Search results for: point support
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3498

Search results for: point support

2808 Requirements Engineering for Enterprise Applications Development: Seven Challenges in Higher Education Environment

Authors: Jamaludin Sallim

Abstract:

This paper describes the challenges on the requirements engineering for developing an enterprise applications in higher education environment. The development activities include software implementation, maintenance, and enhancement and support for online transaction processing and overnight batch processing. Generally, an enterprise application for higher education environment may include Student Information System (SIS), HR/Payroll system, Financial Systems etc. By the way, there are so many challenges in requirement engineering phases in order to provide two distinctive services that are production processing support and systems development.

Keywords: enterprise applications development, enterprise information systems, business process, requirement engineering, requirement standards, software development activities, software requirement reviews.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
2807 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients

Authors: Karina Zaccari, Ernesto Cordeiro Marujo

Abstract:

This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.

Keywords: Machine learning, medical diagnosis, meningitis detection, gradient boosting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110
2806 Power System Security Assessment using Binary SVM Based Pattern Recognition

Authors: S Kalyani, K Shanti Swarup

Abstract:

Power System Security is a major concern in real time operation. Conventional method of security evaluation consists of performing continuous load flow and transient stability studies by simulation program. This is highly time consuming and infeasible for on-line application. Pattern Recognition (PR) is a promising tool for on-line security evaluation. This paper proposes a Support Vector Machine (SVM) based binary classification for static and transient security evaluation. The proposed SVM based PR approach is implemented on New England 39 Bus and IEEE 57 Bus systems. The simulation results of SVM classifier is compared with the other classifier algorithms like Method of Least Squares (MLS), Multi- Layer Perceptron (MLP) and Linear Discriminant Analysis (LDA) classifiers.

Keywords: Static Security, Transient Security, Pattern Recognition, Classifier, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
2805 Applications of Support Vector Machines on Smart Phone Systems for Emotional Speech Recognition

Authors: Wernhuar Tarng, Yuan-Yuan Chen, Chien-Lung Li, Kun-Rong Hsie, Mingteh Chen

Abstract:

An emotional speech recognition system for the applications on smart phones was proposed in this study to combine with 3G mobile communications and social networks to provide users and their groups with more interaction and care. This study developed a mechanism using the support vector machines (SVM) to recognize the emotions of speech such as happiness, anger, sadness and normal. The mechanism uses a hierarchical classifier to adjust the weights of acoustic features and divides various parameters into the categories of energy and frequency for training. In this study, 28 commonly used acoustic features including pitch and volume were proposed for training. In addition, a time-frequency parameter obtained by continuous wavelet transforms was also used to identify the accent and intonation in a sentence during the recognition process. The Berlin Database of Emotional Speech was used by dividing the speech into male and female data sets for training. According to the experimental results, the accuracies of male and female test sets were increased by 4.6% and 5.2% respectively after using the time-frequency parameter for classifying happy and angry emotions. For the classification of all emotions, the average accuracy, including male and female data, was 63.5% for the test set and 90.9% for the whole data set.

Keywords: Smart phones, emotional speech recognition, socialnetworks, support vector machines, time-frequency parameter, Mel-scale frequency cepstral coefficients (MFCC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
2804 User Pattern Learning Algorithm based MDSS(Medical Decision Support System) Framework under Ubiquitous

Authors: Insung Jung, Gi-Nam Wang

Abstract:

In this paper, we present user pattern learning algorithm based MDSS (Medical Decision support system) under ubiquitous. Most of researches are focus on hardware system, hospital management and whole concept of ubiquitous environment even though it is hard to implement. Our objective of this paper is to design a MDSS framework. It helps to patient for medical treatment and prevention of the high risk patient (COPD, heart disease, Diabetes). This framework consist database, CAD (Computer Aided diagnosis support system) and CAP (computer aided user vital sign prediction system). It can be applied to develop user pattern learning algorithm based MDSS for homecare and silver town service. Especially this CAD has wise decision making competency. It compares current vital sign with user-s normal condition pattern data. In addition, the CAP computes user vital sign prediction using past data of the patient. The novel approach is using neural network method, wireless vital sign acquisition devices and personal computer DB system. An intelligent agent based MDSS will help elder people and high risk patients to prevent sudden death and disease, the physician to get the online access to patients- data, the plan of medication service priority (e.g. emergency case).

Keywords: Neural network, U-healthcare, MDSS, CAP, DSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
2803 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features

Authors: Birmohan Singh, V. K. Jain

Abstract:

Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Architectural distortions, masses and microcalcifications are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support vector machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and an accuracy of 96% for mammogram images collected from digital database for screening mammography database.

Keywords: Architecture Distortion, GLCM Texture features, GLRLM Texture Features, Mammograms, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
2802 GPT Onto: A New Beginning for Malaysia Gross Pollutant Trap Ontology

Authors: Chandrika M.J., Lariyah M.S., Alicia Y.C. Tang

Abstract:

Ontology is widely being used as a tool for organizing information, creating the relation between the subjects within the defined knowledge domain area. Various fields such as Civil, Biology, and Management have successful integrated ontology in decision support systems for managing domain knowledge and to assist their decision makers. Gross pollutant traps (GPT) are devices used in trapping and preventing large items or hazardous particles in polluting and entering our waterways. However choosing and determining GPT is a challenge in Malaysia as there are inadequate GPT data repositories being captured and shared. Hence ontology is needed to capture, organize and represent this knowledge into meaningful information which can be contributed to the efficiency of GPT selection in Malaysia urbanization. A GPT Ontology framework is therefore built as the first step to capture GPT knowledge which will then be integrated into the decision support system. This paper will provide several examples of the GPT ontology, and explain how it is constructed by using the Protégé tool.

Keywords: Gross pollutant Trap, Ontology, Protégé.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
2801 Elicitation of Requirements for a Knowledge Management Concept in Decentralized Production Planning

Authors: S. Minhas, C. Juzek, U. Berger

Abstract:

The planning in manufacturing system is becoming complicated day by day due to the expanding networks and shortage of skilled people to manage change. Consequently, faster lead time and rising demands for eco-efficient evaluation of manufacturing products and processes need exploitation of new and intelligent knowledge management concepts for manufacturing planning. This paper highlights motivation for incorporation of new features in the manufacturing planning system. Furthermore, it elaborates requirements for the development of intelligent knowledge management concept to support planning related decisions. Afterwards, the derived concept is presented in this paper considering two case studies. The first case study is concerned with the automotive ramp-up planning. The second case study specifies requirements for knowledge management system to support decisions in eco-efficient evaluation of manufacturing products and processes

Keywords: Ramp-up, Environmental impact, Knowledge management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
2800 A Simulated Scenario of WikiGIS to Support the Iteration and Traceability Management of the Geodesign Process

Authors: Wided Batita, Stéphane Roche, Claude Caron

Abstract:

Geodesign is an emergent term related to a new and complex process. Hence, it needs to rethink tools, technologies and platforms in order to efficiently achieve its goals. A few tools have emerged since 2010 such as CommunityViz, GeoPlanner, etc. In the era of Web 2.0 and collaboration, WikiGIS has been proposed as a new category of tools. In this paper, we present WikiGIS functionalities dealing mainly with the iteration and traceability management to support the collaboration of the Geodesign process. Actually, WikiGIS is built on GeoWeb 2.0 technologies —and primarily on wiki— and aims at managing the tracking of participants’ editing. This paper focuses on a simplified simulation to illustrate the strength of WikiGIS in the management of traceability and in the access to history in a Geodesign process. Indeed, a cartographic user interface has been implemented, and then a hypothetical use case has been imagined as proof of concept.

Keywords: Geodesign, history, traceability, tracking of participants’ editing, WikiGIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933
2799 Gabriel-constrained Parametric Surface Triangulation

Authors: Oscar E. Ruiz, Carlos Cadavid, Juan G. Lalinde, Ricardo Serrano, Guillermo Peris-Fajarnes

Abstract:

The Boundary Representation of a 3D manifold contains FACES (connected subsets of a parametric surface S : R2 -! R3). In many science and engineering applications it is cumbersome and algebraically difficult to deal with the polynomial set and constraints (LOOPs) representing the FACE. Because of this reason, a Piecewise Linear (PL) approximation of the FACE is needed, which is usually represented in terms of triangles (i.e. 2-simplices). Solving the problem of FACE triangulation requires producing quality triangles which are: (i) independent of the arguments of S, (ii) sensitive to the local curvatures, and (iii) compliant with the boundaries of the FACE and (iv) topologically compatible with the triangles of the neighboring FACEs. In the existing literature there are no guarantees for the point (iii). This article contributes to the topic of triangulations conforming to the boundaries of the FACE by applying the concept of parameterindependent Gabriel complex, which improves the correctness of the triangulation regarding aspects (iii) and (iv). In addition, the article applies the geometric concept of tangent ball to a surface at a point to address points (i) and (ii). Additional research is needed in algorithms that (i) take advantage of the concepts presented in the heuristic algorithm proposed and (ii) can be proved correct.

Keywords: surface triangulation, conforming triangulation, surfacesampling, Gabriel complex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
2798 A Formal Approach for Instructional Design Integrated with Data Visualization for Learning Analytics

Authors: Douglas A. Menezes, Isabel D. Nunes, Ulrich Schiel

Abstract:

Most Virtual Learning Environments do not provide support mechanisms for the integrated planning, construction and follow-up of Instructional Design supported by Learning Analytic results. The present work aims to present an authoring tool that will be responsible for constructing the structure of an Instructional Design (ID), without the data being altered during the execution of the course. The visual interface aims to present the critical situations present in this ID, serving as a support tool for the course follow-up and possible improvements, which can be made during its execution or in the planning of a new edition of this course. The model for the ID is based on High-Level Petri Nets and the visualization forms are determined by the specific kind of the data generated by an e-course, a population of students generating sequentially dependent data.

Keywords: Educational data visualization, high-level petri nets, instructional design, learning analytics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 848
2797 Do Persistent and Transitory Hybrid Entrepreneurs Differ?

Authors: Anmari H. Viljamaa, Elina M. Varamäki

Abstract:

In this study, we compare the profiles of transitory hybrid entrepreneurs and persistent hybrid entrepreneurs to determine how they differ. Hybrid entrepreneurs (HEs) represent a significant share of entrepreneurial activity yet little is known about them. We define HEs as individuals who are active as entrepreneurs but do no support themselves primarily by their enterprise. Persistent HEs (PHEs) are not planning to transition to fulltime entrepreneurship whereas transitory HEs (THEs) consider it probable. Our results show that THEs and PHEs are quite similar in background. THEs are more interested in increasing their turnover than PHEs, as expected, but also emphasize self-fulfillment as a motive for entrepreneurship more than PHEs. The clearest differences between THEs and PHEs are found in their views on how well their immediate circle supports full-time entrepreneurship, and their views of their own entrepreneurial abilities and the market potential of their firm. Our results support earlier arguments that hybrids should be considered separately in research on entrepreneurial entry and self-employment.

Keywords: Hybrid entrepreneurship, part-time entrepreneurship, self-employment, Theory of Planned Behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
2796 A Social Decision Support Mechanism for Group Purchasing

Authors: Lien-Fa Lin, Yung-Ming Li, Fu-Shun Hsieh

Abstract:

With the advancement of information technology and development of group commerce, people have obviously changed in their lifestyle. However, group commerce faces some challenging problems. The products or services provided by vendors do not satisfactorily reflect customers’ opinions, so that the sale and revenue of group commerce gradually become lower. On the other hand, the process for a formed customer group to reach group-purchasing consensus is time-consuming and the final decision is not the best choice for each group members. In this paper, we design a social decision support mechanism, by using group discussion message to recommend suitable options for group members and we consider social influence and personal preference to generate option ranking list. The proposed mechanism can enhance the group purchasing decision making efficiently and effectively and venders can provide group products or services according to the group option ranking list.

Keywords: Social network, group decision, text mining, group commerce.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
2795 Boosting Method for Automated Feature Space Discovery in Supervised Quantum Machine Learning Models

Authors: Vladimir Rastunkov, Jae-Eun Park, Abhijit Mitra, Brian Quanz, Steve Wood, Christopher Codella, Heather Higgins, Joseph Broz

Abstract:

Quantum Support Vector Machines (QSVM) have become an important tool in research and applications of quantum kernel methods. In this work we propose a boosting approach for building ensembles of QSVM models and assess performance improvement across multiple datasets. This approach is derived from the best ensemble building practices that worked well in traditional machine learning and thus should push the limits of quantum model performance even further. We find that in some cases, a single QSVM model with tuned hyperparameters is sufficient to simulate the data, while in others - an ensemble of QSVMs that are forced to do exploration of the feature space via proposed method is beneficial.

Keywords: QSVM, Quantum Support Vector Machines, quantum kernel, boosting, ensemble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 439
2794 Feedrate Optimization for Ball-end milling of Sculptured Surfaces using Fuzzy Logic Controller

Authors: Njiri J. G., Ikua B. W., Nyakoe G. N.

Abstract:

Optimization of cutting parameters important in precision machining in regards to efficiency and surface integrity of the machined part. Usually productivity and precision in machining is limited by the forces emanating from the cutting process. Due to the inherent varying nature of the workpiece in terms of geometry and material composition, the peak cutting forces vary from point to point during machining process. In order to increase productivity without compromising on machining accuracy, it is important to control these cutting forces. In this paper a fuzzy logic control algorithm is developed that can be applied in the control of peak cutting forces in milling of spherical surfaces using ball end mills. The controller can adaptively vary the feedrate to maintain allowable cutting force on the tool. This control algorithm is implemented in a computer numerical control (CNC) machine. It has been demonstrated that the controller can provide stable machining and improve the performance of the CNC milling process by varying feedrate.

Keywords: Ball-end mill, feedrate, fuzzy logic controller, machining optimization, spherical surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
2793 Face Recognition with Image Rotation Detection, Correction and Reinforced Decision using ANN

Authors: Hemashree Bordoloi, Kandarpa Kumar Sarma

Abstract:

Rotation or tilt present in an image capture by digital means can be detected and corrected using Artificial Neural Network (ANN) for application with a Face Recognition System (FRS). Principal Component Analysis (PCA) features of faces at different angles are used to train an ANN which detects the rotation for an input image and corrected using a set of operations implemented using another system based on ANN. The work also deals with the recognition of human faces with features from the foreheads, eyes, nose and mouths as decision support entities of the system configured using a Generalized Feed Forward Artificial Neural Network (GFFANN). These features are combined to provide a reinforced decision for verification of a person-s identity despite illumination variations. The complete system performing facial image rotation detection, correction and recognition using re-enforced decision support provides a success rate in the higher 90s.

Keywords: Rotation, Face, Recognition, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
2792 An SVM based Classification Method for Cancer Data using Minimum Microarray Gene Expressions

Authors: R. Mallika, V. Saravanan

Abstract:

This paper gives a novel method for improving classification performance for cancer classification with very few microarray Gene expression data. The method employs classification with individual gene ranking and gene subset ranking. For selection and classification, the proposed method uses the same classifier. The method is applied to three publicly available cancer gene expression datasets from Lymphoma, Liver and Leukaemia datasets. Three different classifiers namely Support vector machines-one against all (SVM-OAA), K nearest neighbour (KNN) and Linear Discriminant analysis (LDA) were tested and the results indicate the improvement in performance of SVM-OAA classifier with satisfactory results on all the three datasets when compared with the other two classifiers.

Keywords: Support vector machines-one against all, cancerclassification, Linear Discriminant analysis, K nearest neighbour, microarray gene expression, gene pair ranking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
2791 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: Artificial neural networks, breast cancer, cancer dataset, classifiers, cervical cancer, F-score, logistic regression, machine learning, precision, recall, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
2790 The Use of Nuclear Generation to Provide Power System Stability

Authors: Heather Wyman-Pain, Yuankai Bian, Furong Li

Abstract:

The decreasing use of fossil fuel power stations has a negative effect on the stability of the electricity systems in many countries. Nuclear power stations have traditionally provided minimal ancillary services to support the system but this must change in the future as they replace fossil fuel generators. This paper explains the development of the four most popular reactor types still in regular operation across the world which have formed the basis for most reactor development since their commercialisation in the 1950s. The use of nuclear power in four countries with varying levels of capacity provided by nuclear generators is investigated, using the primary frequency response provided by generators as a measure for the electricity networks stability, to assess the need for nuclear generators to provide additional support as their share of the generation capacity increases.

Keywords: Frequency control, nuclear power generation, power system stability, system inertia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
2789 New Approach for Load Modeling

Authors: S. Chokri

Abstract:

Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: Neural network, Load Forecasting, Fuzzy inference, Machine learning, Fuzzy modeling and rule extraction, Support Vector Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
2788 Business Intelligence and Strategic Decision Simulation

Authors: S. Sabbour, H. Lasi, P. von Tessin

Abstract:

The purpose of this study is two-fold. First, it attempts to explore potential opportunities for utilizing visual interactive simulations along with Business Intelligence (BI) as a decision support tool for strategic decision making. Second, it tries to figure out the essential top-level managerial requirements that would transform strategic decision simulation into an integral component of BI systems. The domain of particular interest was the application of visual interactive simulation capabilities in the field of supply chains. A qualitative exploratory method was applied, through the use of interviews with two leading companies. The collected data was then analysed to demonstrate the difference between the literature perspective and the practical managerial perspective on the issue. The results of the study suggest that although the use of simulation particularly in managing supply chains is very evident in literature, yet, in practice such utilization is still in its infancy, particularly regarding strategic decisions. Based on the insights a prototype of a simulation based BI-solution-extension was developed and evaluated.

Keywords: Business Intelligence, decision support, strategic decisions, simulation, SCM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2806
2787 Mannequin Evaluation of 3D-Printed Intermittent Oro-Esophageal Tube Guide for Dysphagia

Authors: Yujin Jeong, Youkyung Son, Myounghwan Choi, Sanghyub Lee, Sangyeol Lee, Changho Hwang, Kyo-in Koo

Abstract:

Dysphasia is difficulty in swallowing food because of oral cavity impairments induced by stroke, muscle damage, tumor. Intermittent oro-esophageal (IOE) tube feeding is one of the well-known feeding methods for the dysphasia patients. However, it is hard to insert at the proper position in esophagus. In this study, we design and fabricate the IOE tube guide using 3-dimensional (3D) printer. The printed IOE tube is tested in a mannequin (Airway Management Trainer, Co., Ltd., Copenhagen, Denmark) mimicking human’s esophagus. The gag reflex point is measured as the design point in the mannequin. To avoid the gag reflex, we design various shapes of IOE tube guide. One structure is separated into three parts; biting part, part through oral cavity, connecting part to oro-esophageal. We designed 6 types of IOE tube guide adjusting length and angle of these three parts. To evaluate the IOE tube guide, it is inserted in the mannequin, and through the inserted guide, an endoscopic camera successfully arrived at the oro-esophageal. We had planned to apply this mannequin-based design experience to patients in near future.

Keywords: Dysphagia, feeding method, IOE tube guide, 3-D printer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
2786 Development of Accident Predictive Model for Rural Roadway

Authors: Fajaruddin Mustakim, Motohiro Fujita

Abstract:

This paper present the study carried out of accident analysis, black spot study and to develop accident predictive models based on the data collected at rural roadway, Federal Route 50 (F050) Malaysia. The road accident trends and black spot ranking were established on the F050. The development of the accident prediction model will concentrate in Parit Raja area from KM 19 to KM 23. Multiple non-linear regression method was used to relate the discrete accident data with the road and traffic flow explanatory variable. The dependent variable was modeled as the number of crashes namely accident point weighting, however accident point weighting have rarely been account in the road accident prediction Models. The result show that, the existing number of major access points, without traffic light, rise in speed, increasing number of Annual Average Daily Traffic (AADT), growing number of motorcycle and motorcar and reducing the time gap are the potential contributors of increment accident rates on multiple rural roadway.

Keywords: Accident Trends, Black Spot Study, Accident Prediction Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3283
2785 Effect of Gold Loading on CeO2–Fe2O3 for Oxidative Steam Reforming of Methanol

Authors: Umpawan Satitthai, Apanee Luengnaruemitchai, Erdogan Gulari

Abstract:

In this study, oxidative steam reforming of methanol (OSRM) over a Au/CeO2–Fe2O3 catalyst prepared by a depositionprecipitation (DP) method was studied to produce hydrogen in order to feed a Proton Exchange Membrane Fuel Cell (PEMFC). The support (CeO2, Fe2O3, and CeO2–Fe2O3) were prepared by precipitation and co-precipitation methods. The impact of the support composition on the catalytic performance was studied by varying the Ce/(Ce+Fe) atomic ratio, it was found that the 1%Au/CF(0.25) calcined at 300 °C exhibited the highest catalytic activity in the whole temperature studied. In addition, the effect of Au content was investigated and 3%Au/CF(0.25) exhibited the highest activity under the optimum condition in the temperature range of 200 °C to 400 °C. The catalysts were characterized by various techniques: XRD, TPR, XRF, and UV-vis.

Keywords: CeO2, Fe2O3, Gold catalyst, Hydrogen production, Methanol, Oxidative steam reforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
2784 An Approach to Manage and Evaluate Asset Performance

Authors: Mohammed S. ALSaidi, John P. Mo

Abstract:

Modern engineering assets are complex and very high in value. They are expected to function for years to come, with ability to handle the change in technology and ageing modification. The aging of an engineering asset and continues increase of vendors and contractors numbers forces the asset operation management (or Owner) to design an asset system which can capture these changes. Furthermore, an accurate performance measurement and risk evaluation processes are highly needed. Therefore, this paper explores the nature of the asset management system performance evaluation for an engineering asset based on the System Support Engineering (SSE) principles. The research work explores the asset support system from a range of perspectives, interviewing managers from across a refinery organization. The factors contributing to complexity of an asset management system are described in context which clusters them into several key areas. It is proposed that SSE framework may then be used as a tool for analysis and management of asset. The paper will conclude with discussion of potential application of the framework and opportunities for future research.

Keywords: Asset management, performance, evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
2783 Environmental Impacts of Point and Non-Point Source Pollution in Krishnagiri Reservoir: A Case Study in South India

Authors: N. K. Ambujam, V. Sudha

Abstract:

Reservoirs are being contaminated all around the world with point source and Non-Point Source (NPS) pollution. The most common NPS pollutants are sediments and nutrients. Krishnagiri Reservoir (KR) has been chosen for the present case study, which is located in the tropical semi-arid climatic zone of Tamil Nadu, South India. It is the main source of surface water in Krishnagiri district to meet the freshwater demands. The reservoir has lost about 40% of its water holding capacity due to sedimentation over the period of 50 years. Hence, from the research and management perspective, there is a need for a sound knowledge on the spatial and seasonal variations of KR water quality. The present study encompasses the specific objectives as (i) to investigate the longitudinal heterogeneity and seasonal variations of physicochemical parameters, nutrients and biological characteristics of KR water and (ii) to examine the extent of degradation of water quality in KR. 15 sampling points were identified by uniform stratified method and a systematic monthly sampling strategy was selected due to high dynamic nature in its hydrological characteristics. The physicochemical parameters, major ions, nutrients and Chlorophyll a (Chl a) were analysed. Trophic status of KR was classified by using Carlson's Trophic State Index (TSI). All statistical analyses were performed by using Statistical Package for Social Sciences programme, version-16.0. Spatial maps were prepared for Chl a using Arc GIS. Observations in KR pointed out that electrical conductivity and major ions are highly variable factors as it receives inflow from the catchment with different land use activities. The study of major ions in KR exhibited different trends in their values and it could be concluded that as the monsoon progresses the major ions in the water decreases or water quality stabilizes. The inflow point of KR showed comparatively higher concentration of nutrients including nitrate, soluble reactive phosphorus (SRP), total phosphors (TP), total suspended phosphorus (TSP) and total dissolved phosphorus (TDP) during monsoon seasons. This evidently showed the input of significant amount of nutrients from the catchment side through agricultural runoff. High concentration of TDP and TSP at the lacustrine zone of the reservoir during summer season evidently revealed that there was a significant release of phosphorus from the bottom sediments. Carlson’s TSI of KR ranged between 81 and 92 during northeast monsoon and summer seasons. High and permanent Cyanobacterial bloom in KR could be mainly due to the internal loading of phosphorus from the bottom sediments. According to Carlson’s TSI classification Krishnagiri reservoir was ranked in the hyper-eutrophic category. This study provides necessary basic data on the spatio-temporal variations of water quality in KR and also proves the impact of point and NPS pollution from the catchment area. High TSI warrants a greater threat for the recovery of internal P loading and hyper-eutrophic condition of KR. Several expensive internal measures for the reduction of internal loading of P were introduced by many scientists. However, the outcome of the present research suggests for the innovative algae harvesting technique for the removal of sediment nutrients.

Keywords: Hyper-eutrophication, Krishnagiri reservoir, nutrients, NPS pollution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
2782 Identification of the Key Sustainability Issues to Develop New Decision Support Tools in the Spanish Furniture Sector

Authors: P.Cordero, R.Poler, R.Sanchis

Abstract:

The environmental impacts caused by the current production and consumption models, together with the impact that the current economic crisis, bring necessary changes in the European industry toward new business models based on sustainability issues that could allow them to innovate and improve their competitiveness. This paper analyzes the key environmental issues and the current and future market trends in one of the most important industrial sectors in Spain, the furniture sector. It also proposes new decision support tools -diagnostic kit, roadmap and guidelines- to guide companies to implement sustainability criteria into their organizations, including eco-design strategies and other economical and social strategies in accordance with the sustainability definition, and other available tools such as eco-labels, environmental management systems, etc., and to use and combine them to obtain the results the company expects to help improve its competitiveness.

Keywords: Furniture sector, eco-design, sustainability, economical crisis, market trends, roadmap

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
2781 The Effects of Human Activity in Yasuj Area on the Health of Stream City

Authors: Jamalodin Alvani, Fardin Boustani, Omid Tabiee, Masoud Hashemi

Abstract:

The Yasuj city stream named the Beshar supply water for different usages such as aquaculture farms , drinking, agricultural and industrial usages. Fish processing plants ,Agricultural farms, waste water of industrial zones and hospitals waste water which they are generate by human activity produce a considerable volume of effluent and when they are released in to the stream they can effect on the water quality and down stream aquatic systems. This study was conducted to evaluate the effects of outflow effluent from different human activity and point and non point pollution sources on the water quality and health of the Beshar river next to Yasuj. Yasuj is the biggest and most important city in the Kohkiloye and Boyerahmad province . The Beshar River is one of the most important aquatic ecosystems in the upstream of the Karun watershed in south of Iran which is affected by point and non point pollutant sources . This study was done in order to evaluate the effects of human activities on the water quality and health of the Beshar river. This river is approximately 190 km in length and situated at the geographical positions of 51° 20' to 51° 48' E and 30° 18' to 30° 52' N it is one of the most important aquatic ecosystems of Kohkiloye and Boyerahmad province in south-west Iran. In this research project, five study stations were selected to examine water pollution in the Beshar River systems. Human activity is now one of the most important factors affecting on hydrology and water quality of the Beshar river. Humans use large amounts of resources to sustain various standards of living, although measures of sustainability are highly variable depending on how sustainability is defined. The Beshar river ecosystems are particularly sensitive and vulnerable to human activities. The water samples were analyzed, then some important water quality parameters such as pH, dissolve oxygen (DO), Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), Total Suspended Solids (TDS),Turbidity, Temperature, Nitrates (NO3) and Phosphates (PO4) were estimated at the two stations. The results show a downward trend in the water quality at the down stream of the city. The amounts of BOD5,COD,TSS,T,Turbidity, NO3 and PO4 in the down stream stations were considerably more than the station 1. By contrast the amounts of DO in the down stream stations were less than to the station 1. However when effluent discharge consequence of human activities are released into the Beshar river near the city, the quality of river are decreases and the environmental problems of the river during the next years are predicted to rise.

Keywords: Health, Human activities, Water pollution, Yasuj , Iran

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
2780 Contextual Enablers and Behaviour Outputs for Action of Knowledge Workers

Authors: Juan-Gabriel Cegarra-Navarro, Alexeis Garcia-Perez, Denise Bedford

Abstract:

This paper provides guidelines for what constitutes a knowledge worker. Many graduates from non-managerial domains adopt, at some point in their professional careers, management roles at different levels, ranging from team leaders through to executive leadership. This is particularly relevant for professionals from an engineering background. Moving from a technical to an executive-level requires an understanding of those behaviour management techniques that can motivate and support individuals and their performance. Further, the transition to management also demands a shift of contextual enablers from tangible to intangible resources, which allows individuals to create new capacities, competencies, and capabilities. In this dynamic process, the knowledge worker becomes that key individual who can help members of the management board to transform information into relevant knowledge. However, despite its relevance in shaping the future of the organization in its transition to the knowledge economy, the role of a knowledge worker has not yet been studied to an appropriate level in the current literature. In this study, the authors review both the contextual enablers and behaviour outputs related to the role of the knowledge worker and relate these to their ability to deal with everyday management issues such as knowledge heterogeneity, varying motivations, information overload, or outdated information. This study highlights that the aggregate of capacities, competences and capabilities (CCCs) can be defined as knowledge structures, the study proposes several contextual enablers and behaviour outputs that knowledge workers can use to work cooperatively, acquire, distribute and knowledge. Therefore, this study contributes to a better comprehension of how CCCs can be managed at different levels through their contextual enablers and behaviour outputs.

Keywords: Knowledge workers, capacities, competences, capabilities, knowledge structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
2779 Comparative Study Using Weka for Red Blood Cells Classification

Authors: Jameela Ali Alkrimi, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithms tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital - Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-Nearest Neighbors, Neural Network, Radial Basis Function, Red blood cells, Support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995