Search results for: Bayesian network; structure learning
6157 Social Software Approach to E-Learning 3.0
Authors: Anna Nedyalkova, KrassimirNedyalkov, TeodoraBakardjieva
Abstract:
In the present paper, we-ll explore how social media tools provide an opportunity for new developments of the e-Learning in the context of managing personal knowledge. There will be a discussion how social media tools provide a possibility for helping knowledge workersand students to gather, organize and manage their personal information as a part of the e-learning process. At the centre of this social software driven approach to e-learning environments are the challenges of personalization and collaboration. We-ll share concepts of how organizations are using social media for e-Learning and believe that integration of these tools into traditional e-Learning is probably not a choice, but inevitability. Students- Survey of use of web technologies and social networking tools is presented. Newly developed framework for semantic blogging capable of organizing results relevant to user requirements is implemented at Varna Free University (VFU) to provide more effective navigation and search.
Keywords: Semantic blogging, social media tools, e-Learning, web 2.0, web 3.0.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18166156 Identification of Optimum Parameters of Deep Drawing of a Cylindrical Workpiece using Neural Network and Genetic Algorithm
Authors: D. Singh, R. Yousefi, M. Boroushaki
Abstract:
Intelligent deep-drawing is an instrumental research field in sheet metal forming. A set of 28 different experimental data have been employed in this paper, investigating the roles of die radius, punch radius, friction coefficients and drawing ratios for axisymmetric workpieces deep drawing. This paper focuses an evolutionary neural network, specifically, error back propagation in collaboration with genetic algorithm. The neural network encompasses a number of different functional nodes defined through the established principles. The input parameters, i.e., punch radii, die radii, friction coefficients and drawing ratios are set to the network; thereafter, the material outputs at two critical points are accurately calculated. The output of the network is used to establish the best parameters leading to the most uniform thickness in the product via the genetic algorithm. This research achieved satisfactory results based on demonstration of neural networks.
Keywords: Deep-drawing, Neural network, Genetic algorithm, Sheet metal forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22036155 Agent-Based Simulation and Analysis of Network-Centric Air Defense Missile Systems
Authors: Su-Yan Tang, Wei Zhang, Shan Mei, Yi-Fan Zhu
Abstract:
Network-Centric Air Defense Missile Systems (NCADMS) represents the superior development of the air defense missile systems and has been regarded as one of the major research issues in military domain at present. Due to lack of knowledge and experience on NCADMS, modeling and simulation becomes an effective approach to perform operational analysis, compared with those equation based ones. However, the complex dynamic interactions among entities and flexible architectures of NCADMS put forward new requirements and challenges to the simulation framework and models. ABS (Agent-Based Simulations) explicitly addresses modeling behaviors of heterogeneous individuals. Agents have capability to sense and understand things, make decisions, and act on the environment. They can also cooperate with others dynamically to perform the tasks assigned to them. ABS proves an effective approach to explore the new operational characteristics emerging in NCADMS. In this paper, based on the analysis of network-centric architecture and new cooperative engagement strategies for NCADMS, an agent-based simulation framework by expanding the simulation framework in the so-called System Effectiveness Analysis Simulation (SEAS) was designed. The simulation framework specifies components, relationships and interactions between them, the structure and behavior rules of an agent in NCADMS. Based on scenario simulations, information and decision superiority and operational advantages in NCADMS were analyzed; meanwhile some suggestions were provided for its future development.Keywords: air defense missile systems, network-centric, agent-based simulation, simulation framework, information superiority, decision superiority, operational advantages
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22896154 Detection of Actuator Faults for an Attitude Control System using Neural Network
Authors: S. Montenegro, W. Hu
Abstract:
The objective of this paper is to develop a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a dynamic multilayer perceptron network with dynamic neurons is used, those neurons correspond a second order linear Infinite Impulse Response (IIR) filter and a nonlinear activation function with adjustable parameters. Second, the parameters from the network are adjusted to minimize a performance index specified by the output estimated error, with the given input-output data collected from the specific ACS. Then, the proposed dynamic neural network is trained and applied for detecting the faults injected to the wheel, which is the main actuator in the normal mode for the communication satellite. Then the performance and capabilities of the proposed network were tested and compared with a conventional model-based observer residual, showing the differences between these two methods, and indicating the benefit of the proposed algorithm to know the real status of the momentum wheel. Finally, the application of the methods in a satellite ground station is discussed.Keywords: Satellite, Attitude Control, Momentum Wheel, Neural Network, Fault Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19926153 Implementing a Visual Servoing System for Robot Controlling
Authors: Maryam Vafadar, Alireza Behrad, Saeed Akbari
Abstract:
Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necessary pre-processing on video frames, a spatio-temporal volume is constructed for each gesture and feature vector is extracted. These volumes are then analyzed for matching in two consecutive stages. For hand gesture recognition and classification we tested different classifiers including k-Nearest neighbor, learning vector quantization and back propagation neural networks. We tested the proposed algorithm with the collected data set and results showed the correct gesture recognition rate of 99.58 percent. We also tested the algorithm with noisy images and algorithm showed the correct recognition rate of 97.92 percent in noisy images.Keywords: Back propagation neural network, Feature vector, Hand gesture recognition, k-Nearest Neighbor, Learning vector quantization neural network, Robot control, Spatio-temporal volume, Visual servoing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16706152 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement
Authors: Wang Lin, Li Zhiqiang
Abstract:
The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.Keywords: Behavior pattern, cooperative learning, data analyze, K-means clustering algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8146151 Social Movements and the Diffusion of Tactics and Repertoires: Activists' Network in Anti-globalism Movement
Authors: Kyoko Tominaga
Abstract:
Non-Government Organizations (NGOs), Non-Profit Organizations (NPOs), Social Enterprises and other actors play an important role in political decisions in governments at the international levels. Especially, such organizations’ and activists’ network in civil society is quite important to effect to the global politics. To solve the complex social problems in global era, diverse actors should corporate each other. Moreover, network of protesters is also contributes to diffuse tactics, information and other resources of social movements.Based on the findings from the study of International Trade Fairs (ITFs), the author analyzes the network of activists in anti-globalism movement. This research focuses the transition of 54 activists’ whole network in the “protest event” against 2008 G8 summit in Japan. Their network is examined at the three periods: Before protest event phase, during protest event phase and after event phase. A mixed method is used in this study: the author shows the hypothesis from social network analysis and evaluates that with interview data analysis. This analysis gives the two results. Firstly, the more protesters participate to the various events during the protest event, the more they build the network. After that, active protesters keep their network as well. From interview data, we can understand that the active protesters can build their network and diffuse the information because they communicate with other participants and understand that diverse issues are related. This paper comes to same conclusion with previous researches: protest events activate the network among the political activists. However, some participants succeed to build their network, others do not. “Networked” activists are participated in the various events for short period of time and encourage the diffusion of information and tactics of social movements.
Keywords: Social Movement, Global Justice Movement, Tactics, Diffusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22016150 Improving Convergence of Parameter Tuning Process of the Additive Fuzzy System by New Learning Strategy
Authors: Thi Nguyen, Lee Gordon-Brown, Jim Peterson, Peter Wheeler
Abstract:
An additive fuzzy system comprising m rules with n inputs and p outputs in each rule has at least t m(2n + 2 p + 1) parameters needing to be tuned. The system consists of a large number of if-then fuzzy rules and takes a long time to tune its parameters especially in the case of a large amount of training data samples. In this paper, a new learning strategy is investigated to cope with this obstacle. Parameters that tend toward constant values at the learning process are initially fixed and they are not tuned till the end of the learning time. Experiments based on applications of the additive fuzzy system in function approximation demonstrate that the proposed approach reduces the learning time and hence improves convergence speed considerably.Keywords: Additive fuzzy system, improving convergence, parameter learning process, unsupervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15146149 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.
Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3216148 Design and Production of Thin-Walled UHPFRC Footbridge
Authors: P. Tej, P. Kněž, M. Blank
Abstract:
The paper presents design and production of thin-walled U-profile footbridge made of UHPFRC. The main structure of the bridge is one prefabricated shell structure made of UHPFRC with dispersed steel fibers without any conventional reinforcement. The span of the bridge structure is 10 m and the clear width of 1.5 m. The thickness of the UHPFRC shell structure oscillated in an interval of 30-45 mm. Several calculations were made during the bridge design and compared with the experiments. For the purpose of verifying the calculations, a segment of 1.5 m was first produced, followed by the whole footbridge for testing. After the load tests were done, the design was optimized to cast the final footbridge.
Keywords: Footbridge, UHPFRC, non-linear analysis, shell structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7576147 Learning Paradigms for Educating a New Generation of Computer Science Students
Authors: J. M. Breed, E. Taylor
Abstract:
In this paper challenges associated with a new generation of Computer Science students are examined. The mode of education in tertiary institutes has progressed slowly while the needs of students have changed rapidly in an increasingly technological world. The major learning paradigms and learning theories within these paradigms are studied to find a suitable strategy for educating modern students. These paradigms include Behaviourism, Constructivism, Humanism and Cogntivism. Social Learning theory and Elaboration theory are two theories that are further examined and a survey is done to determine how these strategies will be received by students. The results and findings are evaluated and indicate that students are fairly receptive to a method that incorporates both Social Learning theory and Elaboration theory, but that some aspects of all paradigms need to be implemented to create a balanced and effective strategy with technology as foundation.Keywords: Computer Science, Education, Elaboration Theory, Learning Paradigms, Social Learning Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21666146 Network Coding-based ARQ scheme with Overlapping Selection for Resource Limited Multicast/Broadcast Services
Authors: Jung-Hyun Kim, Jihyung Kim, Kwangjae Lim, Dong Seung Kwon
Abstract:
Network coding has recently attracted attention as an efficient technique in multicast/broadcast services. The problem of finding the optimal network coding mechanism maximizing the bandwidth efficiency is hard to solve and hard to approximate. Lots of network coding-based schemes have been suggested in the literature to improve the bandwidth efficiency, especially network coding-based automatic repeat request (NCARQ) schemes. However, existing schemes have several limitations which cause the performance degradation in resource limited systems. To improve the performance in resource limited systems, we propose NCARQ with overlapping selection (OS-NCARQ) scheme. The advantages of OS-NCARQ scheme over the traditional ARQ scheme and existing NCARQ schemes are shown through the analysis and simulations.
Keywords: ARQ, Network coding, Multicast/Broadcast services, Packet-based systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15116145 Prediction of Natural Gas Viscosity using Artificial Neural Network Approach
Authors: E. Nemati Lay, M. Peymani, E. Sanjari
Abstract:
Prediction of viscosity of natural gas is an important parameter in the energy industries such as natural gas storage and transportation. In this study viscosity of different compositions of natural gas is modeled by using an artificial neural network (ANN) based on back-propagation method. A reliable database including more than 3841 experimental data of viscosity for testing and training of ANN is used. The designed neural network can predict the natural gas viscosity using pseudo-reduced pressure and pseudo-reduced temperature with AARD% of 0.221. The accuracy of designed ANN has been compared to other published empirical models. The comparison indicates that the proposed method can provide accurate results.
Keywords: Artificial neural network, Empirical correlation, Natural gas, Viscosity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32456144 Non-Invasive Technology on a Classroom Chair for Detection of Emotions Used for the Personalization of Learning Resources
Authors: Carlos Ramirez, Carlos Concha, Benjamin Valdes
Abstract:
Emotions are related with learning processes and physiological signals can be used to detect them for the personalization of learning resources and to control the pace of instruction. A model of relevant emotions has been developed, where specific combinations of emotions and cognition processes are connected and integrated with the concept of 'flow', in order to improve learning. The cardiac pulse is a reliable signal that carries useful information about the subject-s emotional condition; it is detected using a classroom chair adapted with non invasive EMFi sensor and an acquisition system that generates a ballistocardiogram (BCG), the signal is processed by an algorithm to obtain characteristics that match a specific emotional condition. The complete chair system is presented in this work, along with a framework for the personalization of learning resources.Keywords: Ballistocardiogram, emotions in learning, noninvasive sensors, personalization of learning resources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16636143 Fragility Analysis of Weir Structure Subjected to Flooding Water Damage
Authors: Oh Hyeon Jeon, WooYoung Jung
Abstract:
In this study, seepage analysis was performed by the level difference between upstream and downstream of weir structure for safety evaluation of weir structure against flooding. Monte Carlo Simulation method was employed by considering the probability distribution of the adjacent ground parameter, i.e., permeability coefficient of weir structure. Moreover, by using a commercially available finite element program (ABAQUS), modeling of the weir structure is carried out. Based on this model, the characteristic of water seepage during flooding was determined at each water level with consideration of the uncertainty of their corresponding permeability coefficient. Subsequently, fragility function could be constructed based on this response from numerical analysis; this fragility function results could be used to determine the weakness of weir structure subjected to flooding disaster. They can also be used as a reference data that can comprehensively predict the probability of failur,e and the degree of damage of a weir structure.
Keywords: Weir structure, seepage, flood disaster fragility, probabilistic risk assessment, Monte-Carlo Simulation, permeability coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11626142 A Multiclass BCMP Queueing Modeling and Simulation-Based Road Traffic Flow Analysis
Authors: Jouhra Dad, Mohammed Ouali, Yahia Lebbah
Abstract:
Urban road network traffic has become one of the most studied research topics in the last decades. This is mainly due to the enlargement of the cities and the growing number of motor vehicles traveling in this road network. One of the most sensitive problems is to verify if the network is congestion-free. Another related problem is the automatic reconfiguration of the network without building new roads to alleviate congestions. These problems require an accurate model of the traffic to determine the steady state of the system. An alternative is to simulate the traffic to see if there are congestions and when and where they occur. One key issue is to find an adequate model for road intersections. Once the model established, either a large scale model is built or the intersection is represented by its performance measures and simulation for analysis. In both cases, it is important to seek the queueing model to represent the road intersection. In this paper, we propose to model the road intersection as a BCMP queueing network and we compare this analytical model against a simulation model for validation.Keywords: Queueing theory, transportation systems, BCMPqueueing network, performance measures, modeling, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24426141 Module and Comodule Structures on Path Space
Abstract:
On path space kQ, there is a trivial kQa-module structure determined by the multiplication of path algebra kQa and a trivial kQc-comodule structure determined by the comultiplication of path coalgebra kQc. In this paper, on path space kQ, a nontrivial kQa-module structure is defined, and it is proved that this nontrivial left kQa-module structure is isomorphic to the dual module structure of trivial right kQc-comodule. Dually, on path space kQ, a nontrivial kQc-comodule structure is defined, and it is proved that this nontrivial right kQc-comodule structure is isomorphic to the dual comodule structure of trivial left kQa-module. Finally, the trivial and nontrivial module structures on path space are compared from the aspect of submodule, and the trivial and nontrivial comodule structures on path space are compared from the aspect of subcomodule.Keywords: Quiver, path space, module, comodule, dual.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8556140 The Features of Formation of Russian Agriculture’s Sectoral Structure
Authors: Natalya G. Filimonova, Mariya G. Ozerova, Irina N. Ermakova
Abstract:
The long-term strategy of the economic development of Russia up to 2030 is based on the concept of sustainable growth. The determining factor of such development is complex changes in the economic system which may be achieved by making progressive changes in its structure. The structural changes determine the character and the direction of economic development, as well as they include all elements of this system without exception, and their regulated character ensures the most rapid aim achievement. This article has discussed the industrial structure of the agriculture in Russia. With the use of the system of indexes, the article has determined the directions, intensity, and speed of structural shifts. The influence of structural changes on agricultural production development has been found out. It is noticed that the changes in the industrial structure are synchronized with the changes in the organisation and economic structure. Efficiency assessment of structural changes allowed to trace the efficiency of structural changes and elaborate the main directions for agricultural policy improvement.
Keywords: Russian agriculture system, sectoral structure, organizational and economic structure, structural changes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13546139 A Dynamic Composition of an Adaptive Course
Authors: S. Chiali, Z.Eberrichi, M.Malki
Abstract:
The number of framework conceived for e-learning constantly increase, unfortunately the creators of learning materials and educational institutions engaged in e-formation adopt a “proprietor" approach, where the developed products (courses, activities, exercises, etc.) can be exploited only in the framework where they were conceived, their uses in the other learning environments requires a greedy adaptation in terms of time and effort. Each one proposes courses whose organization, contents, modes of interaction and presentations are unique for all learners, unfortunately the latter are heterogeneous and are not interested by the same information, but only by services or documents adapted to their needs. Currently the new tendency for the framework conceived for e-learning, is the interoperability of learning materials, several standards exist (DCMI (Dublin Core Metadata Initiative)[2], LOM (Learning Objects Meta data)[1], SCORM (Shareable Content Object Reference Model)[6][7][8], ARIADNE (Alliance of Remote Instructional Authoring and Distribution Networks for Europe)[9], CANCORE (Canadian Core Learning Resource Metadata Application Profiles)[3]), they converge all to the idea of learning objects. They are also interested in the adaptation of the learning materials according to the learners- profile. This article proposes an approach for the composition of courses adapted to the various profiles (knowledge, preferences, objectives) of learners, based on two ontologies (domain to teach and educational) and the learning objects.Keywords: Adaptive educational hypermedia systems (AEHS), E-learning, Learner's model, Learning objects, Metadata, Ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19606138 The Impact of Training Method on Programming Learning Performance
Authors: Chechen Liao, Chin Yi Yang
Abstract:
Although several factors that affect learning to program have been identified over the years, there continues to be no indication of any consensus in understanding why some students learn to program easily and quickly while others have difficulty. Seldom have researchers considered the problem of how to help the students enhance the programming learning outcome. The research had been conducted at a high school in Taiwan. Students participating in the study consist of 330 tenth grade students enrolled in the Basic Computer Concepts course with the same instructor. Two types of training methods-instruction-oriented and exploration-oriented were conducted. The result of this research shows that the instruction-oriented training method has better learning performance than exploration-oriented training method.
Keywords: Learning performance, programming learning, TDD, training method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19576137 ECG Based Reliable User Identification Using Deep Learning
Authors: R. N. Begum, Ambalika Sharma, G. K. Singh
Abstract:
Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and electrocardiogram (ECG)-based systems are unquestionably the best choice due to their appealing inherent characteristics. The Convolutional Neural Networks (CNNs) are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the caliber of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest False Acceptance Rate (FAR) of 0.04% and the highest False Rejection Rate (FRR) of 5%, the best performing network achieved an identification accuracy of 99.94%. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable, but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.
Keywords: Biometrics, dense networks, identification rate, train/test split ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5416136 Models and Metamodels for Computer-Assisted Natural Language Grammar Learning
Authors: Evgeny Pyshkin, Maxim Mozgovoy, Vladislav Volkov
Abstract:
The paper follows a discourse on computer-assisted language learning. We examine problems of foreign language teaching and learning and introduce a metamodel that can be used to define learning models of language grammar structures in order to support teacher/student interaction. Special attention is paid to the concept of a virtual language lab. Our approach to language education assumes to encourage learners to experiment with a language and to learn by discovering patterns of grammatically correct structures created and managed by a language expert.
Keywords: Computer-assisted instruction, Language learning, Natural language grammar models, HCI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21946135 Motivational Orientation of the Methodical System of Teaching Mathematics in Secondary Schools
Authors: M. Rodionov, Z. Dedovets
Abstract:
The article analyses the composition and structure of the motivationally oriented methodological system of teaching mathematics (purpose, content, methods, forms, and means of teaching), viewed through the prism of the student as the subject of the learning process. Particular attention is paid to the problem of methods of teaching mathematics, which are represented in the form of an ordered triad of attributes corresponding to the selected characteristics. A systematic analysis of possible options and their methodological interpretation enriched existing ideas about known methods and technologies of training, and significantly expanded their nomenclature by including previously unstudied combinations of characteristics. In addition, examples outlined in this article illustrate the possibilities of enhancing the motivational capacity of a particular method or technology in the real learning practice of teaching mathematics through more free goal-setting and varying the conditions of the problem situations. The authors recommend the implementation of different strategies according to their characteristics in teaching and learning mathematics in secondary schools.
Keywords: Education, methodological system, teaching of mathematics, teachers, lesson, students motivation, secondary school.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8586134 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images
Authors: Firas Gerges, Frank Y. Shih
Abstract:
Malignant Melanoma, known simply as Melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient death. When detected early, Melanoma is curable. In this paper we propose a deep learning model (Convolutional Neural Networks) in order to automatically classify skin lesion images as Malignant or Benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.
Keywords: Deep learning, skin cancer, image processing, melanoma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15406133 Distributed Load Flow Analysis using Graph Theory
Authors: D. P. Sharma, A. Chaturvedi, G.Purohit , R.Shivarudraswamy
Abstract:
In today scenario, to meet enhanced demand imposed by domestic, commercial and industrial consumers, various operational & control activities of Radial Distribution Network (RDN) requires a focused attention. Irrespective of sub-domains research aspects of RDN like network reconfiguration, reactive power compensation and economic load scheduling etc, network performance parameters are usually estimated by an iterative process and is commonly known as load (power) flow algorithm. In this paper, a simple mechanism is presented to implement the load flow analysis (LFA) algorithm. The reported algorithm utilizes graph theory principles and is tested on a 69- bus RDN.Keywords: Radial Distribution network, Graph, Load-flow, Array.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31436132 Interbank Networks and the Benefits of Using Multilayer Structures
Authors: Danielle Sandler dos Passos, Helder Coelho, Flávia Mori Sarti
Abstract:
Complexity science seeks the understanding of systems adopting diverse theories from various areas. Network analysis has been gaining space and credibility, namely with the biological, social and economic systems. Significant part of the literature focuses only monolayer representations of connections among agents considering one level of their relationships, and excludes other levels of interactions, leading to simplistic results in network analysis. Therefore, this work aims to demonstrate the advantages of the use of multilayer networks for the representation and analysis of networks. For this, we analyzed an interbank network, composed of 42 banks, comparing the centrality measures of the agents (degree and PageRank) resulting from each method (monolayer x multilayer). This proved to be the most reliable and efficient the multilayer analysis for the study of the current networks and highlighted JP Morgan and Deutsche Bank as the most important banks of the analyzed network.
Keywords: Complexity, interbank networks, multilayer networks, network analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8516131 Maximizer of the Posterior Marginal Estimate of Phase Unwrapping Based On Statistical Mechanics of the Q-Ising Model
Authors: Yohei Saika, Tatsuya Uezu
Abstract:
We constructed a method of phase unwrapping for a typical wave-front by utilizing the maximizer of the posterior marginal (MPM) estimate corresponding to equilibrium statistical mechanics of the three-state Ising model on a square lattice on the basis of an analogy between statistical mechanics and Bayesian inference. We investigated the static properties of an MPM estimate from a phase diagram using Monte Carlo simulation for a typical wave-front with synthetic aperture radar (SAR) interferometry. The simulations clarified that the surface-consistency conditions were useful for extending the phase where the MPM estimate was successful in phase unwrapping with a high degree of accuracy and that introducing prior information into the MPM estimate also made it possible to extend the phase under the constraint of the surface-consistency conditions with a high degree of accuracy. We also found that the MPM estimate could be used to reconstruct the original wave-fronts more smoothly, if we appropriately tuned hyper-parameters corresponding to temperature to utilize fluctuations around the MAP solution. Also, from the viewpoint of statistical mechanics of the Q-Ising model, we found that the MPM estimate was regarded as a method for searching the ground state by utilizing thermal fluctuations under the constraint of the surface-consistency condition.
Keywords: Bayesian inference, maximizer of the posterior marginal estimate, phase unwrapping, Monte Carlo simulation, statistical mechanics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17156130 Knowledge Management and e-Learning –An Agent-Based Approach
Authors: Teodora Bakardjieva, Galya Gercheva
Abstract:
In this paper an open agent-based modular framework for personalized and adaptive curriculum generation in e-learning environment is proposed. Agent-based approaches offer several potential advantages over alternative approaches. Agent-based systems exhibit high levels of flexibility and robustness in dynamic or unpredictable environments by virtue of their intrinsic autonomy. The presented framework enables integration of different types of expert agents, various kinds of learning objects and user modeling techniques. It creates possibilities for adaptive e-learning process. The KM e-learning system is in a process of implementation in Varna Free University and will be used for supporting the educational process at the University.Keywords: agents, e-Learning, knowledge management, knowledge sharing, artificial intelligence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21666129 Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System
Authors: Che Z. Zulkifli, Nursyahida M. Noor, Siti N. Semunab, Shafawati A. Malek
Abstract:
Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system.Keywords: Mesh network, RFID, wireless sensor network, zigbee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26416128 An E-learning System Architecture based on Cloud Computing
Authors: Md. Anwar Hossain Masud, Xiaodi Huang
Abstract:
The massive proliferation of affordable computers, Internet broadband connectivity and rich education content has created a global phenomenon in which information and communication technology (ICT) is being used to transform education. Therefore, there is a need to redesign the educational system to meet the needs better. The advent of computers with sophisticated software has made it possible to solve many complex problems very fast and at a lower cost. This paper introduces the characteristics of the current E-Learning and then analyses the concept of cloud computing and describes the architecture of cloud computing platform by combining the features of E-Learning. The authors have tried to introduce cloud computing to e-learning, build an e-learning cloud, and make an active research and exploration for it from the following aspects: architecture, construction method and external interface with the model.
Keywords: Architecture, Cloud Computing, E-learning, Information Technology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11071