Search results for: sexual and gender based violence.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11588

Search results for: sexual and gender based violence.

10898 An Interval-Based Multi-Attribute Decision Making Approach for Electric Utility Resource Planning

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

This paper presents an interval-based multi-attribute decision making (MADM) approach in support of the decision process with imprecise information. The proposed decision methodology is based on the model of linear additive utility function but extends the problem formulation with the measure of composite utility variance. A sample study concerning with the evaluation of electric generation expansion strategies is provided showing how the imprecise data may affect the choice toward the best solution and how a set of alternatives, acceptable to the decision maker (DM), may be identified with certain confidence.

Keywords: Decision Making, Power Generation, ElectricUtilities, Resource Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
10897 Cognitive Landscape of Values – Understanding the Information Contents of Mental Representations

Authors: J. Maksimainen

Abstract:

The values of managers and employees in organizations are phenomena that have captured the interest of researchers at large. Despite this attention, there continues to be a lack of agreement on what values are and how they influence individuals, or how they are constituted in individuals- mind. In this article content-based approach is presented as alternative reference frame for exploring values. In content-based approach human thinking in different contexts is set at the focal point. Differences in valuations can be explained through the information contents of mental representations. In addition to the information contents, attention is devoted to those cognitive processes through which mental representations of values are constructed. Such informational contents are in decisive role for understanding human behavior. By applying content-based analysis to an examination of values as mental representations, it is possible to reach a deeper to the motivational foundation of behaviors, such as decision making in organizational procedures, through understanding the structure and meanings of specific values at play.

Keywords: Content-based Approach, Mental Content, Mental Representations, Organizational values, Values

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
10896 A Fast Object Detection Method with Rotation Invariant Features

Authors: Zilong He, Yuesheng Zhu

Abstract:

Based on the combined shape feature and texture feature, a fast object detection method with rotation invariant features is proposed in this paper. A quick template matching scheme based online learning designed for online applications is also introduced in this paper. The experimental results have shown that the proposed approach has the features of lower computation complexity and higher detection rate, while keeping almost the same performance compared to the HOG-based method, and can be more suitable for run time applications.

Keywords: gradient feature, online learning, rotationinvariance, template feature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2476
10895 Comparison of Parameterization Methods in Recognizing Spoken Arabic Digits

Authors: Ali Ganoun

Abstract:

This paper proposes evaluation of sound parameterization methods in recognizing some spoken Arabic words, namely digits from zero to nine. Each isolated spoken word is represented by a single template based on a specific recognition feature, and the recognition is based on the Euclidean distance from those templates. The performance analysis of recognition is based on four parameterization features: the Burg Spectrum Analysis, the Walsh Spectrum Analysis, the Thomson Multitaper Spectrum Analysis and the Mel Frequency Cepstral Coefficients (MFCC) features. The main aim of this paper was to compare, analyze, and discuss the outcomes of spoken Arabic digits recognition systems based on the selected recognition features. The results acqired confirm that the use of MFCC features is a very promising method in recognizing Spoken Arabic digits.

Keywords: Speech Recognition, Spectrum Analysis, Burg Spectrum, Walsh Spectrum Analysis, Thomson Multitaper Spectrum, MFCC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
10894 Green Building Materials: Hemp Oil Based Biocomposites

Authors: Nathan W. Manthey, Francisco Cardona, Gaston M. Francucci, Thiru Aravinthan

Abstract:

Novel acrylated epoxidized hemp oil (AEHO) based bioresins were successfully synthesised, characterized and applied to biocomposites reinforced with woven jute fibre. Characterisation of the synthesised AEHO consisted of acid number titrations and FTIR spectroscopy to assess the success of the acrylation reaction. Three different matrices were produced (vinylester (VE), 50/50 blend of AEHO/VE and 100% AEHO) and reinforced with jute fibre to form three different types of biocomposite samples. Mechanical properties in the form of flexural and interlaminar shear strength (ILSS) were investigated and compared for the different samples. Results from the mechanical tests showed that AEHO and 50/50 based neat bioresins displayed lower flexural properties compared with the VE samples. However when applied to biocomposites and compared with VE based samples, AEHO biocomposites demonstrated comparable flexural performance and improved ILSS. These results are attributed to improved fibre-matrix interfacial adhesion due to surface-chemical compatibility between the natural fibres and bioresin.

Keywords: Biocomposite, hemp oil based bioresin, green building materials, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3471
10893 Sensor Monitoring of the Concentrations of Different Gases Present in Synthesis of Ammonia Based On Multi-Scale Entropy and Multivariate Statistics

Authors: S. Aouabdi, M. Taibi

Abstract:

This paper presents powerful techniques for the development of a new monitoring method based on multi-scale entropy (MSE) in order to characterize the behaviour of the concentrations of different gases present in the synthesis of Ammonia and soft-sensor based on Principal Component Analysis (PCA).

Keywords: Ammonia synthesis, concentrations of different gases, soft sensor, multi-scale entropy, multivariate statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145
10892 Recursive Algorithms for Image Segmentation Based on a Discriminant Criterion

Authors: Bing-Fei Wu, Yen-Lin Chen, Chung-Cheng Chiu

Abstract:

In this study, a new criterion for determining the number of classes an image should be segmented is proposed. This criterion is based on discriminant analysis for measuring the separability among the segmented classes of pixels. Based on the new discriminant criterion, two algorithms for recursively segmenting the image into determined number of classes are proposed. The proposed methods can automatically and correctly segment objects with various illuminations into separated images for further processing. Experiments on the extraction of text strings from complex document images demonstrate the effectiveness of the proposed methods.1

Keywords: image segmentation, multilevel thresholding, clustering, discriminant analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
10891 Complementary Energy Path Adiabatic Logic based Full Adder Circuit

Authors: Shipra Upadhyay , R. K. Nagaria, R. A. Mishra

Abstract:

In this paper, we present the design and experimental evaluation of complementary energy path adiabatic logic (CEPAL) based 1 bit full adder circuit. A simulative investigation on the proposed full adder has been done using VIRTUOSO SPECTRE simulator of cadence in 0.18μm UMC technology and its performance has been compared with the conventional CMOS full adder circuit. The CEPAL based full adder circuit exhibits the energy saving of 70% to the conventional CMOS full adder circuit, at 100 MHz frequency and 1.8V operating voltage.

Keywords: Adiabatic, CEPAL, full adder, power clock

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443
10890 Efficient Frontier - Comparing Different Volatility Estimators

Authors: Tea Poklepović, Zdravka Aljinović, Mario Matković

Abstract:

Modern Portfolio Theory (MPT) according to Markowitz states that investors form mean-variance efficient portfolios which maximizes their utility. Markowitz proposed the standard deviation as a simple measure for portfolio risk and the lower semi-variance as the only risk measure of interest to rational investors. This paper uses a third volatility estimator based on intraday data and compares three efficient frontiers on the Croatian Stock Market. The results show that range-based volatility estimator outperforms both mean-variance and lower semi-variance model.

Keywords: Variance, lower semi-variance, range-based volatility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
10889 Measuring the Development Level of Chinese Regional Service Industry: An Empirical Analysis based on Entropy Weight and TOPSIS

Authors: Nan Li, Ying Wang

Abstract:

Using entropy weight and TOPSIS method, a comprehensive evaluation is done on the development level of Chinese regional service industry in this paper. Firstly, based on existing research results, an evaluation index system is constructed from the scale of development, the industrial structure and the economic benefits. An evaluation model is then built up based on entropy weight and TOPSIS, and an empirical analysis is conducted on the development level of service industries in 31 Chinese provinces during 2006 and 2009 from the two dimensions or time series and cross section, which provides new idea for assessing regional service industry. Furthermore, the 31 provinces are classified into four categories based on the evaluation results, and deep analysis is carried out on the evaluation results.

Keywords: Chinese regional service industry, Development level, Entropy weight, TOPSIS Evaluation Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
10888 Knowledge Management Model for Modern Retail Business: A Conceptual Framework

Authors: M. W. Yip, H. H. Ng, S. Din, N. Abu Bakar

Abstract:

This paper reviewed the relationships between the Knowledge Management (KM) activities and its perceived benefits in the knowledge based organisations. KM activities include: knowledge identification, knowledge acquisition, knowledge application, knowledge sharing, knowledge creation and knowledge preservation. And the perceived benefits of KM are fast customer responsiveness, operation excellence and high innovative intensity.  Based on the above review, a conceptual framework for KM implementation in retail business organisations has been proposed. Finally the paper forwarded some limitations of the framework and based on which, directions for future research had been suggested.

Keywords: Knowledge Management, Knowledge Management Activities, Retail Business, Knowledge Economy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4848
10887 Examining the Performance of Three Multiobjective Evolutionary Algorithms Based on Benchmarking Problems

Authors: Konstantinos Metaxiotis, Konstantinos Liagkouras

Abstract:

The objective of this study is to examine the performance of three well-known multiobjective evolutionary algorithms for solving optimization problems. The first algorithm is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the third one is the Multiobjective Evolutionary Algorithms based on decomposition (MOEA/D). The examined multiobjective algorithms are analyzed and tested on the ZDT set of test functions by three performance metrics. The results indicate that the NSGA-II performs better than the other two algorithms based on three performance metrics.

Keywords: MOEAs, Multiobjective optimization, ZDT test functions, performance metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 950
10886 Data Mining Using Learning Automata

Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri

Abstract:

In this paper a data miner based on the learning automata is proposed and is called LA-miner. The LA-miner extracts classification rules from data sets automatically. The proposed algorithm is established based on the function optimization using learning automata. The experimental results on three benchmarks indicate that the performance of the proposed LA-miner is comparable with (sometimes better than) the Ant-miner (a data miner algorithm based on the Ant Colony optimization algorithm) and CNZ (a well-known data mining algorithm for classification).

Keywords: Data mining, Learning automata, Classification rules, Knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
10885 Efficient Web Usage Mining Based on K-Medoids Clustering Technique

Authors: P. Sengottuvelan, T. Gopalakrishnan

Abstract:

Web Usage Mining is the application of data mining techniques to find usage patterns from web log data, so as to grasp required patterns and serve the requirements of Web-based applications. User’s expertise on the internet may be improved by minimizing user’s web access latency. This may be done by predicting the future search page earlier and the same may be prefetched and cached. Therefore, to enhance the standard of web services, it is needed topic to research the user web navigation behavior. Analysis of user’s web navigation behavior is achieved through modeling web navigation history. We propose this technique which cluster’s the user sessions, based on the K-medoids technique.

Keywords: Clustering, K-medoids, Recommendation, User Session, Web Usage Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
10884 Small Signal Stability Assessment Employing PSO Based TCSC Controller with Comparison to GA Based Design

Authors: D. Mondal, A. Chakrabarti, A. Sengupta

Abstract:

This paper aims to select the optimal location and setting parameters of TCSC (Thyristor Controlled Series Compensator) controller using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) to mitigate small signal oscillations in a multimachine power system. Though Power System Stabilizers (PSSs) are prime choice in this issue, installation of FACTS device has been suggested here in order to achieve appreciable damping of system oscillations. However, performance of any FACTS devices highly depends upon its parameters and suitable location in the power network. In this paper PSO as well as GA based techniques are used separately and compared their performances to investigate this problem. The results of small signal stability analysis have been represented employing eigenvalue as well as time domain response in face of two common power system disturbances e.g., varying load and transmission line outage. It has been revealed that the PSO based TCSC controller is more effective than GA based controller even during critical loading condition.

Keywords: Genetic Algorithm, Particle Swarm Optimization, Small Signal Stability, Thyristor Controlled Series Compensator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
10883 Characterization of an Almond Shell Composite Based on PHBH

Authors: J. Ivorra-Martinez, L. Quiles-Carrillo, J. Gomez-Caturla, T. Boronat, R. Balart

Abstract:

The utilization of almond crop by-products to obtain Poly(3-hydroxybutyrat-co-3-hydroxyhexanoat) (PHBH)-based composites was carried out by using an extrusion process followed by an injection to obtain test samples. To improve the properties of the resulting composite, the incorporation of Oligomer Lactic Acid (OLA 8) as a coupling agent and plasticizer was additionally considered. A characterization process was carried out by the measurement of mechanical properties, thermal properties, surface morphology, and water absorption ability. The use of the almond residue allows obtaining composites based on PHBH with a higher environmental interest and lower cost.

Keywords: Almond shell, PHBH, composite, polymer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 394
10882 A Four-Year Study of Thyroid Carcinoma in Hail Region: Increased Incidence

Authors: Laila Seada, Hanan Oreiby, Fawaz Al Rashid, Ashraf Negm

Abstract:

Background and Objective: In most areas of the world, the incidence of thyroid cancer has been increasing over the last decade, mostly due to a combination of early detection of the neoplasm resulting from sensitive procedures and increased population exposure to radiation and unrecognized carcinogens. Methods: Cases of thyroid cancer have been retrieved from the cancer registry at King Khalid Hospital during the period from August 2012 to April 2016. Age, gender and histopathologic types have been recorded. Results: Thyroid carcinoma ranked as the second most common malignancy in females (25%) after breast cancer (31%). It constituted 20.8% of all newly diagnosed cancer cases. As for males, it ranked the 4th type of malignancy after gastrointestinal cancer, lymphomas and soft tissue sarcomas. Mean age for females and males was 38.7 +/- 13.2 and 60.25 +/- 11.5 years, respectively, and the difference between the two groups was statistically significant (p value = 0.0001). Fifty-five (82%) were papillary carcinomas including 10 follicular variant of papillary (FVPC), and eight papillary micro carcinomas (PMC) and two tall cell/oncocytic variants. Follicular carcinomas constituted two (3.1%), while two (3.1%) were anaplastic, and two (3.1%) were medullary. Conclusion: Thyroid cancer incidence in Hail is ranking as the 2nd most common female malignancy similar to other regions in the Kingdom. However, this high incidence contrasts with much lower rates worldwide.

Keywords: Thyroid, Hail, papillary, micro carcinoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179
10881 Genetic Algorithm Based Design of Fuzzy Logic Power System Stabilizers in Multimachine Power System

Authors: Manisha Dubey, Aalok Dubey

Abstract:

This paper presents an approach for the design of fuzzy logic power system stabilizers using genetic algorithms. In the proposed fuzzy expert system, speed deviation and its derivative have been selected as fuzzy inputs. In this approach the parameters of the fuzzy logic controllers have been tuned using genetic algorithm. Incorporation of GA in the design of fuzzy logic power system stabilizer will add an intelligent dimension to the stabilizer and significantly reduces computational time in the design process. It is shown in this paper that the system dynamic performance can be improved significantly by incorporating a genetic-based searching mechanism. To demonstrate the robustness of the genetic based fuzzy logic power system stabilizer (GFLPSS), simulation studies on multimachine system subjected to small perturbation and three-phase fault have been carried out. Simulation results show the superiority and robustness of GA based power system stabilizer as compare to conventionally tuned controller to enhance system dynamic performance over a wide range of operating conditions.

Keywords: Dynamic stability, Fuzzy logic power systemstabilizer, Genetic Algorithms, Genetic based power systemstabilizer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2735
10880 Predictive Analytics of Student Performance Determinants in Education

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: Student performance, supervised machine learning, prediction, classification, cross-validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 547
10879 Ontology-Based Systemizing of the Science Information Devoted to Waste Utilizing by Methanogenesis

Authors: Ye. Shapovalov, V. Shapovalov, O. Stryzhak, A. Salyuk

Abstract:

Over the past decades, amount of scientific information has been growing exponentially. It became more complicated to process and systemize this amount of data. The approach to systematization of scientific information on the production of biogas based on the ontological IT platform “T.O.D.O.S.” has been developed. It has been proposed to select semantic characteristics of each work for their further introduction into the IT platform “T.O.D.O.S.”. An ontological graph with a ranking function for previous scientific research and for a system of selection of microorganisms has been worked out. These systems provide high performance of information management of scientific information.

Keywords: Ontology-based analysis, analysis of scientific data, methanogenesys, microorganism hierarchy, T.O.D.O.S.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
10878 Quantification of Technology Innovation Usinga Risk-Based Framework

Authors: Gerard E. Sleefe

Abstract:

There is significant interest in achieving technology innovation through new product development activities. It is recognized, however, that traditional project management practices focused only on performance, cost, and schedule attributes, can often lead to risk mitigation strategies that limit new technology innovation. In this paper, a new approach is proposed for formally managing and quantifying technology innovation. This approach uses a risk-based framework that simultaneously optimizes innovation attributes along with traditional project management and system engineering attributes. To demonstrate the efficacy of the new riskbased approach, a comprehensive product development experiment was conducted. This experiment simultaneously managed the innovation risks and the product delivery risks through the proposed risk-based framework. Quantitative metrics for technology innovation were tracked and the experimental results indicate that the risk-based approach can simultaneously achieve both project deliverable and innovation objectives.

Keywords: innovation, risk assessment, product development, technology management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
10877 ECG Based Reliable User Identification Using Deep Learning

Authors: R. N. Begum, Ambalika Sharma, G. K. Singh

Abstract:

Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and electrocardiogram (ECG)-based systems are unquestionably the best choice due to their appealing inherent characteristics. The Convolutional Neural Networks (CNNs) are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the caliber of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest False Acceptance Rate (FAR)  of 0.04% and the highest False Rejection Rate (FRR)  of 5%, the best performing network achieved an identification accuracy of 99.94%. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable, but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.

Keywords: Biometrics, dense networks, identification rate, train/test split ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 540
10876 Event Template Generation for News Articles

Authors: A. Kowcika, E. Umamaheswari, T.V. Geetha

Abstract:

In this paper we focus on event extraction from Tamil news article. This system utilizes a scoring scheme for extracting and grouping event-specific sentences. Using this scoring scheme eventspecific clustering is performed for multiple documents. Events are extracted from each document using a scoring scheme based on feature score and condition score. Similarly event specific sentences are clustered from multiple documents using this scoring scheme. The proposed system builds the Event Template based on user specified query. The templates are filled with event specific details like person, location and timeline extracted from the formed clusters. The proposed system applies these methodologies for Tamil news articles that have been enconverted into UNL graphs using a Tamil to UNL-enconverter. The main intention of this work is to generate an event based template.

Keywords: Event Extraction, Score based Clustering, Segmentation, Template Generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
10875 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning

Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan

Abstract:

We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.

Keywords: Daily activity recognition, healthcare, IoT sensors, transfer learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 891
10874 Play in College: Shifting Perspectives and Creative Problem-Based Play

Authors: Agni Stylianou-Georgiou, Eliza Pitri

Abstract:

This study is a design narrative that discusses researchers’ new learning based on changes made in pedagogies and learning opportunities in the context of a Cognitive Psychology and an Art History undergraduate course. The purpose of this study was to investigate how to encourage creative problem-based play in tertiary education engaging instructors and student-teachers in designing educational games. Course instructors modified content to encourage flexible thinking during game design problem-solving. Qualitative analyses of data sources indicated that Thinking Birds’ questions could encourage flexible thinking as instructors engaged in creative problem-based play. However, student-teachers demonstrated weakness in adopting flexible thinking during game design problem solving. Further studies of student-teachers’ shifting perspectives during different instructional design tasks would provide insights for developing the Thinking Birds’ questions as tools for creative problem solving.

Keywords: Creative problem-based play, educational games, flexible thinking, tertiary education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883
10873 CMOS-Compatible Plasmonic Nanocircuits for On-Chip Integration

Authors: Shiyang Zhu, G. Q. Lo, D. L. Kwong

Abstract:

Silicon photonics is merging as a unified platform for driving photonic based telecommunications and for local photonic based interconnect but it suffers from large footprint as compared with the nanoelectronics. Plasmonics is an attractive alternative for nanophotonics. In this work, two CMOS compatible plasmonic waveguide platforms are compared. One is the horizontal metal-insulator-Si-insulator-metal nanoplasmonic waveguide and the other is metal-insulator-Si hybrid plasmonic waveguide. Various passive and active photonic devices have been experimentally demonstrated based on these two plasmonic waveguide platforms.

Keywords: Plasmonics, on-chip integration, Silicon photonics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
10872 The Mechanism Underlying Empathy-Related Helping Behavior: An Investigation of Empathy-Attitude- Action Model

Authors: Wan-Ting Liao, Angela K. Tzeng

Abstract:

Empathy has been an important issue in psychology, education, as well as cognitive neuroscience. Empathy has two major components: cognitive and emotional. Cognitive component refers to the ability to understand others’ perspectives, thoughts, and actions, whereas emotional component refers to understand how others feel. Empathy can be induced, attitude can then be changed, and with enough attitude change, helping behavior can occur. This finding leads us to two questions: is attitude change really necessary for prosocial behavior? And, what roles cognitive and affective empathy play? For the second question, participants with different psychopathic personality (PP) traits are critical because high PP people were found to suffer only affective empathy deficit. Their cognitive empathy shows no significant difference from the control group. 132 college students voluntarily participated in the current three-stage study. Stage 1 was to collect basic information including Interpersonal Reactivity Index (IRI), Psychopathic Personality Inventory-Revised (PPI-R), Attitude Scale, Visual Analogue Scale (VAS), and demographic data. Stage two was for empathy induction with three controversial scenarios, namely domestic violence, depression with a suicide attempt, and an ex-offender. Participants read all three stories and then rewrite the stories by one of two perspectives (empathetic vs. objective). They would then complete the VAS and Attitude Scale one more time for their post-attitude and emotional status. Three IVs were introduced for data analysis: PP (High vs. Low), Responsibility (whether or not the character is responsible for what happened), and Perspective-taking (Empathic vs. Objective). Stage 3 was for the action. Participants were instructed to freely use the 17 tokens they received as donations. They were debriefed and interviewed at the end of the experiment. The major findings were people with higher empathy tend to take more action in helping. Attitude change is not necessary for prosocial behavior. The controversy of the scenarios and how familiar participants are towards target groups play very important roles. Finally, people with high PP tend to show more public prosocial behavior due to their affective empathy deficit. Pre-existing value and belief as well as recent dramatic social events seem to have a big impact and possibly reduce the effect of the independent variables (IV) in our paradigm.

Keywords: Affective empathy, attitude, cognitive empathy, prosocial behavior, psychopathic traits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709
10871 Optimizing Allocation of Two Dimensional Irregular Shapes using an Agent Based Approach

Authors: Ramin Halavati, Saeed B. Shouraki, Mahdieh Noroozian, Saman H. Zadeh

Abstract:

Packing problems arise in a wide variety of application areas. The basic problem is that of determining an efficient arrangement of different objects in a region without any overlap and with minimal wasted gap between shapes. This paper presents a novel population based approach for optimizing arrangement of irregular shapes. In this approach, each shape is coded as an agent and the agents' reproductions and grouping policies results in arrangements of the objects in positions with least wasted area between them. The approach is implemented in an application for cutting sheets and test results on several problems from literature are presented.

Keywords: Optimization, Bin Packing, Agent Based Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
10870 An ICA Algorithm for Separation of Convolutive Mixture of Speech Signals

Authors: Rajkishore Prasad, Hiroshi Saruwatari, Kiyohiro Shikano

Abstract:

This paper describes Independent Component Analysis (ICA) based fixed-point algorithm for the blind separation of the convolutive mixture of speech, picked-up by a linear microphone array. The proposed algorithm extracts independent sources by non- Gaussianizing the Time-Frequency Series of Speech (TFSS) in a deflationary way. The degree of non-Gaussianization is measured by negentropy. The relative performances of algorithm under random initialization and Null beamformer (NBF) based initialization are studied. It has been found that an NBF based initial value gives speedy convergence as well as better separation performance

Keywords: Blind signal separation, independent component analysis, negentropy, convolutive mixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
10869 Content-Based Image Retrieval Using HSV Color Space Features

Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari

Abstract:

In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.

Keywords: Content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 659