Search results for: © Learning Network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4466

Search results for: © Learning Network

3716 Inferential Reasoning for Heterogeneous Multi-Agent Mission

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.

Keywords: Distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640
3715 A New Routing Algorithm: MIRAD

Authors: Amir Gholami Pastaki, Ali Reza Sahab, Seyed Mehdi Sadeghi

Abstract:

LSP routing is among the prominent issues in MPLS networks traffic engineering. The objective of this routing is to increase number of the accepted requests while guaranteeing the quality of service (QoS). Requested bandwidth is the most important QoS criterion that is considered in literatures, and a various number of heuristic algorithms have been presented with that regards. Many of these algorithms prevent flows through bottlenecks of the network in order to perform load balancing, which impedes optimum operation of the network. Here, a modern routing algorithm is proposed as MIRAD: having a little information of the network topology, links residual bandwidth, and any knowledge of the prospective requests it provides every request with a maximum bandwidth as well as minimum end-to-end delay via uniform load distribution across the network. Simulation results of the proposed algorithm show a better efficiency in comparison with similar algorithms.

Keywords: new generation networks, QoS, traffic engineering, MPLS, QoS based routing, LSP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
3714 Prediction of Compressive Strength of Self- Compacting Concrete with Fuzzy Logic

Authors: Paratibha Aggarwal, Yogesh Aggarwal

Abstract:

The paper presents the potential of fuzzy logic (FL-I) and neural network techniques (ANN-I) for predicting the compressive strength, for SCC mixtures. Six input parameters that is contents of cement, sand, coarse aggregate, fly ash, superplasticizer percentage and water-to-binder ratio and an output parameter i.e. 28- day compressive strength for ANN-I and FL-I are used for modeling. The fuzzy logic model showed better performance than neural network model.

Keywords: Self compacting concrete, compressive strength, prediction, neural network, Fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458
3713 A Car Parking Monitoring System Using a Line-Topology Wireless Sensor Network

Authors: Dae Il Kim, Jungho Moon, Tae Yun Chung

Abstract:

This paper presents a car parking monitoring system using a wireless sensor network. The presented sensor network has a line-shaped topology and adopts a TDMA-based protocol for allowing multi-hop communications. Sensor nodes are deployed in the ground of an outdoor parking lot in such a way that a sensor node monitors a parking space. Each sensor node detects the availability of the associated parking space and transmits the detection result to a sink node via intermediate sensor nodes existing between the source sensor node and the sink node. We evaluate the feasibility of the presented sensor network and the TDMA-based communication protocol through experiments using 11 sensor nodes deployed in a real parking lot. The result shows that the presented car parking monitoring system is robust to changes in the communication environments and efficient for monitoring parking spaces of outdoor parking lots.

Keywords: Multi-hop communication, parking monitoring system, TDMA, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
3712 Role of Feedbacks in Simulation-Based Learning

Authors: Usman Ghani

Abstract:

Feedback is a vital element for improving student learning in a simulation-based training as it guides and refines learning through scaffolding. A number of studies in literature have shown that students’ learning is enhanced when feedback is provided with personalized tutoring that offers specific guidance and adapts feedback to the learner in a one-to-one environment. Thus, emulating these adaptive aspects of human tutoring in simulation provides an effective methodology to train individuals. This paper presents the results of a study that investigated the effectiveness of automating different types of feedback techniques such as Knowledge-of-Correct-Response (KCR) and Answer-Until- Correct (AUC) in software simulation for learning basic information technology concepts. For the purpose of comparison, techniques like simulation with zero or no-feedback (NFB) and traditional hands-on (HON) learning environments are also examined. The paper presents the summary of findings based on quantitative analyses which reveal that the simulation based instructional strategies are at least as effective as hands-on teaching methodologies for the purpose of learning of IT concepts. The paper also compares the results of the study with the earlier studies and recommends strategies for using feedback mechanism to improve students’ learning in designing and simulation-based IT training.

Keywords: Simulation, feedback, training, hands-on, labs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
3711 Planning the Building Evacuation Routes by a Spatial Network

Authors: Hsin-Yun Lee

Abstract:

The previous proposed evacuation routing approaches usually divide the space into multiple interlinked zones. However, it may be harder to clearly and objectively define the margins of each zone. This paper proposes an approach that connects locations of necessary guidance into a spatial network. In doing so, evacuation routes can be constructed based on the links between starting points, turning nodes, and terminal points. This approach more conforms to the real-life evacuation behavior. The feasibility of the proposed approach is evaluated through a case of one floor in a hospital building. Results indicate that the proposed approach provides valuable suggestions for evacuation planning.

Keywords: Evacuation, spatial network, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
3710 Using Automatic Ontology Learning Methods in Human Plausible Reasoning Based Systems

Authors: A. R. Vazifedoost, M. Rahgozar, F. Oroumchian

Abstract:

Knowledge discovery from text and ontology learning are relatively new fields. However their usage is extended in many fields like Information Retrieval (IR) and its related domains. Human Plausible Reasoning based (HPR) IR systems for example need a knowledge base as their underlying system which is currently made by hand. In this paper we propose an architecture based on ontology learning methods to automatically generate the needed HPR knowledge base.

Keywords: Ontology Learning, Human Plausible Reasoning, knowledge extraction, knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
3709 Creative Thinking Skill Approach Through Problem-Based Learning: Pedagogy and Practice in the Engineering Classroom

Authors: Halizah Awang, Ishak Ramly

Abstract:

Problem-based learning (PBL) is one of the student centered approaches and has been considered by a number of higher educational institutions in many parts of the world as a method of delivery. This paper presents a creative thinking approach for implementing Problem-based Learning in Mechanics of Structure within a Malaysian Polytechnics environment. In the learning process, students learn how to analyze the problem given among the students and sharing classroom knowledge into practice. Further, through this course-s emphasis on problem-based learning, students acquire creative thinking skills and professional skills as they tackle complex, interdisciplinary and real-situation problems. Once the creative ideas are generated, there are useful additional techniques for tender ideas that will grow into a productive concept or solution. The combination of creative skills and technical abilities will enable the students to be ready to “hit-the-ground-running" and produce in industry when they graduate.

Keywords: Creative Thinking Skills, Problem-based Learning, Problem Solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7323
3708 The Effects of Speed on the Performance of Routing Protocols in Mobile Ad-hoc Networks

Authors: Narendra Singh Yadav, R.P.Yadav

Abstract:

Mobile ad hoc network is a collection of mobile nodes communicating through wireless channels without any existing network infrastructure or centralized administration. Because of the limited transmission range of wireless network interfaces, multiple "hops" may be needed to exchange data across the network. Consequently, many routing algorithms have come into existence to satisfy the needs of communications in such networks. Researchers have conducted many simulations comparing the performance of these routing protocols under various conditions and constraints. One question that arises is whether speed of nodes affects the relative performance of routing protocols being studied. This paper addresses the question by simulating two routing protocols AODV and DSDV. Protocols were simulated using the ns-2 and were compared in terms of packet delivery fraction, normalized routing load and average delay, while varying number of nodes, and speed.

Keywords: AODV, DSDV, MANET, relative performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
3707 Q-Learning with Eligibility Traces to Solve Non-Convex Economic Dispatch Problems

Authors: Mohammed I. Abouheaf, Sofie Haesaert, Wei-Jen Lee, Frank L. Lewis

Abstract:

Economic Dispatch is one of the most important power system management tools. It is used to allocate an amount of power generation to the generating units to meet the load demand. The Economic Dispatch problem is a large scale nonlinear constrained optimization problem. In general, heuristic optimization techniques are used to solve non-convex Economic Dispatch problem. In this paper, ideas from Reinforcement Learning are proposed to solve the non-convex Economic Dispatch problem. Q-Learning is a reinforcement learning techniques where each generating unit learn the optimal schedule of the generated power that minimizes the generation cost function. The eligibility traces are used to speed up the Q-Learning process. Q-Learning with eligibility traces is used to solve Economic Dispatch problems with valve point loading effect, multiple fuel options, and power transmission losses.

Keywords: Economic Dispatch, Non-Convex Cost Functions, Valve Point Loading Effect, Q-Learning, Eligibility Traces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
3706 Project Base Learning for IT Personnel Resources Development using TVML

Authors: Tansuriyavong Suriyon, Endo Takanobu, Boonmee Choompol

Abstract:

Using the animations video of teaching materials is an effective learning method. However, we thought that more effective learning method is to produce the teaching video by learners themselves. The learners who act as the producer must learn and understand well to produce and present video of teaching materials to others. The purpose of this study is to propose the project based learning (PBL) technique by co-producing video of IT (information technology) teaching materials. We used the T2V player to produce the video based on TVML a TV program description language. By proposed method, we have assigned the learners to produce the animations video for “National Examination for Information Processing Technicians (IPA examination)" in Japan, in order to get them learns various knowledge and skill on IT field. Experimental result showed that learning effect has occurred at the video production process that useful for IT personnel resources development.

Keywords: TVML , T2V Player, The animation made as learning materials, National Examination for Information Processing Technicians, IT Education, Problem Based Learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
3705 WhatsApp as Part of a Blended Learning Model to Help Programming Novices

Authors: Tlou J. Ramabu

Abstract:

Programming is one of the challenging subjects in the field of computing. In the higher education sphere, some programming novices’ performance, retention rate, and success rate are not improving. Most of the time, the problem is caused by the slow pace of learning, difficulty in grasping the syntax of the programming language and poor logical skills. More importantly, programming forms part of major subjects within the field of computing. As a result, specialized pedagogical methods and innovation are highly recommended. Little research has been done on the potential productivity of the WhatsApp platform as part of a blended learning model. In this article, the authors discuss the WhatsApp group as a part of blended learning model incorporated for a group of programming novices. We discuss possible administrative activities for productive utilisation of the WhatsApp group on the blended learning overview. The aim is to take advantage of the popularity of WhatsApp and the time students spend on it for their educational purpose. We believe that blended learning featuring a WhatsApp group may ease novices’ cognitive load and strengthen their foundational programming knowledge and skills. This is a work in progress as the proposed blended learning model with WhatsApp incorporated is yet to be implemented.

Keywords: Blended learning, higher education, WhatsApp, programming, novices, lecturers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
3704 Integrating E-learning Environments with Computational Intelligence Assessment Agents

Authors: Christos E. Alexakos, Konstantinos C. Giotopoulos, Eleni J. Thermogianni, Grigorios N. Beligiannis, Spiridon D. Likothanassis

Abstract:

In this contribution an innovative platform is being presented that integrates intelligent agents in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting various assessment agents for e-learning environments. The agents are implemented in order to provide intelligent assessment services to computational intelligent techniques such as Bayesian Networks and Genetic Algorithms. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.

Keywords: Bayesian Networks, Computational Intelligence techniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
3703 Review of Trust Models in Wireless Sensor Networks

Authors: V. Uma Rani, K. Soma Sundaram

Abstract:

The major challenge faced by wireless sensor networks is security. Because of dynamic and collaborative nature of sensor networks the connected sensor devices makes the network unusable. To solve this issue, a trust model is required to find malicious, selfish and compromised insiders by evaluating trust worthiness sensors from the network. It supports the decision making processes in wireless sensor networks such as pre key-distribution, cluster head selection, data aggregation, routing and self reconfiguration of sensor nodes. This paper discussed the kinds of trust model, trust metrics used to address attacks by monitoring certain behavior of network. It describes the major design issues and their countermeasures of building trust model. It also discusses existing trust models used in various decision making process of wireless sensor networks.

Keywords: Attacks, Security, Trust, Trust model, Wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4566
3702 Dynamic Window Secured Implicit Geographic Forwarding Routing for Wireless Sensor Network

Authors: Z.M. Hanapi, M. Ismail, K. Jumari, M. Mahdavi

Abstract:

Routing security is a major concerned in Wireless Sensor Network since a large scale of unattended nodes is deployed in ad hoc fashion with no possibility of a global addressing due to a limitation of node-s memory and the node have to be self organizing when the systems require a connection with the other nodes. It becomes more challenging when the nodes have to act as the router and tightly constrained on energy and computational capabilities where any existing security mechanisms are not allowed to be fitted directly. These reasons thus increasing vulnerabilities to the network layer particularly and to the whole network, generally. In this paper, a Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing is presented where a dynamic time is used for collection window to collect Clear to Send (CTS) control packet in order to find an appropriate hoping node. The DWIGF is expected to minimize a chance to select an attacker as the hoping node that caused by a blackhole attack that happen because of the CTS rushing attack, which promise a good network performance with high packet delivery ratios.

Keywords: sensor, security, routing, attack, random.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
3701 Energy and Distance Based Clustering: An Energy Efficient Clustering Method for Wireless Sensor Networks

Authors: Mehdi Saeidmanesh, Mojtaba Hajimohammadi, Ali Movaghar

Abstract:

In this paper, we propose an energy efficient cluster based communication protocol for wireless sensor network. Our protocol considers both the residual energy of sensor nodes and the distance of each node from the BS when selecting cluster-head. This protocol can successfully prolong the network-s lifetime by 1) reducing the total energy dissipation on the network and 2) evenly distributing energy consumption over all sensor nodes. In this protocol, the nodes with more energy and less distance from the BS are probable to be selected as cluster-head. Simulation results with MATLAB show that proposed protocol could increase the lifetime of network more than 94% for first node die (FND), and more than 6% for the half of the nodes alive (HNA) factor as compared with conventional protocols.

Keywords: Clustering methods, energy efficiency, routing protocol, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
3700 Tool Wear and Surface Roughness Prediction using an Artificial Neural Network (ANN) in Turning Steel under Minimum Quantity Lubrication (MQL)

Authors: S. M. Ali, N. R. Dhar

Abstract:

Tool wear and surface roughness prediction plays a significant role in machining industry for proper planning and control of machining parameters and optimization of cutting conditions. This paper deals with developing an artificial neural network (ANN) model as a function of cutting parameters in turning steel under minimum quantity lubrication (MQL). A feed-forward backpropagation network with twenty five hidden neurons has been selected as the optimum network. The co-efficient of determination (R2) between model predictions and experimental values are 0.9915, 0.9906, 0.9761 and 0.9627 in terms of VB, VM, VS and Ra respectively. The results imply that the model can be used easily to forecast tool wear and surface roughness in response to cutting parameters.

Keywords: ANN, MQL, Surface Roughness, Tool Wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3868
3699 Online Pose Estimation and Tracking Approach with Siamese Region Proposal Network

Authors: Cheng Fang, Lingwei Quan, Cunyue Lu

Abstract:

Human pose estimation and tracking are to accurately identify and locate the positions of human joints in the video. It is a computer vision task which is of great significance for human motion recognition, behavior understanding and scene analysis. There has been remarkable progress on human pose estimation in recent years. However, more researches are needed for human pose tracking especially for online tracking. In this paper, a framework, called PoseSRPN, is proposed for online single-person pose estimation and tracking. We use Siamese network attaching a pose estimation branch to incorporate Single-person Pose Tracking (SPT) and Visual Object Tracking (VOT) into one framework. The pose estimation branch has a simple network structure that replaces the complex upsampling and convolution network structure with deconvolution. By augmenting the loss of fully convolutional Siamese network with the pose estimation task, pose estimation and tracking can be trained in one stage. Once trained, PoseSRPN only relies on a single bounding box initialization and producing human joints location. The experimental results show that while maintaining the good accuracy of pose estimation on COCO and PoseTrack datasets, the proposed method achieves a speed of 59 frame/s, which is superior to other pose tracking frameworks.

Keywords: Computer vision, Siamese network, pose estimation, pose tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1165
3698 An Energy-Efficient Protocol with Static Clustering for Wireless Sensor Networks

Authors: Amir Sepasi Zahmati, Bahman Abolhassani, Ali Asghar Beheshti Shirazi, Ali Shojaee Bakhtiari

Abstract:

A wireless sensor network with a large number of tiny sensor nodes can be used as an effective tool for gathering data in various situations. One of the major issues in wireless sensor networks is developing an energy-efficient routing protocol which has a significant impact on the overall lifetime of the sensor network. In this paper, we propose a novel hierarchical with static clustering routing protocol called Energy-Efficient Protocol with Static Clustering (EEPSC). EEPSC, partitions the network into static clusters, eliminates the overhead of dynamic clustering and utilizes temporary-cluster-heads to distribute the energy load among high-power sensor nodes; thus extends network lifetime. We have conducted simulation-based evaluations to compare the performance of EEPSC against Low-Energy Adaptive Clustering Hierarchy (LEACH). Our experiment results show that EEPSC outperforms LEACH in terms of network lifetime and power consumption minimization.

Keywords: Clustering methods, energy efficiency, routingprotocol, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2721
3697 An Approach to Integrate Ontologies of Open Educational Resources in Knowledge Based Management Systems

Authors: Firas A. Al Laban, Mohamed Chabi, Sammani Danwawu Abdullahi

Abstract:

There are real needs to integrate types of Open Educational Resources (OER) with an intelligent system to extract information and knowledge in the semantic searching level. The needs came because most of current learning standard adopted web based learning and the e-learning systems do not always serve all educational goals. Semantic Web systems provide educators, students, and researchers with intelligent queries based on a semantic knowledge management learning system. An ontology-based learning system is an advanced system, where ontology plays the core of the semantic web in a smart learning environment. The objective of this paper is to discuss the potentials of ontologies and mapping different kinds of ontologies; heterogeneous or homogenous to manage and control different types of Open Educational Resources. The important contribution of this research is that it uses logical rules and conceptual relations to map between ontologies of different educational resources. We expect from this methodology to establish an intelligent educational system supporting student tutoring, self and lifelong learning system.

Keywords: Knowledge Management Systems, Ontologies, Semantic Web, Open Educational Resources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
3696 Teaching for Change: Instructional Support in a Bilingual Setting

Authors: S. J. Hachar

Abstract:

The goal of this paper is to provide educators an overview of international practices supporting young learners, arming us with adequate information to lead effective change. We will report on research and observations of Service Learning Projects conducted by one South Texas University. The intent of the paper is also to provide readers an overview of service learning in the preparation of teacher candidates pursuing a Bachelor of Science in Elementary Education. The objective of noting the efficiency and effectiveness of programs leading to literacy and oral fluency in a native language and second language will be discussed. This paper also highlights experiential learning for academic credit that combines community service with student learning. Six weeks of visits to a variety of community sites, making personal observations with faculty members, conducting extensive interviews with parents and key personnel at all sites will be discussed. The culminating Service Learning Expo will be reported as well.

Keywords: Elementary education, junior achievement, service learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964
3695 Technology Integrated Education – Shaping the Personality and Social Development of the Young

Authors: R. Ramli, S. Sameon

Abstract:

There has been a strong link between computermediated education and constructivism learning and teaching theory.. Acknowledging how well the constructivism doctrine would work online, it has been established that constructivist views of learning would agreeably correlate with the philosophy of open and distance learning. Asynchronous and synchronous communications have placed online learning on the right track of a constructive learning path. This paper is written based on the social constructivist framework, where knowledge is constructed from social communication and interaction. The study explores the possibility of practicing this theory through incorporating online discussion in the syllabus and the ways it can be implemented to contribute to young people-s personality and social development by addressing some aspects that may contribute to the social problem such as prejudice, ignorance and intolerance.

Keywords: Educational Technology, Internet, Personal Development, Student Exchange

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
3694 Finding a Solution, all Solutions, or the Most Probable Solution to a Temporal Interval Algebra Network

Authors: André Trudel, Haiyi Zhang

Abstract:

Over the years, many implementations have been proposed for solving IA networks. These implementations are concerned with finding a solution efficiently. The primary goal of our implementation is simplicity and ease of use. We present an IA network implementation based on finite domain non-binary CSPs, and constraint logic programming. The implementation has a GUI which permits the drawing of arbitrary IA networks. We then show how the implementation can be extended to find all the solutions to an IA network. One application of finding all the solutions, is solving probabilistic IA networks.

Keywords: Constraint logic programming, CSP, logic, temporalreasoning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
3693 The Wider Benefits of Negotiations: Austrian Perspective on Educational Leadership as a ‘Power Game’ for Trade Unions

Authors: Rudolf Egger

Abstract:

This paper explores the relationships between the basic learning processes of leading trade union workers and their methods for coping with the changes in the life-courses of societies today. It will discuss the fragile discourse on lifelong learning in trade unions and the “production of self-techniques” to get in touch with the new economic forms. On the basis of an empirical project, different processes of the socialization of leading trade union workers will be analysed to discover the consequences of the lifelong learning discourse. The results show what competences they need to develop for the “wider benefits of negotiations”. The main challenge remains to make visible how deeply intertwined trade union learning and education are with development in an ongoing dynamic economic process, rather than a quick-fix injection of skills and information. There is a complex relationship existing between the three ‘partners’, work, learning and society forming. The author suggests that contemporary trade unions could be trendsetters who make their own learning agendas by drawing less on formal education and more on informal and non-formal learning contexts. This is in parallel with growing political and scientific consciousness of the need to arrive at new educational/vocational policies and practices.

Keywords: Lifelong learning, Trade unions, Non-formal learning, Educational/vocational policies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1231
3692 Self-Reliant and Auto-Directed Learning: Modes, Elements, Fields and Scopes

Authors: H. Mashhady, B. Lotfi, M. Doosti, M. Fatollahi

Abstract:

An exploration of the related literature reveals that all instruction methods aim at training autonomous learners. After the turn of second language pedagogy toward learner-oriented strategies, learners’ needs were more focused. Yet; the historical, social and political aspects of learning were still neglected. The present study investigates the notion of autonomous learning and explains its various facets from a pedagogical point of view. Furthermore; different elements, fields and scopes of autonomous learning will be explored. After exploring different aspects of autonomy, it is postulated that liberatory autonomy is highlighted since it not only covers social autonomy but also reveals learners’ capabilities and human potentials. It is also recommended that learners consider different elements of autonomy such as motivation, knowledge, confidence, and skills.

Keywords: Critical pedagogy, social autonomy, academic learning, cultural notions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
3691 DIFFER: A Propositionalization approach for Learning from Structured Data

Authors: Thashmee Karunaratne, Henrik Böstrom

Abstract:

Logic based methods for learning from structured data is limited w.r.t. handling large search spaces, preventing large-sized substructures from being considered by the resulting classifiers. A novel approach to learning from structured data is introduced that employs a structure transformation method, called finger printing, for addressing these limitations. The method, which generates features corresponding to arbitrarily complex substructures, is implemented in a system, called DIFFER. The method is demonstrated to perform comparably to an existing state-of-art method on some benchmark data sets without requiring restrictions on the search space. Furthermore, learning from the union of features generated by finger printing and the previous method outperforms learning from each individual set of features on all benchmark data sets, demonstrating the benefit of developing complementary, rather than competing, methods for structure classification.

Keywords: Machine learning, Structure classification, Propositionalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
3690 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the KMeans clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: System identification, Nonlinear system, Neural networks, RBF neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864
3689 Prioritizing Service Quality Dimensions: A Neural Network Approach

Authors: A. Golmohammadi, B. Jahandideh

Abstract:

One of the determinants of a firm-s prosperity is the customers- perceived service quality and satisfaction. While service quality is wide in scope, and consists of various dimensions, there may be differences in the relative importance of these dimensions in affecting customers- overall satisfaction of service quality. Identifying the relative rank of different dimensions of service quality is very important in that it can help managers to find out which service dimensions have a greater effect on customers- overall satisfaction. Such an insight will consequently lead to more effective resource allocation which will finally end in higher levels of customer satisfaction. This issue – despite its criticality- has not received enough attention so far. Therefore, using a sample of 240 bank customers in Iran, an artificial neural network is developed to address this gap in the literature. As customers- evaluation of service quality is a subjective process, artificial neural networks –as a brain metaphor- may appear to have a potentiality to model such a complicated process. Proposing a neural network which is able to predict the customers- overall satisfaction of service quality with a promising level of accuracy is the first contribution of this study. In addition, prioritizing the service quality dimensions in affecting customers- overall satisfaction –by using sensitivity analysis of neural network- is the second important finding of this paper.

Keywords: service quality, customer satisfaction, relative importance, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
3688 Study on the Optimization of Completely Batch Water-using Network with Multiple Contaminants Considering Flow Change

Authors: Jian Du, Shui Hong Hong, Lu Meng, Qing Wei Meng

Abstract:

This work addresses the problem of optimizing completely batch water-using network with multiple contaminants where the flow change caused by mass transfer is taken into consideration for the first time. A mathematical technique for optimizing water-using network is proposed based on source-tank-sink superstructure. The task is to obtain the freshwater usage, recycle assignments among water-using units, wastewater discharge and a steady water-using network configuration by following steps. Firstly, operating sequences of water-using units are determined by time constraints. Next, superstructure is simplified by eliminating the reuse and recycle from water-using units with maximum concentration of key contaminants. Then, the non-linear programming model is solved by GAMS (General Algebra Model System) for minimum freshwater usage, maximum water recycle and minimum wastewater discharge. Finally, numbers of operating periods are calculated to acquire the steady network configuration. A case study is solved to illustrate the applicability of the proposed approach.

Keywords: Completely batch process, flow change, multiple contaminants, water-using network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
3687 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand

Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan

Abstract:

This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.

Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3229