Artificial Intelligence: A Comprehensive and Systematic Literature Review of Applications and Comparative Technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Artificial Intelligence: A Comprehensive and Systematic Literature Review of Applications and Comparative Technologies

Authors: Z. M. Najmi

Abstract:

Over the years, the question around Artificial Intelligence has always been one with many answers. Whether by means of use in business and industry or complicated algorithmic programming, management of these technologies has always been the core focus. More recently, technologies have been questioned in industry and society alike as to whether they have improved human-centred design, assisted choices and objectives, and had a hand in systematic processes across the board. With these questions the answer may lie within AI technologies, and the steps needed in removing common human error. Elements such as Machine Learning, Deep Learning, Recommender Systems and Natural Language Processing will all be features to consider moving forward. Our previous intervention with AI applications has resulted in increased productivity, however, raised concerns for the continuation of traditional human-centred occupations. Emerging technologies such as Augmented Reality and Virtual Reality have all played a part in this during AI’s prominent rise. As mentioned, AI has been constantly under the microscope; the benefits and drawbacks may seem endless is wide, but AI is something we must take notice of and adapt into our everyday lives. The aim of this paper is to give an overview of the technologies surrounding A.I. and its’ related technologies. A comprehensive review has been written as a timeline of the developing events and key points in the history of Artificial Intelligence. This research is gathered entirely from secondary research, academic statements of knowledge and gathered to produce an understanding of the timeline of AI.

Keywords: Artificial Intelligence, Deep Learning, Augmented Reality, Reinforcement Learning, Machine Learning, Supervised Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575

References:


[1] Shankar, V. (2018). How artificial intelligence (AI) is reshaping retailing. Journal of Retailing, 94(4), 6–11.
[2] Huang, M. H., and Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155–172.
[3] Syam, N. and Sharma, A. (2018). Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice. Industrial marketing management, 69, pp.135-146.
[4] Davenport, T. H. (2018). The AI advantage: How to put the artificial intelligence revolution to work. MIT Press.
[5] Metz, C. (2018). Mark Zuckerberg, Elon Musk and the feud over Killer Robots. (Accessed 10 Feb 2021). Available at: http://www.nytimes.com/2018/06/09/technology/elon-musk-mark-zuckerberg-artificial -intelligence.html.
[6] Marr, B. (2018). Is Artificial Intelligence dangerous? 6 AI risks everyone should know about. Forbes.
[7] Larson, K. (2019). Data Privacy and AI ethics stepped to the fore in 2018. (Accessed 10 Feb 2021). Available at: https://medium.com/@Smalltofeds/data-privacy-and-ai-ethics-stepped-to-the-fore-in-2018-4e0207f28210.
[8] Davenport, T. H. and Ronanki, R. (2018). Artificial Intelligence for the real world. Harvard Business Review, 96(1), 108-116.
[9] Carpenter, J. (2015). IBM’s Virginia Rometty tells NU grads: Technology will enhance us. Available at: https://www.chicagotribune.com/bluesky/originals/ct-northwestern-virginia-rometty-ibm-bsi-20150619-story.html.
[10] Taddeo, M., and Floridi, L. (2018). How AI can be a force for good. Science, 361(6404), 751–752.
[11] Milano, S., Taddeo, M., and Floridi, L. (2019). Recommender Systems and their Ethical Challenges. Available at SSRN 3378581.
[12] Floridi, L. (2014). Open data, data protection, and group privacy. Philosophy & Technology, 27(1), 1–3.
[13] King, T. C., Aggarwal, N., Taddeo, M., and Floridi, L. (2020). Artificial Intelligence Crime: An Interdisciplinary Analysis of Foreseeable Threats and Solutions. Science and Engineering Ethics, 26(1), 89–120.
[14] Perlovsky, L. I. (2007). The mind vs. logic: Aristotle and Zadeh. Critical Review, 1(1), pp.30-33.
[15] Gardner, M. (1982). Logic Machines and Diagrams (2nd Edition). Chicago: The University of Chicago Press.
[16] Boole, G. (1854). An Investigation of the Laws of Thought on Which Are Founded the Mathematical Theories of Logic and Probabilities, New York: Dover Publications.
[17] Frege, G. (1879). “Begriffsschrift, a Formula Language Modelled upon That of Arithmetic, for Pure Thought,” (1879), in van Heijenoort, J. (ed.) From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, pp. 1-82, Cambridge, MA: Harvard University Press, 1967.
[18] Turing, A. (1950). Computer Machinery and Intelligence. Mind, 59, 433-460. Computers and Thought, pp. 11-35, New York: McGraw-Hill, 1963.
[19] Weizenbaum, J. (1965). “ELIZA – A Computer Program for the Study of Natural Language Communication between Man and Machine,” Communications of the Association for Computing Machinery, 9(1):36-45.
[20] Mauldin, M. L. (1994). “Chatterbots, Tinymuds, and the Turing Test: Entering the Loebner Prize Competition” in Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), pp. 16-21, Menlo Park, CA: AAAI Press.
[21] Hayes, P. and Ford, K. (1995). “Turing Test Considered Harmful,” in Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95), pp.972-977, San Francisco: Morgan Kaufmann.
[22] Powers, R. (1995). Galatea 2.2, New York: Farrar, Straus & Giroux.
[23] Moor, J. H. (1976). ‘An Analysis of the Turing Test’, Philosophical Studies 30, pp. 249–257.
[24] Moor, J. H. (1987). ‘Turing Test’, in S.C. Shapiro, ed., Encyclopaedia of Artificial Intelligence, Vol. 2, New York: Wiley.
[25] Weizenbaum, J. (1966). “ELIZA-A Computer Program for the Study of Natural Language Communication Between Men and Machines,” Communications of the ACM, 9: 36–45.
[26] Wiener, N. (1948). Cybernetics: or the Control and Communication in the Animal and the Machine. The MIT Press. Paris: Hermann & Cie.
[27] Chomsky, N. (1965). Aspects of the Theory of Syntax, Cambridge, MA: MIT Press, 1965.
[28] Oppy, G. and Dowe, D. (2003). The Turing Test. Published Apr 9, 2003; substantive revision Aug 18, 2020.
[29] Schweizer, P. (1998). “The Truly Total Turing Test,” Minds and Machines, 8: 263–72.
[30] Bengio, Y., Goodfellow, I. and Courville, A., 2017. Deep learning (Vol. 1). Cambridge, MA, USA: MIT press.
[31] Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep learning. MIT Press.
[32] LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning. Nature, 521(7553), pp.436-444.
[33] Bottou, L. (2014). From machine learning to machine reasoning. Mach. Learn. 94, 133–149.
[34] El Ayadi, M., Kamel, M. S., and Karray, F. (2011). Survey on speech emotion recognition: Features, classification schemes, and databases. Pattern Recognition 44, 3 (2011), 572–587.
[35] Ioannidou, A., Chatzilari, E., Nikolopoulos, S., and Kompatsiaris, I. (2017). Deep learning advances in computer vision with 3D data: A survey. Computing Surveys 50, 2 (2017), 20.
[36] Yan, Y., Chen, M., Sadiq, S., and Shyu, M-L. (2017). Efficient imbalanced multimedia concept retrieval by deep learning on spark clusters. International Journal of Multimedia Data Engineering and Management 8, 1 (2017), 1–20.
[37] Kaiser, L., Aidan N. Gomez, Noam, S., Vaswani, A., Parmar, N., Jones, L., and Uszkoreit, J. (2017). One model to learn them all. CoRR abs/1706.05137. Retrieved from: http://arxiv.org/abs/1706.05137.
[38] Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M.P., Shyu, M.L., Chen, S.C. and Iyengar, S.S. (2018) A survey on deep learning: Algorithms, techniques, and applications. ACM Computing Surveys (CSUR), 51(5), pp.1-36.
[39] Russell, S. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach. Englewood Cliffs, NJ: Prentice-Hall.
[40] Newell, A., Shaw, J. C. and Simon, H. A. (1959). “Report on a General Problem-Solving Program for a Computer,” Computers and Automation, 8(7):10-16.
[41] Newell, A. and Simon, H. (1963). “GPS, A Program That Simulates Human Thought,” in Feigenbaum, E., and Feldman, J. (eds.) Computers and Thought, pp. 279-293, New York: McGraw-Hill.
[42] Slagle, J. R. (1963). “A Heuristic Program That Solves Symbolic Integration Problems in Freshman Calculus,” Jour. Assoc. of Comp. Mach., 10:507-520.
[43] Bobrow, D. (1968). “Natural Language Input for a Computer Problem Solving System,” in Minsky, M. (ed.), Semantic Information Processing, pp. 133-215, Cambridge, MA: MIT Press.
[44] Evans, T. G. (1968). “A Program for the Solution of a Class of Geometric-Analogy Intelligence-Test Questions,” in Minsky, M. (eds.), Semantic Information Processing, pp. 491-501, San Francisco: Morgan Kaufmann.
[45] Nilsson, N. (1984). Shakey the Robot, Technical Note 323, SRI International, Menlo Park, CA.
[46] Feigenbaum, E. and Feldman, J. (1963). Computers and Thought. (eds.) New York: McGraw-Hill.
[47] Loren, S. (2008). Mechanical Humanity, or How I Learned to Stop Worrying and Love the Android: the Posthuman Subject in 2001: A Space Odyssey and Artificial Intelligence: AI.
[48] Raymond, A. H., Young, E. A. S. and Shackelford, S. J. (2017). Building a Better HAL 9000: Algorithms, the Market, and the Need to Prevent the Engraining of Bias. NW. J. Tech. & Intell. Prop., 15, p.215.
[49] Raphael, B. (1972). Robot Research at Stanford Research Institute. STANFORD RESEARCH INST CA.
[50] Speck, D., Dornhege, C. and Burgard, W. (2017). Shakey 2016—How much does it take to redo shakey the robot? IEEE Robotics and Automation Letters, 2(2), pp.1203-1209.
[51] Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.
[52] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P. and Levine, S. (2018). Soft actor-critic algorithms and applications.
[53] Bansal, M., Krizhevsky, A. and Ogale, A. (2018). Chauffeur- net: Learning to drive by imitating the best and synthesizing the worst.
[54] Lazic, N., Boutilier, C., Lu, T., Wong, E., Roy, B., Ryu, M. and Imwalle, G. (2018). Data center cooling using model- predictive control. In Advances in Neural Information Processing Systems, 3814–3823.
[55] Tesauro, G. (1995). Temporal difference learning and td gammon.
[56] Hsu, F.H. (2004). Behind Deep Blue: Building the computer that defeated the world chess champion. Princeton University Press.
[57] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V. and Lanctot, M. (2016). Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484.
[58] Minsky, M. L. (1954). Theory of Neural-Analog Reinforcement Systems and its Application to the Brain-Model Problem. PhD thesis, Princeton University.
[59] Farley, B. G. and Clark, W. A. (1954). Simulation of self-organizing systems by digital computer. IRE Transactions on Information Theory, 4:76-84.
[60] Waltz, M. D. and Fu, K. S. (1965). A heuristic approach to reinforcement learning control systems. IEEE Transactions on Automatic Control, 10:390-398.
[61] Mendel, J. M. (1966). Applications of artificial intelligence techniques to a spacecraft control problem. Technical Report NASA CR-755, National Aeronautics and Space Administration.
[62] Mendel, J. M. and McLaren, R. W. (1970). Reinforcement learning control and pattern recognition systems. In Mendel, J. M. and Fu, K. S., editors, Adaptive, Learning and Pattern Recognition Systems: Theory and Applications, pages 287-318. Academic Press, New York.
[63] Minsky, M. L. (1961). Steps toward artificial intelligence. Proceedings of the Institute of Radio Engineers, 49:8-30. Reprinted in E. A. Feigenbaum and J. Feldman, editors, Computers and Thought. McGraw-Hill, New York, 406-450, 1963.
[64] Clark, W. A. and Farley, B. G. (1955). Generalization of pattern recognition in a self-organizing system. In Proceedings of the 1955 Western Joint Computer Conference, pages 86-91.
[65] Rosenblatt, F. (1961). Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, 6411 Chillum Place N.W., Washington, D.C.
[66] Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. In 1960 WESCON Convention Record Part IV, pages 96-104. Reprinted in J. A. Anderson and E. Rosenfeld, Neurocomputing: Foundations of Research, MIT Press, Cambridge, MA, 1988.
[67] Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis lectures on artificial intelligence and machine learning, 4 (1), pp.1-103.
[68] Ayodele, T.O. (2010). Types of machine learning algorithms. New advances in machine learning, 3, pp.19-48.
[69] Broussard, M. (2018). Artificial unintelligence: how computers misunderstand the world. MIT Press, Cambridge.
[70] Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge University Press.
[71] Yu, P.K. (2020). The algorithmic divide and equality in the age of artificial intelligence. Fla. L. Rev., 72, p.331.
[72] Raj, M. and Seamans, R. (2019). Primer on artificial intelligence and robotics. Journal of Organization Design, 8(1), 11.
[73] Jordan, M.I. and Mitchell, T.M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349 (6245), pp. 255-260.
[74] El Sayed, N. A. M., Zayed, H. H. & Sharawy, M. I. (2011). ‘ARSC: augmented reality student card’, Computer Education, vol. 56, pp. 1045-1061.
[75] Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E. and Ivkovic, M. (2011). Augmented reality technologies, systems, and applications. Multimedia tools and applications, 51(1), pp.341-377.
[76] Burdea, G.C. and Coiffet, P. (2003) Virtual reality technology. John Wiley & Sons.
[77] Azuma, R.T. (1997) A survey of augmented reality. Presence: teleoperators & virtual environments, 6(4), pp.355-385.
[78] Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S. and MacIntyre, B. (2001) Recent advances in augmented reality. IEEE computer graphics and applications, 21(6), pp.34-47.
[79] Kato, H., and Billinghurst, M. (1999). Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In proceedings 2nd IEEE and ACM International Workshop on Augmented Reality System, 85-94.
[80] Van, D., and Poelman, R. (2010). A survey of augmented reality technologies, applications and limitations. International Journal of Virtual Reality, 9:1.
[81] Costanza, E., Inverso, S. A., Pavlov, E., Allen, R. and Maes, P. (2006). eye-q: Eyeglass Peripheral Display for Subtle Intimate Notifications. Mobile HCI 2006, September 13–15.
[82] Floridi, L. (2019) Establishing the rules for building trustworthy AI. Nature Machine Intelligence, 1(6), pp.261-262.
[83] Nield, T. (2019). Is deep learning already hitting its limitations? And is another AI winter coming? Towards Data Science. Available at: https://towardsdatascience.com/is-deep-learning-already-hitting-its-limitations-c81826082 ac3.
[84] Walch, K. (2019). Are we heading for another AI winter soon? Forbes. Available at: https://www.forbes.com/sites/cognitiveworld/2019/10/20/are-we-heading-for-another-ai-winter-soon/#783bf81256d6.
[85] Schuchmann, S. (2019). Probability of an approaching AI winter. Towards Data Science. Available at: https://towardsdatascience.com/probability-of-an-approaching-ai-winter-c2d818fb338a.
[86] Lighthill, J. (1973). Artificial Intelligence: A general survey. in Artificial Intelligence: A paper symposium, Science Research Council.
[87] Floridi, L. (2016). Should we be afraid of AI. Aeon Essays. Available at: https://aeon.co/essays/true-ai-is-both-logicallypossible-and-utterly-implausible.
[88] Watson, D. S., and Floridi, L. (2020). The explanation game: a formal framework for interpretable machine learning. Synthese. https://doi.org/10.1007/s11229-020-02629-9.
[89] Klopf, A. H. (1972). Brain function and adaptive systems--A heterostatic theory. Technical Report AFCRL-72-0164, Air Force Cambridge Research Laboratories, Bedford, MA. A summary appears in Proceedings of the International Conference on Systems, Man, and Cybernetics, 1974, IEEE Systems, Man, and Cybernetics Society, Dallas, TX.
[90] Klopf, A. H. (1975). A comparison of natural and artificial intelligence. SIGART Newsletter, 53:11-13.
[91] Klopf, A. H. (1982). The Hedonistic Neuron: A Theory of Memory, Learning, and Intelligence. Hemisphere, Washington, D.C.
[92] Barto, A. G. and Sutton, R. S. (1981a). An adaptive network that constructs and uses an internal model of its world. Cognition and Brain Theory, 3:217-246.
[93] Barto, A. G., Sutton, R. S., and Brouwer, P. S. (1981). Associative search network: A reinforcement learning associative memory. IEEE Transactions on Systems, Man, and Cybernetics, 40:201-211.
[94] Barto, A. G. and Sutton, R. S. (1981b). Landmark learning: An illustration of associative search. Biological Cybernetics, 42:1-8.
[95] Barto, A. G. and Anandan, P. (1985). Pattern recognizing stochastic learning automata. IEEE Transactions on Systems, Man, and Cybernetics, 15:360-375.
[96] Barto, A. G., Anderson, C. W., and Sutton, R. S. (1982). Synthesis of nonlinear control surfaces by a layered associative search network. Biological Cybernetics, 43:175-185.
[97] Barto, A. G. and Anderson, C. W. (1985). Structural learning in connectionist systems. In Program of the Seventh Annual Conference of the Cognitive Science Society, pages 43-54, Irvine, CA.
[98] Barto, A. G. (1985). Learning by statistical cooperation of self-interested neuron-like computing elements. Human Neurobiology, 4:229-256.
[99] Barto, A. G. (1986). Game-theoretic cooperativity in networks of self-interested units. In Denker, J. S., editor, Neural Networks for Computing, pages 41-46. American Institute of Physics, New York.
[100] Barto, A. G. and Jordan, M. I. (1987). Gradient following without back-propagation in layered networks. In Caudill, M. and Butler, C., editors, Proceedings of the IEEE First Annual Conference on Neural Networks, pages II629-II636, San Diego, CA.
[101] Santos, R. S. and Qin, L. (2019). Risk capital and emerging technologies: innovation and investment patterns based on artificial intelligence patent data analysis. Journal of Risk and Financial Management, 12(4), p.189.
[102] Hassabis, D. (2017). Artificial intelligence: Chess match of the century. Nature, 544(7651), pp.413-414.
[103] Kotok, A. (1988). A Chess Playing Program for the IBM 7090 Computer, pp. 48–55. Springer, New York, NY., https://doi.org/10.1007/978-1-4757-1968-06.
[104] McCarthy, J. (1958). “Programs with Common Sense,” Mechanisation of Thought Processes, Proceedings of the Symposium of the National Physics Laboratory, Vol. I, pp. 77-84, London: Her Majesty’s Stationary Office.
[105] Brooks, R. (1990). Elephants don't play chess. Robotics and Autonomous Systems, 6: 3-15. Available at: http://people.csail.mit.edu/brooks/papers/elephants.pdf.
[106] Anderson, T. and Donath, M. (1990). “Animal Behaviour as a Paradigm for Developing Robot Autonomy,” Robotics and Autonomous Systems, 6:145-168.
[107] Beer, R., Chiel, H. and Sterling, L. (1990). “A Biological Perspective on Autonomous Agent Design,” Robotics and Autonomous Systems, 6-169-186.
[108] Nilsson, N. J. (1998). Artificial Intelligence: A New Synthesis. Morgan Kaufmann Publishers.
[109] Sejnowski, T. and Rosenburg, C. (1987). “Parallel Networks That Learn to Pronounce English Text,” Complex Systems, 1:145–168.
[110] Kantor, P. B., Ricci, F., Rokach, L. and Shapira, B. (2011). Recommender Systems Handbook. Springer, Berlin.
[111] Lü, L., Medo, M., Yeung, C.H., Zhang, Y.C., Zhang, Z.K. and Zhou, T. (2012) Recommender systems. Physics reports, 519(1), pp.1-49.
[112] Drachsler, H., Hummel, H. G. K. and Koper, R. (2008). Personal Recommender Systems for Learners in Lifelong Learning Networks: The Requirements, Techniques and Model. Int J Learn Technology 3(4):404–423 2.
[113] García, E., Romero, C., Ventura, S. and De Castro, C. (2009). An Architecture for making Recommendations to Courseware Authors using Association Rule Mining and Collaborative Filtering. User Model User Adapt Interact 19(1– 2):99–132 3.
[114] Chen, J. M., Chen, M. C. and Sun, Y. S. (2014). A tag-based learning approach to knowledge acquisition for constructing prior knowledge and enhancing student-reading comprehension. Comput Educ 70:256–268.
[115] McNee, S. M., Riedl, J. and Konstan, J. A. (2006). Making Recommendations Better: An Analytic Model for Human Recommender Interaction. In: Conference on human factors in computing systems, Montréal, Québec, Canada, pp 1103–1108.
[116] Balabanović, M. and Shoham, Y. (1997). Fab: content-based, collaborative recommendation. Communication ACM 40:66-72.
[117] Resnick, P. and Varian, H. (1997). Recommender systems. Communication ACM 40:56–58.
[118] Cheung, K. W., Kwok, J. T., Law, M. H. and Tsui, K. C. (2003). Mining customer product ratings for personalized marketing. Decision Support Sys. 35:231–243.
[119] Schafer, B., Konstan, A. and Riedl, J. (2001). E-commerce recommendation applications. Data Min Knowledge Discovery 5:115–153.
[120] Lops, P., De Gemmis, M. and Semeraro, G., (2011). Content-based Recommender Systems: State of the Art and Trends. Recommender Systems Handbook, pp.73-105.
[121] Burke, R. (2000). Knowledge-based Recommender Systems. Encyclopaedia of Library and Information Systems, 69 (Supplement 32), pp.175-186.
[122] Bhargava, H. K., Sridhar, S. and Herrick, C. (1999). Beyond Spreadsheets: Tools for Building Decision Support Systems. IEEE Computer, 32(3), 31-39.
[123] Burke, R., Hammond, K. and Cooper, E. (1996). Knowledge-based Navigation of Complex Information Spaces. In Proceedings of the 13th National Conference on Artificial Intelligence, pp. 462-468. Menlo Park, CA: AAAI Press.
[124] Burke, R., Hammond, K. and Young, B. (1997). The FindMe Approach to Assisted Browsing. IEEE Expert, 12(4): 32-40.
[125] Hammond, K. (1989). Case-based Planning: Viewing Planning as a Memory Task. Boston, MA: Academic Press.
[126] Kolodner, J. (1993). Case-based reasoning. San Mateo, CA: Morgan Kaufmann.
[127] Riesbeck, C., and Schank, R. (1989) Inside Case-Based Reasoning. Hillsdale, N.J.: Lawrence Erlbaum.
[128] Xia, F., Yang, L.T., Wang, L. and Vinel, A., (2012). Internet of things. International journal of communication systems, 25(9), p.1101.
[129] Yoo, Y., Henfridsson, O. and Lyytinen, K. (2010). Research commentary – the new organizing logic of digital innovation: an agenda for information systems research. Inf Syst Res 21(4):724–735.
[130] Wortmann, F. and Flüchter, K. (2015). Internet of things. Business & Information Systems Engineering, 57(3), pp.221-224.
[131] Atzori, L., Iera, A. and Morabito, G. (2010). The internet of things: a survey. Computer Network 54:2787–2805.
[132] Fleisch, E. (2010). What is the internet of things – an economic perspective. Auto-ID labs white paper. http://www.im.ethz.ch/education/HS10/AUTOIDLABS-WP-BIZAPP-53.pdf (Accessed 18 Feb 2021).
[133] Vermesan, O., Friess, P., Guillemin, P., Sundmaeker, H., Eisenhauer, M., Moessner, K., Arndt, M., Spirito, M., Medagliani, P., Giaffreda, R., Gusmeroli, S., Ladid, L., Serrano, M., Hauswirth, M. and Baldini, G. (2014). Internet of things strategic research and innovation agenda. In: Vermesan O, Friess P (eds) Internet of things – from research and innovation to market deployment. River Publishers, Aalborg, pp 7–142.
[134] Porter, M. E. and Heppelmann, J. E. (2014). How smart, connected products are transforming competition. Harv Bus Rev 92:11–64.
[135] Fleisch, E., Weinberger, M. and Wortmann, F. (2014). Business models for the internet of things. Bosch lab white paper. http://www.iot-lab.ch/wp-content/uploads/2014/09/EN_Bosch-Lab-White-PaperGM-im-IOT-1_1.pdf (Accessed 18 Feb 2021).
[136] Ghosh, A., Chakraborty, D. and Law, A., (2018). Artificial intelligence in Internet of things. CAAI Transactions on Intelligence Technology, 3(4), pp.208-218.
[137] NPR. (2011). Science Diction: The Origin of The Word 'Robot'. Retrieved from https://www.npr.org/2011/04/22/135634400/science-diction-the-origin-of-the-wordrobot.
[138] Webster, C. and Ivanov, S. (2020). Robotics, artificial intelligence, and the evolving nature of work. In Digital transformation in business and society (pp. 127-143). Palgrave Macmillan, Cham.
[139] Pandey, A., Kaushik, A., Jha, A.K. and Kapse, G. (2014). A technological survey on autonomous home cleaning robots. International Journal of Scientific and Research Publications, 4(4), pp.1-7.
[140] Nattharith, P. (2013). Fuzzy logic-based control of mobile robot navigation: A case study on iRobot Roomba Platform. Scientific research and Essays, 8(2), pp.82-94.
[141] Raibert, M., Blankespoor, K., Nelson, G. and Playter, R. (2008). Bigdog, the rough-terrain quadruped robot. IFAC Proceedings Volumes, 41(2), pp.10822-10825.
[142] Rudakevych, P., Clark, S. and Wallace, J. (2007). Integration of the Fido explosives detector onto the PackBot EOD UGV. In Unmanned Systems Technology IX (Vol. 6561, p. 656125). International Society for Optics and Photonics.
[143] Yamauchi, B. M. (2004). PackBot: a versatile platform for military robotics. In Unmanned ground vehicle technology VI (Vol. 5422, pp. 228-237). International Society for Optics and Photonics.
[144] Akerson, D. (2013). The illegality of offensive lethal autonomy. In International Humanitarian Law and the Changing Technology of War (pp. 65-98). Brill Nijhoff.
[145] Hogg, R. W., Rankin, A. L., Roumeliotis, S. I., McHenry, M. C., Helmick, D. M., Bergh, C. F. and Matthies, L. (2002). Algorithms and sensors for small robot path following. In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292) (Vol. 4, pp. 3850-3857). IEEE.
[146] Graetz, G. and Michaels, G. (2018). Robots at work. Rev Econ Stat. 100(5):753–768.
[147] Roy, R. and Sarkar, M. B. (2016). Knowledge, firm boundaries, and innovation: mitigating the Incumbent’s curse during radical technological change: mitigating Incumbent’s curse during radical discontinuity. Strategic Management Journal 37(5):835–854.
[148] Bhargava, A., Bester, M. and Bolton, L. (2021) Employees’ perceptions of the implementation of robotics, artificial intelligence, and automation (RAIA) on job satisfaction, job security, and employability. Journal of Technology in Behavioral Science, 6(1), pp.106-113.
[149] Virčíková, M. and Sinčák, P. (2010). Artificial intelligence in humanoid systems.
[150] Segaran, T. (2007). Programming collective intelligence: building smart web 2.0 applications, O’Reilly Media, Inc.
[151] Yegnanarayana, B. (2009). Artificial neural networks, PHI Learning Pvt. Ltd.
[152] Chen, M., Challita, U., Saad, W., Yin, C. and Debbah, M. (2017). Machine learning for wireless networks with artificial intelligence: A tutorial on neural networks. arXiv preprint arXiv:1710.02913, 9.
[153] Lee, C.K., Kang, S.K. and Lee, Y.K., (2013). Segmentation of mega event motivation: The case of Expo 2010 Shanghai China. Asia Pacific Journal of Tourism Research, 18(6), pp.637-660.
[154] Baker, S. (2011). Final Jeopardy: Man vs. machine and the quest to know everything (p. 288). New York: Houghton Mifflin Harcourt.
[155] Ferrucci, D.A. (2012). Introduction to “This Is Watson”. IBM Journal of Research and Development, 56(3.4), pp.1-1.
[156] Ahmed, E. and Rehmani, M.H. (2017) Mobile edge computing: opportunities, solutions, and challenges. Future Generation Computer Systems, 70, pp.59-63.
[157] Carmigniani, J., Furht, B., Anisetti, M., Ceravolo, P., Damiani, E. and Ivkovic, M. (2011). Augmented reality technologies, systems, and applications. Multimedia tools and applications, 51(1), pp.341-377.
[158] Kato, H., Billinghurst, M., Poupyrev, I., Imamoto, K. and Tachibana, K. (2000). Virtual object manipulation on a table-top AR environment. ISAR ’00, 111–119.
[159] Mistry, P., Kuroki, T. and Chuang, C. (2008). TaPuMa: Tangible Public Map for Information Acquirement through the Things We Carry. MIT Media Lab, Ambi-sys‘08, February.
[160] Barakonyi, I., Fahmy, T., Schmalstieg, D. (2004). Remote collaboration using Augmented Reality Videoconferencing. Proceedings of Graphics Interface. p.89–96, May 17–19, 2004, London, Ontario, Canada.
[161] Zhou, F., Duh, H. B. L., and Billinghurst, M. (2008). Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR.
[162] Sandor, C., Olwal, A., Bell, B. and Feiner, S. (2005). Immersive mixed-reality configuration of hybrid user interfaces. In ISMAR ‘05, pp. 110–113.
[163] Mistry, P., Maes, P. and Chang, L. (2009). WUW – Wear Ur World – A Wearable Gestural Interface”, ACM, CHI 2009, Boston, April 4-9.
[164] Muensterer, O. J., Lacher, M., Zoeller, C., Bronstein, M. and Kübler, J. (2014). Google Glass in pediatric surgery: An exploratory study. International Journal of Surgery, 12, 281-289.
[165] Garcia, A. (2019). “Google Glass lives on it the workplace. The latest pair costs $999” (online), CNN Business, (Accessed: 18 Jan 2021), Available at: https://edition.cnn.com/2019/05/20/tech/google-glass-enterprise-edition-2/.
[166] Kelly, H. (2019). “Microsoft’s new $3,500 HoloLens 2 headset means business” (online), CNN Business, (Accessed: 18 Jan 2021), Available at: https://edition.cnn.com/2019/02/24/tech/microsoft-hololens-2/index.html.
[167] Noor, A. K. (2016). “The Hololens Revolution”. Mechanical Engineering. 138(10), pp.30-35.
[168] Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S. and Dean, J. (2019). A guide to deep learning in healthcare. Nat Med 25, 24–29.
[169] Sutton, J., Vos, S. C., Olson, M. K., Woods, C., Cohen, E. and Gibson, C. B. (2018). Lung Cancer Messages on Twitter: Content Analysis and Evaluation (doi:10.1016/j.jacr.2017.09.043) (Medline: 29154103).
[170] Sinnenberg, L., Di Silvestro, C. L., Mancheno, C., Dailey, K., Tufts, C., Buttenheim, A. M. (2016). Twitter as a Potential Data Source for Cardiovascular Disease Research. JAMA Cardiol 2016 Dec 01;1(9):1032-1036 (doi:10.1001/jamacardio.2016.3029) (Medline: 27680322).
[171] Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M. and Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118.
[172] Ehteshami Bejnordi, B., Veta, M., Johannes van Diest, P., van Ginneken, B., Karssemeijer, N., Litjens, G., van der Laak JAWM, the CAMELYON16 Consortium, Hermsen, M. and Manson, Q. F. (2017). Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318, 2199–2210.
[173] Zhou J & Troyanskaya O. G. (2015). Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods 12, 931–934.
[174] Poirion, O. B., Chaudhary, K., Huang, S. and Garmire, L. X. (2020). DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data. medRxiv 19010082. https://doi.org/10.1101/19010082.
[175] Norgeot, B., Glicksberg, B. S. and Butte, A. J. (2019). A call for deep-learning healthcare. Nat Med 25, 14–15.
[176] Pui, C. H., Gajjar, A. J., Kane, J. R., Qaddoumi, I. A. and Pappo, A. S. (2011). Challenging issues in pediatric oncology. Nat Rev Clin Oncol 8, 540–549.
[177] G42.ai (2020). About Group 42. Available at: https://g42.ai/#About (Accessed 18 June 2021).
[178] Sky Sports, (2020). Esteban Granero aiming to bring artificial intelligence into football. Available at: https://www.skysports.com/football/news/11095/11932406/esteban-granero-aiming-to-bring-artificial-intelligence-into-football (Accessed 20 June 2021).
[179] García-Aliaga, A., Marquina, M., Coterón, J., Rodríguez-González, A. and Luengo-Sánchez, S. (2021). In-game behaviour analysis of football players using machine learning techniques based on player statistics. International Journal of Sports Science & Coaching, 16(1), pp.148-157.
[180] Jiang, Y., Cui, K., Chen, L., Wang, C. and Xu, C. (2020). Soccerdb: A large-scale database for comprehensive video understanding. In Proceedings of the 3rd International Workshop on Multimedia Content Analysis in Sports (pp. 1-8).
[181] Giancola, S., Amine, M., Dghaily, T., and Ghanem, B. (2018). Soccernet: A scalable dataset for action spotting in soccer videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 1711–1721.
[182] Minkesh, A., Worranitta, K. and Taizo, M. (2019). Human extraction and scene transition utilizing Mask R-CNN. arXiv preprint arXiv:1907.08884.
[183] Marek, R. U. and Chovanec, M. (2019). The Application of the Machine Learning Principles in the Sports Betting Systems. Acta Electrotechnica et Informatica, 19(3), pp.16-20.
[184] Shannon, C. E. (1950). Programming a Computer for Playing Chess. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(314), 256–275.
[185] Fujita, H., and Wu, I. C. (2012). A special issue on artificial intelligence in computer games: AICG. KnowledgeBased Systems, 34, 1–2. https://doi.org/10.1016/j.knosys.2012.05.014.
[186] Yannakakis, G. N., & Togelius, J. (2015). A panorama of artificial and computational intelligence in games. IEEE Transactions on Computational Intelligence and AI in Games, 7(4), 317–335.
[187] Yannakakis, G. N. & Togelius, J. (2018). Artificial intelligence and games. Berlin: Springer. Retrieved from http://gameaibook.org/. (Accessed 16 July 2021).
[188] Lewis, M. and Dill, K. (2015). Game AI appreciation, revisited. In: Game AI Pro, Vol. 2 (pp. 3-17). New York: CRC press. Retrieved from http://www.gameaipro.com/GameAIPro2/GameAIPro2_Chapter01_Game_ AI_Appreciation_Revisited.pdf. (Accessed 16 July 2021).
[189] Nguyen, T. D., Chen, Z. & El-Nasr, M. S. (2015). Analytics-based AI techniques for a better gaming experience. Game AI Pro, Vol. 2 (pp. 481–500). New York: CRC Press.
[190] Beck, A., Yumak, Z. & Magnenat-Thalmann, N. (2017). Body movement generation for virtual characters and social robots. In: J. K. Burgoon, N. Magnenat-Thalmann, M. Pantic & a. Vinciarelli. Social Signal Processing (pp. 273-286). Cambridge, MA: https://doi.org/10.1017/9781316676202.020.
[191] Yumak, Z., and Magnenat-Thalmann, N. (2015). Multi-modal and multi-party social interactions. In N. Magnenat-Thalmann, J. Yuan, D. Thalman, & B. You (Eds.), Context aware human-robot and humanagent interaction (pp. 275–298). Cham: Springer International Publishing.
[192] Rabin, S. (2017). The illusion of intelligence. In: Game AI Pro, Vol. 3 (pp. 3-9). New York: CRC Press.
[193] Rissoan, R. (2011). Les Réseaux Sociaux: Facebook, Twitter, Linkedin, Viadeo, Google+, Comprendre Et Maîtriser Ces Nouveaux Outils De Communication. Saint-Herblain, France: Eni Editions.
[194] Gao, S., He, L., Chen, Y., Li, D. and Lai, K. (2020). Public perception of artificial intelligence in medical care: Content analysis of social media. Journal of Medical Internet Research, 22(7), p.e16649.
[195] Kreimer, I. (2018). How to Get Started with AI-Powered Content Marketing. (online) Available at: https://www.singlegrain.com/artificial-intelligence/how-to-get-started-with-ai-powered-content- marketing/ (Accessed on 19 Jun 2021).
[196] Dagnon, S. (2018). Using Chatbots for Social Media Marketing. (online) Available at: https://mavsocial.com/chatbots-social-media-marketing/ (Accessed on 17 Jun 2021).
[197] Frankenfield, J. (2018). Chatbot. (online) Available at: https://www.investopedia.com/terms/c/chatbot.asp (Accessed on 17 Jun 2021).
[198] Caliskan, A., Bryson, J. J. and Narayanan, A. (2017). Semantics derived automatically from language corpora contain human-like biases. Science 356(6334): 183–186.
[199] Citron, D. K. and Pasquale, F. A. (2014). The Scored Society: Due Process for Automated Predictions. Rochester, NY: Social Science Research NetworkID 2376209, SSRN Scholarly Paper. Available at: https://papers.ssrn.com/abstract=2376209 (accessed 16 Jun 2021).
[200] Eubanks, V. (2017). Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. New York, NY: St. Martin’s Press.
[201] Howard, P. N. (2005). New Media Campaigns and the Managed Citizen. Cambridge: Cambridge University Press.
[202] Levin, S. (2016) A beauty contest was judged by AI and the robots didn’t like dark skin. The Guardian. Available at: https://www.theguardian.com/technology/2016/sep/08/artificial-intelligence-beauty-contest-doesnt-like-blackpeople (Accessed 16 Jun 2021).
[203] Sweeney, L. (2013). Discrimination in online ad delivery. Communications of the ACM 56(5): 44–54.
[204] Momen, N., Hatamian, M. and Fritsch, L. (2019). Did app privacy improve after the GDPR? IEEE Security & Privacy, 17(6), pp.10-20.
[205] Hughes, M. U., Bendoni, W. K. and Pehlivan, E. (2016). “Story-giving as a co-creation tool for luxury brands in the age of the internet: A love story by Tiffany and thousands of lovers”, The Journal of Product and Brand Management, Vol. 25 No. 4, pp. 357-364.
[206] Ramadan, Z. (2017). “Examining the dilution of the consumer-brand relationship on Facebook: The saturation issue”, Qualitative Market Research: An International Journal, Vol. 20 No. 3.
[207] Jin, S. A. (2012). “The Potential of Social Media for Luxury Brand Management”, Marketing Intelligence & Planning, Vol. 30 No. 7, pp. 687-699.
[208] Hung, K. P., Huiling Chen, A., Peng, N., Hackley, C., Amy Tiwsakul, R. and Chou, C.L. (2011). “Antecedents of luxury brand purchase intention”, Journal of Product & Brand Management, Vol. Vol. 20 No. 6, pp. 457-467.
[209] Seo, Y. and Buchanan-Oliver, M. (2015). “Luxury branding: The industry, trends, and future conceptualisations”, Asia Pacific Journal of Marketing and Logistics, Vol. 27 No.1, pp. 82-98.
[210] Berthon, P. R., Pitt, L. F., Plangger, K. and Shapiro, D. (2012). “Marketing meets Web 2.0, social media, and creative consumers: Implications for international marketing strategy”, Business Horizons, Vol. 55 No. 3, pp. 261-271.
[211] Keller, K. (2009). “Building strong brands in a modern marketing communications environment”, Journal of Marketing Communications, Vol. 15 No. 2, pp. 139-155.
[212] Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach. 3rd ed. Upper Saddle River, NJ: Pearson Education Inc. / Prentice Hall.
[213] Tjepkema, L. (2018). Why AI is Vital for Marketing with Lindsay Tjepkema. (online) Available at: https://www.magnificent.com/magnificent-stuff/why-ai-is-vital-for-marketing-with-lindsaytjepkema. (Accessed on 02 March 2021).
[214] Salvaris, M., Dean, D. and Tok, W.H., (2018). Deep Learning with Azure. Building and Deploying Artificial Intelligence Solutions on the Microsoft AI Platform. New York, NY: Springer. doi, 10, pp.978-1.
[215] Soh, J., Copeland, M., Puca, A. and Harris, M., (2020). Ethical AI, Azure AI, and Machine Learning. In Microsoft Azure (pp. 67-84). Apress, Berkeley, CA.
[216] Mone, G. (2016). Beyond Search. ACM News. http://cacm.acm.org/news/194394-beyondsearch/fulltext. (Accessed 19 Jun 2021).
[217] Gorman, G. E. (2006). Giving way to Google. Online Information Review, 30(2), 97–99.
[218] Mullen, L. B., and Hartman, K. A. (2006). Google Scholar and the library Web site: the early response by ARL libraries. College and Research Libraries, 67(2), 106–122.
[219] Myhill, M. (2005). Google Scholar. Charleston Advisor, 6 (4), 49–52. http://www.charlestonco.com/review.cfm?id=225.
[220] Peek, R. (2005). A Googly new year. Information Today, 22(1), 17–18.
[221] Tenopir, C. (2005). Google in the academic library. Library Journal, 130(2), 32.
[222] Jacsó, P. (2005). Google Scholar: the pros and the cons. Online information review.
[223] Genei.io (2021). genei | AI-powered summarisation & research tool. (online) Available at: https://www.genei.io (Accessed 19 June 2021).
[224] Fricke, S. (2018). Semantic scholar. Journal of the Medical Library Association: JMLA, 106(1), p.145.
[225] Engleking C. (2016). Scientists are drowning, artificial intelligence will save them. Discover (Internet). (Accessed 19 Jun 2021).
[226] Nickelsburg M, Bishop, T. (2016). Paul Allen’s AI2 expands smart search engine Semantic Scholar to neuroscience research. GeekWire (Internet). 11 Nov 2016 (Accessed 19 Jun 2021).