoother aerodynamic surfaces and an improvement in corrosion and fatigue resistance. This paper presents the behavior of adhesively bonded joints subjected to combined thermal loadings, using the numerical methods. The joint configuration considers aluminum as central adherend with six different outer adherends including aluminum, steel, titanium, boronepoxy, unidirectional graphite-epoxy and cross-ply graphite-epoxy and epoxy-based adhesives. Free expansion of the joint in x direction was permitted and stresses in adhesive layer and interfaces calculated for different adherends.Keywords: Thermal stress, patch repair, Adhesive joint, Finiteelement analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2877836 Decision Tree Based Scheduling for Flexible Job Shops with Multiple Process Plans
Authors: H.-H. Doh, J.-M. Yu, Y.-J. Kwon, J.-H. Shin, H.-W. Kim, S.-H. Nam, D.-H. Lee
Abstract:
This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans, i.e. each job can be processed through alternative operations, each of which can be processed on alternative machines. The main decision variables are: (a) selecting operation/machine pair; and (b) sequencing the jobs assigned to each machine. As an extension of the priority scheduling approach that selects the best priority rule combination after many simulation runs, this study suggests a decision tree based approach in which a decision tree is used to select a priority rule combination adequate for a specific system state and hence the burdens required for developing simulation models and carrying out simulation runs can be eliminated. The decision tree based scheduling approach consists of construction and scheduling modules. In the construction module, a decision tree is constructed using a four-stage algorithm, and in the scheduling module, a priority rule combination is selected using the decision tree. To show the performance of the decision tree based approach suggested in this study, a case study was done on a flexible job shop with reconfigurable manufacturing cells and a conventional job shop, and the results are reported by comparing it with individual priority rule combinations for the objectives of minimizing total flow time and total tardiness.
Keywords: Flexible job shop scheduling, Decision tree, Priority rules, Case study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3319835 Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena
Authors: Mohammad Zavid Parvez, Manoranjan Paul
Abstract:
A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/ deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set.Keywords: Epilepsy, Seizure, Phase Correlation, Fluctuation, Deviation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467834 Performance Analysis of Genetic Algorithm with kNN and SVM for Feature Selection in Tumor Classification
Authors: C. Gunavathi, K. Premalatha
Abstract:
Tumor classification is a key area of research in the field of bioinformatics. Microarray technology is commonly used in the study of disease diagnosis using gene expression levels. The main drawback of gene expression data is that it contains thousands of genes and a very few samples. Feature selection methods are used to select the informative genes from the microarray. These methods considerably improve the classification accuracy. In the proposed method, Genetic Algorithm (GA) is used for effective feature selection. Informative genes are identified based on the T-Statistics, Signal-to-Noise Ratio (SNR) and F-Test values. The initial candidate solutions of GA are obtained from top-m informative genes. The classification accuracy of k-Nearest Neighbor (kNN) method is used as the fitness function for GA. In this work, kNN and Support Vector Machine (SVM) are used as the classifiers. The experimental results show that the proposed work is suitable for effective feature selection. With the help of the selected genes, GA-kNN method achieves 100% accuracy in 4 datasets and GA-SVM method achieves in 5 out of 10 datasets. The GA with kNN and SVM methods are demonstrated to be an accurate method for microarray based tumor classification.
Keywords: F-Test, Gene Expression, Genetic Algorithm, k- Nearest-Neighbor, Microarray, Signal-to-Noise Ratio, Support Vector Machine, T-statistics, Tumor Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4540833 3DARModeler: a 3D Modeling System in Augmented Reality Environment
Authors: Trien V. Do, Jong-Weon Lee
Abstract:
This paper describes a 3D modeling system in Augmented Reality environment, named 3DARModeler. It can be considered a simple version of 3D Studio Max with necessary functions for a modeling system such as creating objects, applying texture, adding animation, estimating real light sources and casting shadows. The 3DARModeler introduces convenient, and effective human-computer interaction to build 3D models by combining both the traditional input method (mouse/keyboard) and the tangible input method (markers). It has the ability to align a new virtual object with the existing parts of a model. The 3DARModeler targets nontechnical users. As such, they do not need much knowledge of computer graphics and modeling techniques. All they have to do is select basic objects, customize their attributes, and put them together to build a 3D model in a simple and intuitive way as if they were doing in the real world. Using the hierarchical modeling technique, the users are able to group several basic objects to manage them as a unified, complex object. The system can also connect with other 3D systems by importing and exporting VRML/3Ds Max files. A module of speech recognition is included in the system to provide flexible user interfaces.Keywords: 3D Modeling, Augmented Reality, GeometricModeling, Virtual Reality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2645832 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Loay E. George, Azizah Suliman, Abdul Rahim Ahmad, Karim Al-Jashamy
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.
Keywords: Red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3199831 Numerical Modeling of Wave Run-Up in Shallow Water Flows Using Moving Wet/Dry Interfaces
Authors: Alia Alghosoun, Michael Herty, Mohammed Seaid
Abstract:
We present a new class of numerical techniques to solve shallow water flows over dry areas including run-up. Many recent investigations on wave run-up in coastal areas are based on the well-known shallow water equations. Numerical simulations have also performed to understand the effects of several factors on tsunami wave impact and run-up in the presence of coastal areas. In all these simulations the shallow water equations are solved in entire domain including dry areas and special treatments are used for numerical solution of singularities at these dry regions. In the present study we propose a new method to deal with these difficulties by reformulating the shallow water equations into a new system to be solved only in the wetted domain. The system is obtained by a change in the coordinates leading to a set of equations in a moving domain for which the wet/dry interface is the reconstructed using the wave speed. To solve the new system we present a finite volume method of Lax-Friedrich type along with a modified method of characteristics. The method is well-balanced and accurately resolves dam-break problems over dry areas.Keywords: Run-up waves, Shallow water equations, finite volume method, wet/dry interface, dam-break problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710830 Computer - based Systems for High Speed Vessels Navigators – Engineers Training
Authors: D. E. Gourgoulis, C. G. Yakinthos, M. G. Vassiliadou
Abstract:
With high speed vessels getting ever more sophisti-cated, travelling at higher and higher speeds and operating in With high speed vessels getting ever more sophisticated, travelling at higher and higher speeds and operating in areas of high maritime traffic density, training becomes of the highest priority to ensure that safety levels are maintained, and risks are adequately mitigated. Training onboard the actual craft on the actual route still remains the most effective way for crews to gain experience. However, operational experience and incidents during the last 10 years demonstrate the need for supplementary training whether in the area of simulation or man to man, man/ machine interaction. Training and familiarisation of the crew is the most important aspect in preventing incidents. The use of simulator, computer and web based training systems in conjunction with onboard training focusing on critical situations will improve the man machine interaction and thereby reduce the risk of accidents. Today, both ship simulator and bridge teamwork courses are now becoming the norm in order to improve further emergency response and crisis management skills. One of the main causes of accidents is the human factor. An efficient way to reduce human errors is to provide high-quality training to the personnel and to select the navigators carefully.areas of high maritime traffic density, training becomes of the highest priority to ensure that safety levels are maintained, and risks are adequately mitigated. Training onboard the actual craft on the actual route still remains the most effective way for crews to gain experience. How-ever, operational experience and incidents during the last 10 years demonstrate the need for supplementary training whether in the area of simulation or man to man, man/ machine interaction. Training and familiarisation of the crew is the most important aspect in preventing incidents. The use of simulator, computer and web based training systems in conjunction with onboard training focusing on critical situations will improve the man machine interaction and thereby reduce the risk of accidents. Today, both ship simulator and bridge teamwork courses are now becoming the norm in order to improve further emergency response and crisis management skills. One of the main causes of accidents is the human factor. An efficient way to reduce human errors is to provide high-quality training to the person-nel and to select the navigators carefully. KeywordsCBT - WBT systems, Human factors.Keywords: CBT - WBT systems, Human factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528829 A TIPSO-SVM Expert System for Efficient Classification of TSTO Surrogates
Authors: Ali Sarosh, Dong Yun-Feng, Muhammad Umer
Abstract:
Fully reusable spaceplanes do not exist as yet. This implies that design-qualification for optimized highly-integrated forebody-inlet configuration of booster-stage vehicle cannot be based on archival data of other spaceplanes. Therefore, this paper proposes a novel TIPSO-SVM expert system methodology. A non-trivial problem related to optimization and classification of hypersonic forebody-inlet configuration in conjunction with mass-model of the two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic machine learning methodology is based on two-step improved particle swarm optimizer (TIPSO) algorithm and two-step support vector machine (SVM) data classification method. The efficacy of method is tested by first evolving an optimal configuration for hypersonic compression system using TIPSO algorithm; thereafter, classifying the results using two-step SVM method. In the first step extensive but non-classified mass-model training data for multiple optimized configurations is segregated and pre-classified for learning of SVM algorithm. In second step the TIPSO optimized mass-model data is classified using the SVM classification. Results showed remarkable improvement in configuration and mass-model along with sizing parameters.
Keywords: TIPSO-SVM expert system, TIPSO algorithm, two-step SVM method, aerothermodynamics, mass-modeling, TSTO vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318828 Optimization of Wire EDM Parameters for Fabrication of Micro Channels
Authors: Gurinder Singh Brar, Sarbjeet Singh, Harry Garg
Abstract:
Wire Electric Discharge Machining (WEDM) is thermal machining process capable of machining very hard electrically conductive material irrespective of their hardness. WEDM is being widely used to machine micro scale parts with the high dimensional accuracy and surface finish. The objective of this paper is to optimize the process parameters of wire EDM to fabricate the micro channels and to calculate the surface finish and material removal rate of micro channels fabricated using wire EDM. The material used is aluminum 6061 alloy. The experiments were performed using CNC wire cut electric discharge machine. The effect of various parameters of WEDM like pulse on time (TON) with the levels (100, 150, 200), pulse off time (TOFF) with the levels (25, 35, 45) and current (IP) with the levels (105, 110, 115) were investigated to study the effect on output parameter i.e. Surface Roughness and Material Removal Rate (MRR). Each experiment was conducted under different conditions of pulse on time, pulse off time and peak current. For material removal rate, TON and Ip were the most significant process parameter. MRR increases with the increase in TON and Ip and decreases with the increase in TOFF. For surface roughness, TON and Ip have the maximum effect and TOFF was found out to be less effective.Keywords: Micro Channels, Wire Electric Discharge Machining (WEDM), Metal Removal Rate (MRR), Surface Finish.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699827 Spatial Services in Cloud Environment
Authors: Sašo Pečnik, Borut Žalik
Abstract:
Cloud Computing is an approach that provides computation and storage services on-demand to clients over the network, independent of device and location. In the last few years, cloud computing became a trend in information technology with many companies that transfer their business processes and applications in the cloud. Cloud computing with service oriented architecture has contributed to rapid development of Geographic Information Systems. Open Geospatial Consortium with its standards provides the interfaces for hosted spatial data and GIS functionality to integrated GIS applications. Furthermore, with the enormous processing power, clouds provide efficient environment for data intensive applications that can be performed efficiently, with higher precision, and greater reliability. This paper presents our work on the geospatial data services within the cloud computing environment and its technology. A cloud computing environment with the strengths and weaknesses of the geographic information system will be introduced. The OGC standards that solve our application interoperability are highlighted. Finally, we outline our system architecture with utilities for requesting and invoking our developed data intensive applications as a web service.
Keywords: Cloud Computing, Geographic Information System, Open Geospatial Consortium, Interoperability, Spatial data, Web- Services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712826 Multi-Stage Multi-Period Production Planning in Wire and Cable Industry
Authors: Mahnaz Hosseinzadeh, Shaghayegh Rezaee Amiri
Abstract:
This paper presents a methodology for serial production planning problem in wire and cable manufacturing process that addresses the problem of input-output imbalance in different consecutive stations, hoping to minimize the halt of machines in each stage. To this end, a linear Goal Programming (GP) model is developed, in which four main categories of constraints as per the number of runs per machine, machines’ sequences, acceptable inventories of machines at the end of each period, and the necessity of fulfillment of the customers’ orders are considered. The model is formulated based upon on the real data obtained from IKO TAK Company, an important supplier of wire and cable for oil and gas and automotive industries in Iran. By solving the model in GAMS software the optimal number of runs, end-of-period inventories, and the possible minimum idle time for each machine are calculated. The application of the numerical results in the target company has shown the efficiency of the proposed model and the solution in decreasing the lead time of the end product delivery to the customers by 20%. Accordingly, the developed model could be easily applied in wire and cable companies for the aim of optimal production planning to reduce the halt of machines in manufacturing stages.
Keywords: Serial manufacturing process, production planning, wire and cable industry, goal programming approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931825 Dual-Task – Immersion in the Interactions of Simultaneously Performed Tasks
Authors: M. Liebherr, P. Schubert, S. Kersten, C. Dietz, L. Franz, C. T. Haas
Abstract:
With a long history, dual-task has become one of the most intriguing research fields regarding human brain functioning and cognition. However, findings considering effects of taskinterrelations are limited (especially, in combined motor and cognitive tasks). Therefore, we aimed at developing a measurement system in order to analyse interrelation effects of cognitive and motor tasks. On the one hand, the present study demonstrates the applicability of the measurement system and on the other hand first results regarding a systematisation of different task combinations are shown. Future investigations should combine imagine technologies and this developed measurement system.
Keywords: Dual-task, interference, cognition, measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092824 Multi-Agents Coordination Model in Inter- Organizational Workflow: Applying in Egovernment
Authors: E. Karoui Chaabane, S. Hadouaj, K. Ghedira
Abstract:
Inter-organizational Workflow (IOW) is commonly used to support the collaboration between heterogeneous and distributed business processes of different autonomous organizations in order to achieve a common goal. E-government is considered as an application field of IOW. The coordination of the different organizations is the fundamental problem in IOW and remains the major cause of failure in e-government projects. In this paper, we introduce a new coordination model for IOW that improves the collaboration between government administrations and that respects IOW requirements applied to e-government. For this purpose, we adopt a Multi-Agent approach, which deals more easily with interorganizational digital government characteristics: distribution, heterogeneity and autonomy. Our model integrates also different technologies to deal with the semantic and technologic interoperability. Moreover, it conserves the existing systems of government administrations by offering a distributed coordination based on interfaces communication. This is especially applied in developing countries, where administrations are not necessary equipped with workflow systems. The use of our coordination techniques allows an easier migration for an e-government solution and with a lower cost. To illustrate the applicability of the proposed model, we present a case study of an identity card creation in Tunisia.Keywords: E-government, Inter-organizational workflow, Multi-agent systems, Semantic web services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278823 A State-Of-The-Art Review on Web Services Adaptation
Authors: M. Velasco, D. While, P. Raju, J. Krasniewicz, A. Amini, L. Hernandez-Munoz
Abstract:
Web service adaptation involves the creation of adapters that solve Web services incompatibilities known as mismatches. Since the importance of Web services adaptation is increasing because of the frequent implementation and use of online Web services, this paper presents a literature review of web services to investigate the main methods of adaptation, their theoretical underpinnings and the metrics used to measure adapters performance. Eighteen publications were reviewed independently by two researchers. We found that adaptation techniques are needed to solve different types of problems that may arise due to incompatibilities in Web service interfaces, including protocols, messages, data and semantics that affect the interoperability of the services. Although adapters are non-invasive methods that can improve Web services interoperability and there are current approaches for service adaptation; there is, however, not yet one solution that fits all types of mismatches. Our results also show that only a few research projects incorporate theoretical frameworks and that metrics to measure adapters’ performance are very limited. We conclude that further research on software adaptation should improve current adaptation methods in different layers of the service interoperability and that an adaptation theoretical framework that incorporates a theoretical underpinning and measures of qualitative and quantitative performance needs to be created.Keywords: Web services adapters, software adaptation, web services mismatches, web services interoperability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868822 Artificial Intelligence: A Comprehensive and Systematic Literature Review of Applications and Comparative Technologies
Authors: Z. M. Najmi
Abstract:
Over the years, the question around Artificial Intelligence has always been one with many answers. Whether by means of use in business and industry or complicated algorithmic programming, management of these technologies has always been the core focus. More recently, technologies have been questioned in industry and society alike as to whether they have improved human-centred design, assisted choices and objectives, and had a hand in systematic processes across the board. With these questions the answer may lie within AI technologies, and the steps needed in removing common human error. Elements such as Machine Learning, Deep Learning, Recommender Systems and Natural Language Processing will all be features to consider moving forward. Our previous intervention with AI applications has resulted in increased productivity, however, raised concerns for the continuation of traditional human-centred occupations. Emerging technologies such as Augmented Reality and Virtual Reality have all played a part in this during AI’s prominent rise. As mentioned, AI has been constantly under the microscope; the benefits and drawbacks may seem endless is wide, but AI is something we must take notice of and adapt into our everyday lives. The aim of this paper is to give an overview of the technologies surrounding A.I. and its’ related technologies. A comprehensive review has been written as a timeline of the developing events and key points in the history of Artificial Intelligence. This research is gathered entirely from secondary research, academic statements of knowledge and gathered to produce an understanding of the timeline of AI.
Keywords: Artificial Intelligence, Deep Learning, Augmented Reality, Reinforcement Learning, Machine Learning, Supervised Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 578821 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting
Authors: Kemal Polat
Abstract:
In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.
Keywords: Fuzzy C-means clustering, Fuzzy C-means clustering based attribute weighting, Pima Indians diabetes dataset, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763820 Coherence Analysis for Epilepsy Patients: An MEG Study
Authors: S. Ge, T. Wu, HY. Tang, X. Xiao, K. Iramina, W. Wu
Abstract:
It is crucial to quantitatively evaluate the treatment of epilepsy patients. This study was undertaken to test the hypothesis that compared to the healthy control subjects, the epilepsy patients have abnormal resting-state connectivity. In this study, we used the imaginary part of coherency to measure the resting-state connectivity. The analysis results shown that compared to the healthy control subjects, epilepsy patients tend to have abnormal rhythm brain connectivity over their epileptic focus.Keywords: Coherence, connectivity, resting-state, epilepsy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678819 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)
Authors: Wafa' S.Al-Sharafat, Reyadh Naoum
Abstract:
Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672818 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.
Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953817 Modeling Aeration of Sharp Crested Weirs by Using Support Vector Machines
Authors: Arun Goel
Abstract:
The present paper attempts to investigate the prediction of air entrainment rate and aeration efficiency of a free overfall jets issuing from a triangular sharp crested weir by using regression based modelling. The empirical equations, Support vector machine (polynomial and radial basis function) models and the linear regression techniques were applied on the triangular sharp crested weirs relating the air entrainment rate and the aeration efficiency to the input parameters namely drop height, discharge, and vertex angle. It was observed that there exists a good agreement between the measured values and the values obtained using empirical equations, Support vector machine (Polynomial and rbf) models and the linear regression techniques. The test results demonstrated that the SVM based (Poly & rbf) model also provided acceptable prediction of the measured values with reasonable accuracy along with empirical equations and linear regression techniques in modelling the air entrainment rate and the aeration efficiency of a free overfall jets issuing from triangular sharp crested weir. Further sensitivity analysis has also been performed to study the impact of input parameter on the output in terms of air entrainment rate and aeration efficiency.Keywords: Air entrainment rate, dissolved oxygen, regression, SVM, weir.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956