Search results for: strength prediction models.
3757 Reducing Variation of Dyeing Process in Textile Manufacturing Industry
Abstract:
This study deals with a multi-criteria optimization problem which has been transformed into a single objective optimization problem using Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Grey Relational Analyses (GRA) approach. Grey-RSM and Grey-ANN are hybrid techniques which can be used for solving multi-criteria optimization problem. There have been two main purposes of this research as follows. 1. To determine optimum and robust fiber dyeing process conditions by using RSM and ANN based on GRA, 2. To obtain the best suitable model by comparing models developed by different methodologies. The design variables for fiber dyeing process in textile are temperature, time, softener, anti-static, material quantity, pH, retarder, and dispergator. The quality characteristics to be evaluated are nominal color consistency of fiber, maximum strength of fiber, minimum color of dyeing solution. GRA-RSM with exact level value, GRA-RSM with interval level value and GRA-ANN models were compared based on GRA output value and MSE (Mean Square Error) performance measurement of outputs with each other. As a result, GRA-ANN with interval value model seems to be suitable reducing the variation of dyeing process for GRA output value of the model.Keywords: Artificial Neural Network, Grey Relational Analysis, Optimization, Response Surface Methodology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35543756 A Study of Gas Metal Arc Welding Affecting Mechanical Properties of Austenitic Stainless Steel AISI 304
Authors: Sittichai K., Santirat N., Sompong., P
Abstract:
The objective of this research was to study influence parameters affecting to mechanical property of austenitic stainless steel grade 304 (AISI 304) with Gas Metal Arc Welding (GMAW). The research was applying factorial design experiment, which have following interested parameters: welding current at 80, 90, and 100 Amps, welding speeds at 250, 300, and 350 mm/min, and shield gas of 75% Ar + 25% CO2, 70% Ar + 25% CO2 + 5% O2 and 69.5% Ar + 25% CO2 + 5% O2 + 0.5% He gas. The study was done in following aspects: ultimate tensile strength and elongation. A research study of ultimate tensile strength found that main factor effect, which had the highest strength to AISI 304 welding was shield gas of 70% Ar + 25% CO2 + 5% O2 at average of 954.81 N/mm2. Result of the highest elongation was showed significantly different at interaction effect between shield gas of 69.5%Ar+25%CO2+5%O2+.5%He and welding speed at 250 mm/min at 47.94%.Keywords: Austenitic Stainless Steel AISI 304/ Mechanical Property/ Welding Gas Shield/ Gas Shield
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18353755 Long-term Flexural Behavior of HSC Beams
Authors: Andreea Muntean, Cornelia Măgureanu
Abstract:
This article presents the analysis of experimental values regarding cracking pattern, specific strains and deformability for reinforced high strength concrete beams. The beams have the concrete class C80/95 and a longitudinal reinforcement ratio of 2.01%, respectively 3.39%. The elements were subjected to flexure under static short-term and long-term loading. The experimental values are compared with calculation values using the design relationships according to Eurocode 2.
Keywords: High strength concrete, beams, flexure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15913754 An Improved Model for Prediction of the Effective Thermal Conductivity of Nanofluids
Authors: K. Abbaspoursani, M. Allahyari, M. Rahmani
Abstract:
Thermal conductivity is an important characteristic of a nanofluid in laminar flow heat transfer. This paper presents an improved model for the prediction of the effective thermal conductivity of nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a function of the thermal conductivity of the solid and liquid, their volume fractions and particle size. The proposed model includes a parameter which accounts for the interfacial shell, brownian motion, and aggregation of particle. The validation of the model is verified by applying the results obtained by the experiments of Tio2-water and Al2o3-water nanofluids.Keywords: Critical particle size, nanofluid, model, and thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20473753 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models
Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar
Abstract:
This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8573752 Applications of Prediction and Identification Using Adaptive DCMAC Neural Networks
Authors: Yu-Lin Liao, Ya-Fu Peng
Abstract:
An adaptive dynamic cerebellar model articulation controller (DCMAC) neural network used for solving the prediction and identification problem is proposed in this paper. The proposed DCMAC has superior capability to the conventional cerebellar model articulation controller (CMAC) neural network in efficient learning mechanism, guaranteed system stability and dynamic response. The recurrent network is embedded in the DCMAC by adding feedback connections in the association memory space so that the DCMAC captures the dynamic response, where the feedback units act as memory elements. The dynamic gradient descent method is adopted to adjust DCMAC parameters on-line. Moreover, the analytical method based on a Lyapunov function is proposed to determine the learning-rates of DCMAC so that the variable optimal learning-rates are derived to achieve most rapid convergence of identifying error. Finally, the adaptive DCMAC is applied in two computer simulations. Simulation results show that accurate identifying response and superior dynamic performance can be obtained because of the powerful on-line learning capability of the proposed DCMAC.Keywords: adaptive, cerebellar model articulation controller, CMAC, prediction, identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14003751 Using Fractional Factorial Designs for Variable Importance in Random Forest Models
Authors: Ewa. M. Sztendur, Neil T. Diamond
Abstract:
Random Forests are a powerful classification technique, consisting of a collection of decision trees. One useful feature of Random Forests is the ability to determine the importance of each variable in predicting the outcome. This is done by permuting each variable and computing the change in prediction accuracy before and after the permutation. This variable importance calculation is similar to a one-factor-at a time experiment and therefore is inefficient. In this paper, we use a regular fractional factorial design to determine which variables to permute. Based on the results of the trials in the experiment, we calculate the individual importance of the variables, with improved precision over the standard method. The method is illustrated with a study of student attrition at Monash University.
Keywords: Random Forests, Variable Importance, Fractional Factorial Designs, Student Attrition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19953750 The Impact of Alumina Cement on Properties of Portland Cement Slurries and Mortars
Authors: Krzysztof Zieliński, Dariusz Kierzek
Abstract:
The addition of a small amount of alumina cement to Portland cement results in immediate setting, a rapid increase in the compressive strength and a clear increase of the adhesion to concrete substrate. This phenomenon is used, among others, for the production of liquid floor self-levelling compounds. Alumina cement is several times more expensive than Portland cement and is a component having a significant impact on prices of products manufactured with its use. For the production of liquid floor self-levelling compounds, low-alumina cement containing approximately 40% Al2O3 is normally used. The aim of the study was to determine the impact of Portland cement with the addition of alumina cement on the basic physical and mechanical properties of cement slurries and mortars. CEM I 42.5R and three types of alumina cement containing 40%, 50% and 70% of Al2O3 were used for the tests. Mixes containing 4%, 6%, 8%, 10% and 12% of different varieties of alumina cement were prepared; for which, the time of initial and final setting, compressive and flexural strength and adhesion to concrete substrate were determined. The analysis of the obtained test results showed that a similar immediate setting effect and clearly better adhesion strength can be obtained using the addition of 6% of high-alumina cement than 12% of low-alumina cement. As the prices of these cements are similar, this can give significant financial savings in the production of liquid floor self-levelling compounds.
Keywords: Alumina cement, immediate setting, compression strength, adhesion to substrate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6533749 Effect of Addition Rate of Expansive Additive on Autogenous Shrinkage and Delayed Expansion of Ultra-High Strength Mortar
Authors: Yulu Zhang, Atushi Teramoto, Taka-Aki Ohkubo
Abstract:
In this study, the effect of expansive additives on autogenous shrinkage and delayed expansion of ultra-high strength mortar was explored. The specimens made for the study were composed of ultra-high strength mortar, which was mixed with ettringite-lime composite type expansive additive. Two series of experiments were conducted with the specimens. The experimental results confirmed that the autogenous shrinkage of specimens was effectively decreased by increasing the proportion of the expansive additive. On the other hand, for the specimens, which had 7% expansive additive, and were cured for seven days at a constant temperature of 20°C, and then cured for a long time in either in an underwater, moist (Relative humidity: 100%) or dry air (Relative humidity: 60%) environment, excessively large expansion strain occurred. Specifically, typical turtle shell-like swelling expansion cracks were confirmed in the specimens that underwent long-term curing in an underwater and moist environment. According to the result of hydration analysis, the formation of expansive substances, calcium hydroxide and alumina, ferric oxide, tri-sulfate contribute to the occurrence of delayed expansion.
Keywords: Ultra-high strength mortar, expansive additive, autogenous shrinkage, delayed expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7553748 Bose-Einstein Condensation in Neutral Many Bosonic System
Authors: M. Al-Sugheir, M. Sakhreya, G. Alna'washi, F. Al-Dweri
Abstract:
In this work, the condensation fraction and transition temperature of neutral many bosonic system are studied within the static fluctuation approximation (SFA). The effect of the potential parameters such as the strength and range on the condensate fraction was investigated. A model potential consisting of a repulsive step potential and an attractive potential well was used. As the potential strength or the core radius of the repulsive part increases, the condensation fraction is found to be decreased at the same temperature. Also, as the potential depth or the range of the attractive part increases, the condensation fraction is found to be increased. The transition temperature is decreased as the potential strength or the core radius of the repulsive part increases, and it increases as the potential depth or the range of the attractive part increases.Keywords: About four key words or phrases in alphabetical order, separated by commas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12053747 The Effects of Shot and Grit Blasting Process Parameters on Steel Pipes Coating Adhesion
Authors: Saeed Khorasanizadeh
Abstract:
Adhesion strength of exterior or interior coating of steel pipes is too important. Increasing of coating adhesion on surfaces can increase the life time of coating, safety factor of transmitting line pipe and decreasing the rate of corrosion and costs. Preparation of steel pipe surfaces before doing the coating process is done by shot and grit blasting. This is a mechanical way to do it. Some effective parameters on that process, are particle size of abrasives, distance to surface, rate of abrasive flow, abrasive physical properties, shapes, selection of abrasive, kind of machine and its power, standard of surface cleanness degree, roughness, time of blasting and weather humidity. This search intended to find some better conditions which improve the surface preparation, adhesion strength and corrosion resistance of coating. So, this paper has studied the effect of varying abrasive flow rate, changing the abrasive particle size, time of surface blasting on steel surface roughness and over blasting on it by using the centrifugal blasting machine. After preparation of numbers of steel samples (according to API 5L X52) and applying epoxy powder coating on them, to compare strength adhesion of coating by Pull-Off test. The results have shown that, increasing the abrasive particles size and flow rate, can increase the steel surface roughness and coating adhesion strength but increasing the blasting time can do surface over blasting and increasing surface temperature and hardness too, change, decreasing steel surface roughness and coating adhesion strength.Keywords: surface preparation, abrasive particles, adhesionstrength
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90753746 Simulation of Reactive Distillation: Comparison of Equilibrium and Nonequilibrium Stage Models
Authors: Asfaw Gezae Daful
Abstract:
In the present study, two distinctly different approaches are followed for modeling of reactive distillation column, the equilibrium stage model and the nonequilibrium stage model. These models are simulated with a computer code developed in the present study using MATLAB programming. In the equilibrium stage models, the vapor and liquid phases are assumed to be in equilibrium and allowance is made for finite reaction rates, where as in the nonequilibrium stage models simultaneous mass transfer and reaction rates are considered. These simulated model results are validated from the experimental data reported in the literature. The simulated results of equilibrium and nonequilibrium models are compared for concentration, temperature and reaction rate profiles in a reactive distillation column for Methyl Tert Butyle Ether (MTBE) production. Both the models show similar trend for the concentration, temperature and reaction rate profiles but the nonequilibrium model predictions are higher and closer to the experimental values reported in the literature.
Keywords: Reactive Distillation, Equilibrium model, Nonequilibrium model, Methyl Tert-Butyl Ether
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42033745 Interaction Effect of Feed Rate and Cutting Speed in CNC-Turning on Chip Micro-Hardness of 304- Austenitic Stainless Steel
Authors: G. H. Senussi
Abstract:
The present work is concerned with the effect of turning process parameters (cutting speed, feed rate, and depth of cut) and distance from the center of work piece as input variables on the chip micro-hardness as response or output. Three experiments were conducted; they were used to investigate the chip micro-hardness behavior at diameter of work piece for 30[mm], 40[mm], and 50[mm]. Response surface methodology (R.S.M) is used to determine and present the cause and effect of the relationship between true mean response and input control variables influencing the response as a two or three dimensional hyper surface. R.S.M has been used for designing a three factor with five level central composite rotatable factors design in order to construct statistical models capable of accurate prediction of responses. The results obtained showed that the application of R.S.M can predict the effect of machining parameters on chip micro-hardness. The five level factorial designs can be employed easily for developing statistical models to predict chip micro-hardness by controllable machining parameters. Results obtained showed that the combined effect of cutting speed at it?s lower level, feed rate and depth of cut at their higher values, and larger work piece diameter can result increasing chi micro-hardness.Keywords: Machining Parameters, Chip Micro-Hardness, CNCMachining, 304-Austenic Stainless Steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32833744 Homogeneity of Microstructure and Mechanical Properties in Horizontal Continuous Cast Billet
Authors: V. Arbabi , I. Ebrahimzadeh, H. Ghanbari, M.M. Kaykha
Abstract:
Horizontal continuous casting is widely used to produce semi-finished non-Ferrous products. Homogeneity in the metallurgical characteristics and mechanical properties for this product is vital for industrial application. In the present work, the microstructure and mechanical properties of a horizontal continuous cast two-phase brass billet have been studied. Impact strength and hardness variations were examined and the phase composition and porosity studied with image analysis software. Distinct differences in mechanical properties were observed between the upper, middle and lower parts of the billet, which are explained in terms of the morphology and size of the phase in the microstructure. Hardness variation in the length of billet is higher in upper area but impact strength is higher in lower areas.Keywords: Horizontal Continuous Casting, Two-phase brasses, CuZn40Al1 alloy, Microstructure, Impact Strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21813743 Combination of Tensile Strength and Elongation of Reverse Rolled TaNbHfZrTi Refractory High Entropy Alloy
Authors: M. Veerasham
Abstract:
The refractory high entropy alloys are potential materials for high-temperature applications because of their ability to retain high strength up to 1600°C. However, their practical applications were limited due to poor elongation at room temperature. Therefore, decreasing the average valence electron concentrations (VEC) is an effective design strategy to improve the intrinsic ductility of refractory high entropy alloys. In this work, the high-entropy alloy TaNbHfZrTi was processed at room temperature by each step reverse rolling up to a 90% reduction in thickness. Subsequently, the reverse rolled 90% samples were utilized for annealing treatment at 800°C and 1000°C for 1 h to understand phase stability, microstructure, texture, and mechanical properties. The reverse rolled 90% condition contains body-centered cubic (BCC) single-phase; upon annealing at 800 °C, the formation of secondary phase BCC-2 prevailed. The partial recrystallization and complete recrystallization microstructures were developed for annealed at 800°C and 1000°C, respectively. The reverse rolled condition and 1000°C annealed temperature exhibit extraordinary room temperature tensile properties with high ultimate tensile strength (UTS) without compromising loss of ductility called “strength-ductility” trade-off. The reverse-rolled 90% and annealing treatment carried out at temperature about 1000°C for 1 h consist of UTS 1430 MPa and 1556 MPa with an appreciable amount of 21% and 20% elongation, respectively. The development of hierarchical microstructure prevailed for the annealed 1000°C which led to the simultaneous increase in tensile strength and elongation.
Keywords: refractory high entropy alloys, reverse rolling, recrystallization, microstructure, tensile properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5433742 Mathematical Rescheduling Models for Railway Services
Authors: Zuraida Alwadood, Adibah Shuib, Norlida Abd Hamid
Abstract:
This paper presents the review of past studies concerning mathematical models for rescheduling passenger railway services, as part of delay management in the occurrence of railway disruption. Many past mathematical models highlighted were aimed at minimizing the service delays experienced by passengers during service disruptions. Integer programming (IP) and mixed-integer programming (MIP) models are critically discussed, focusing on the model approach, decision variables, sets and parameters. Some of them have been tested on real-life data of railway companies worldwide, while a few have been validated on fictive data. Based on selected literatures on train rescheduling, this paper is able to assist researchers in the model formulation by providing comprehensive analyses towards the model building. These analyses would be able to help in the development of new approaches in rescheduling strategies or perhaps to enhance the existing rescheduling models and make them more powerful or more applicable with shorter computing time.
Keywords: Mathematical modelling, Mixed-integer programming, Railway rescheduling, Service delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32503741 Adverse Curing Conditions and Performance of Concrete: Bangladesh Perspective
Authors: T. Manzur
Abstract:
Concrete is the predominant construction material in Bangladesh. In large projects, stringent quality control procedures are usually followed under the supervision of experienced engineers and skilled labors. However, in the case of small projects and particularly at distant locations from major cities, proper quality control is often an issue. It has been found from experience that such quality related issues mainly arise from inappropriate proportioning of concrete mixes and improper curing conditions. In most cases external curing method is followed which requires supply of adequate quantity of water along with proper protection against evaporation. Often these conditions are found missing in the general construction sites and eventually lead to production of weaker concrete both in terms of strength and durability. In this study, an attempt has been made to investigate the performance of general concreting works of the country when subjected to several adverse curing conditions that are quite common in various small to medium construction sites. A total of six different types of adverse curing conditions were simulated in the laboratory and samples were kept under those conditions for several days. A set of samples was also submerged in normal curing condition having proper supply of curing water. Performance of concrete was evaluated in terms of compressive strength, tensile strength, chloride permeability and drying shrinkage. About 37% and 25% reduction in 28-day compressive and tensile strength were observed respectively, for samples subjected to most adverse curing condition as compared to the samples under normal curing conditions. Normal curing concrete exhibited moderate permeability (close to low permeability) whereas concrete under adverse curing conditions showed very high permeability values. Similar results were also obtained for shrinkage tests. This study, thus, will assist concerned engineers and supervisors to understand the importance of quality assurance during the curing period of concrete.
Keywords: Adverse, concrete, curing, compressive strength, drying shrinkage, permeability, tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10603740 The Classification Model for Hard Disk Drive Functional Tests under Sparse Data Conditions
Authors: S. Pattanapairoj, D. Chetchotsak
Abstract:
This paper proposed classification models that would be used as a proxy for hard disk drive (HDD) functional test equitant which required approximately more than two weeks to perform the HDD status classification in either “Pass" or “Fail". These models were constructed by using committee network which consisted of a number of single neural networks. This paper also included the method to solve the problem of sparseness data in failed part, which was called “enforce learning method". Our results reveal that the constructed classification models with the proposed method could perform well in the sparse data conditions and thus the models, which used a few seconds for HDD classification, could be used to substitute the HDD functional tests.Keywords: Sparse data, Classifications, Committee network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17353739 Polymorphic Marker Designed from Bioinformatics Sequences Related to Cell Wall Strength for Discrimination of Mangosteen (Garcinia mangostana L.) Clones Resistant to Gamboge Disorder
Authors: E. Mansyah, Sobir, E. Santosa, A. Sisharmini, Sulassih
Abstract:
Gamboge disorder (GD) or fruit damage by the yellow sap is a major problem in mangosteen. Mangosteen plants varied in the level of GD, from very low or non GD to low, moderate and high GD. However it was difficult to differentiate between GD and non GD plants because evaluation of the disorder is strongly influenced by environment. In this study we investigated the usefulness of primer designed from bioinformatics related to cell wall strength, termed as MCWS, to predict GD. Plant materials used were 28 mangosteen plants selected based on percentage of GD categorized as high, moderate, low and very low or non GD. The result showed that the specific DNA fragments were absent in the high GD accessions. The MCWS marker suggests as a novel polymorphic marker for GD in mangosteen as well as a marker for detect variability in mangosteen as apomictic plant.
Keywords: Bioinformatics, cell wall strength, gamboge disorder, mangosteen, polymorphic marker.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24233738 Microstructure, Mechanical, Electrical and Thermal Properties of the Al-Si-Ni Ternary Alloy
Authors: Aynur Aker, Hasan Kaya
Abstract:
In recent years, the use of the aluminum based alloys in the industry and technology are increasing. Alloying elements in aluminum have further been improving the strength and stiffness properties that provide superior compared to other metals. In this study, investigation of physical properties (microstructure, microhardness, tensile strength, electrical conductivity and thermal properties) in the Al-12.6wt.%Si-%2wt.Ni ternary alloy were investigated. Al-Si-Ni alloy was prepared in vacuum atmosphere. The samples were directionally solidified upwards with different growth rate V (8.3−165.45 μm/s) at constant temperature gradient G (7.73 K/mm). The flake spacings (λ), microhardness (HV), ultimate tensile strength (σ), electrical resistivity (ρ) and thermal properties (H, Cp, Tm) of the samples were measured. Influence of the growth rate and spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and relationships between them were obtained. According to results, λ values decrease with increasing V, but HV, σ and ρ values increase with increasing V. Variations of electrical resistivity (ρ) of solidified samples were also measured. The enthalpy of fusion (H) and specific heat (Cp) for the alloy was also determined by differential scanning calorimeter (DSC) from heating trace during the transformation from liquid to solid. The results in this work were compared with the previous similar experimental results.Keywords: Electrical resistivity, enthalpy, microhardness, solidification, tensile stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20243737 Evaluation of Static Modulus of Elasticity Depending on Concrete Compressive Strength
Authors: K. Krizova, R. Hela
Abstract:
The paper is focused on monitoring of dependencies of different composition concretes on elastic modulus values. To obtain a summary of elastic modulus development in dependence of concrete composition design variability was the objective of the experiment. Essential part of this work was initiated as a reaction to building practice when questions of elastic moduli arose at the same time and which mostly did not obtain the required and expected values from concrete constructions.Keywords: Concrete, Compressive strength, Modulus of elasticity, EuroCode 2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28523736 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models
Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand
Abstract:
Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models, on two different real-world electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.
Keywords: EHR, Machine Learning, imputation, laboratory variables, algorithmic bias.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693735 Prediction of Basic Wind Speed for Ayeyarwady
Authors: Chaw Su Mon
Abstract:
Abstract— The paper presents a preliminary study on modeling and estimation of basic wind speed ( extreme wind gusts ) for the consideration of vulnerability and design of building in Ayeyarwady Region. The establishment of appropriate design wind speeds is a critical step towards the calculation of design wind loads for structures. In this paper the extreme value analysis of this prediction work is based on the anemometer data (1970-2009) maintained by the department of meteorology and hydrology of Pathein. Statistical and probabilistic approaches are used to derive formulas for estimating 3-second gusts from recorded data (10-minute sustained mean wind speeds).
Keywords: Basic Wind Speed, Building, Gusts, Statistical and probabilistic approaches
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12783734 FEM Study of Different Methods of Fiber Reinforcement Polymer Strengthening of a High Strength Concrete Beam-Column Connection
Authors: Talebi Aliasghar, Ebrahimpour Komeleh Hooman, Maghsoudi Ali Akbar
Abstract:
In reinforced concrete (RC) structures, beam-column connection region has a considerable effect on the behavior of structures. Using fiber reinforcement polymer (FRP) for the strengthening of connections in RC structures can be one of the solutions to retrofitting this zone which result in the enhanced behavior of structure. In this paper, these changes in behavior by using FRP for high strength concrete beam-column connection have been studied by finite element modeling. The concrete damage plasticity (CDP) model has been used to analyze the RC. The results illustrated a considerable development in load-bearing capacity but also a noticeable reduction in ductility. The study also assesses these qualities for several modes of strengthening and suggests the most effective mode of strengthening. Using FRP in flexural zone and FRP with 45-degree oriented fibers in shear zone of joint showed the most significant change in behavior.
Keywords: High strength concrete, beam-column connection, FRP, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8203733 Strength of Fine Concrete Used in Textile Reinforced Concrete by Changing Water-Binder Ratio
Authors: Taekyun Kim, Jongho Park, Jinwoong Choi, Sun-Kyu Park
Abstract:
Recently, the abnormal climate phenomenon has enlarged due to the global warming. As a result, temperature variation is increasing and the term is being prolonged, frequency of high and low temperature is increasing by heat wave and severe cold. Especially for reinforced concrete structure, the corrosion of reinforcement has occurred by concrete crack due to temperature change and the durability of the structure that has decreased by concrete crack. Accordingly, the textile reinforced concrete (TRC) which does not corrode due to using textile is getting the interest and the investigation of TRC is proceeding. The study of TRC structure behavior has proceeded, but the characteristic study of the concrete used in TRC is insufficient. Therefore, characteristic of the concrete by changing mixing ratio is studied in this paper. As a result, mixing ratio with different water-binder ratio has influenced to the strength of concrete. Also, as the water-binder ratio has decreased, strength of concrete has increased.
Keywords: Concrete, mixing ratio, textile, TRC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20133732 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches
Authors: H. Bonakdari, I. Ebtehaj
Abstract:
The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.
Keywords: Adaptive neuro-fuzzy inference system, ANFIS, artificial neural network, ANN, bridge pier, scour depth, nonlinear regression, NLR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9293731 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe
Authors: Vipul M. Patel, Hemantkumar B. Mehta
Abstract:
Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.
Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11833730 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28833729 Introducing Sequence-Order Constraint into Prediction of Protein Binding Sites with Automatically Extracted Templates
Authors: Yi-Zhong Weng, Chien-Kang Huang, Yu-Feng Huang, Chi-Yuan Yu, Darby Tien-Hao Chang
Abstract:
Search for a tertiary substructure that geometrically matches the 3D pattern of the binding site of a well-studied protein provides a solution to predict protein functions. In our previous work, a web server has been built to predict protein-ligand binding sites based on automatically extracted templates. However, a drawback of such templates is that the web server was prone to resulting in many false positive matches. In this study, we present a sequence-order constraint to reduce the false positive matches of using automatically extracted templates to predict protein-ligand binding sites. The binding site predictor comprises i) an automatically constructed template library and ii) a local structure alignment algorithm for querying the library. The sequence-order constraint is employed to identify the inconsistency between the local regions of the query protein and the templates. Experimental results reveal that the sequence-order constraint can largely reduce the false positive matches and is effective for template-based binding site prediction.Keywords: Protein structure, binding site, functional prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14603728 Transformation Method CIM to PIM: From Business Processes Models Defined in BPMN to Use Case and Class Models Defined in UML
Authors: Y. Rhazali, Y. Hadi, A. Mouloudi
Abstract:
This paper proposes a method to automatic transformation of CIM level to PIM level respecting the MDA approach. Our proposal is based on creating a good CIM level through well-defined rules allowing as achieving rich models that contain relevant information to facilitate the task of the transformation to the PIM level. We define, thereafter, an appropriate PIM level through various UML diagram. Next, we propose set rules to move from CIM to PIM. Our method follows the MDA approach by considering the business dimension in the CIM level through the use BPMN, standard modeling business of OMG, and the use of UML in PIM advocated by MDA in this level.
Keywords: Model transformation, MDA, CIM, PIM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3672