Search results for: Automatic mapping
269 Visual Inspection of Work Piece with a Complex Shape by Means of Robot Manipulator
Authors: A. Y. Bani Hashim, N. S. A. Ramdan
Abstract:
Inconsistency in manual inspection is real because humans get tired after some time. Recent trends show that automatic inspection is more appealing for mass production inspections. In such as a case, a robot manipulator seems the best candidate to run a dynamic visual inspection. The purpose of this work is to estimate the optimum workspace where a robot manipulator would perform a visual inspection process onto a work piece where a camera is attached to the end effector. The pseudo codes for the planned path are derived from the number of tool transit points, the delay time at the transit points, the process cycle time, and the configuration space that the distance between the tool and the work piece. It is observed that express start and swift end are acceptable in a robot program because applicable works usually in existence during these moments. However, during the mid-range cycle, there are always practical tasks programmed to be executed. For that reason, it is acceptable to program the robot such as that speedy alteration of actuator displacement is avoided. A dynamic visual inspection system using a robot manipulator seems practical for a work piece with a complex shape.
Keywords: Robot manipulator, Visual inspection, Work piece, Trajectory planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661268 An Effective Method of Head Lamp and Tail Lamp Recognition for Night Time Vehicle Detection
Authors: Hyun-Koo Kim, Sagong Kuk, MinKwan Kim, Ho-Youl Jung
Abstract:
This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, to effectively extract spotlight of interest, a segmentation process based on automatic multi-level threshold method is applied on the road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process based on light tracking and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with near infrared mono-camera and tested it in the urban and rural roads. Through the test, classification performances are above 97% of true positive rate evaluated on real-time environment. Our method also has good performance in the case of clear, fog and rain weather.
Keywords: Assistance Driving System, Multi-level Threshold Method, Near Infrared Mono Camera, Nighttime Vehicle Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2938267 A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments
Authors: Abder-Rahman Ali, Antoine Vacavant, Manuel Grand-Brochier, Adélaïde Albouy-Kissi, Jean-Yves Boire
Abstract:
In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy CMeans methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc.).Keywords: Defuzzification, floating search, fuzzy clustering, Zernike moments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050266 The Conceptual Design Model of an Automated Supermarket
Authors: Sathya Narayanan V., Sidharth P., Sanal Kumar. V. R.
Abstract:
The success of any retail business is predisposed by its swift response and its knack in understanding the constraints and the requirements of customers. In this paper a conceptual design model of an automated customer-friendly supermarket has been proposed. In this model a 10-sided, space benefited, regular polygon shaped gravity shelves have been designed for goods storage and effective customer-specific algorithms have been built-in for quick automatic delivery of the randomly listed goods. The algorithm is developed with two main objectives, viz., delivery time and priority. For meeting these objectives the randomly listed items are reorganized according to the critical-path of the robotic arm specific to the identified shop and its layout and the items are categorized according to the demand, shape, size, similarity and nature of the product for an efficient pick-up, packing and delivery process. We conjectured that the proposed automated supermarket model reduces business operating costs with much customer satisfaction warranting a winwin situation.
Keywords: Automated Supermarket, Electronic Shopping, Polygon-shaped Rack, Shortest Path Algorithm for Shopping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3239265 A Novel Modified Adaptive Fuzzy Inference Engine and Its Application to Pattern Classification
Authors: J. Hossen, A. Rahman, K. Samsudin, F. Rokhani, S. Sayeed, R. Hasan
Abstract:
The Neuro-Fuzzy hybridization scheme has become of research interest in pattern classification over the past decade. The present paper proposes a novel Modified Adaptive Fuzzy Inference Engine (MAFIE) for pattern classification. A modified Apriori algorithm technique is utilized to reduce a minimal set of decision rules based on input output data sets. A TSK type fuzzy inference system is constructed by the automatic generation of membership functions and rules by the fuzzy c-means clustering and Apriori algorithm technique, respectively. The generated adaptive fuzzy inference engine is adjusted by the least-squares fit and a conjugate gradient descent algorithm towards better performance with a minimal set of rules. The proposed MAFIE is able to reduce the number of rules which increases exponentially when more input variables are involved. The performance of the proposed MAFIE is compared with other existing applications of pattern classification schemes using Fisher-s Iris and Wisconsin breast cancer data sets and shown to be very competitive.Keywords: Apriori algorithm, Fuzzy C-means, MAFIE, TSK
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931264 Comparative Study of Different Enhancement Techniques for Computed Tomography Images
Authors: C. G. Jinimole, A. Harsha
Abstract:
One of the key problems facing in the analysis of Computed Tomography (CT) images is the poor contrast of the images. Image enhancement can be used to improve the visual clarity and quality of the images or to provide a better transformation representation for further processing. Contrast enhancement of images is one of the acceptable methods used for image enhancement in various applications in the medical field. This will be helpful to visualize and extract details of brain infarctions, tumors, and cancers from the CT image. This paper presents a comparison study of five contrast enhancement techniques suitable for the contrast enhancement of CT images. The types of techniques include Power Law Transformation, Logarithmic Transformation, Histogram Equalization, Contrast Stretching, and Laplacian Transformation. All these techniques are compared with each other to find out which enhancement provides better contrast of CT image. For the comparison of the techniques, the parameters Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) are used. Logarithmic Transformation provided the clearer and best quality image compared to all other techniques studied and has got the highest value of PSNR. Comparison concludes with better approach for its future research especially for mapping abnormalities from CT images resulting from Brain Injuries.
Keywords: Computed tomography, enhancement techniques, increasing contrast, PSNR and MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378263 A Novel Prostate Segmentation Algorithm in TRUS Images
Authors: Ali Rafiee, Ahad Salimi, Ali Reza Roosta
Abstract:
Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound (TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a novel method for automatic prostate segmentation in TRUS images is presented. This method involves preprocessing (edge preserving noise reduction and smoothing) and prostate segmentation. The speckle reduction has been achieved by using stick filter and top-hat transform has been implemented for smoothing. A feed forward neural network and local binary pattern together have been use to find a point inside prostate object. Finally the boundary of prostate is extracted by the inside point and an active contour algorithm. A numbers of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with MSE less than 4.6% relative to boundary provided manually by physicians.
Keywords: Prostate segmentation, stick filter, neural network, active contour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969262 Laboratory Testing Regime for Quantifying Soil Collapsibility
Authors: Anne C. Okwedadi, Samson Ng’ambi, Ian Jefferson
Abstract:
Collapsible soils go through radical rearrangement of their particles when triggered by water, stress or/and vibration, causing loss of volume. This loss of volume in soil as seen in foundation failures has caused millions of dollars’ worth of damages to public facilities and infrastructure and so has an adverse effect on the society and people. Despite these consequences and the several studies that are available, more research is still required in the study of soil collapsibility. Discerning the pedogenesis (formation) of soils and investigating the combined effects of the different geological soil properties is key to elucidating and quantifying soils collapsibility. This study presents a novel laboratory testing regime that would be undertaken on soil samples where the effects of soil type, compactive variables (moisture content, density, void ratio, degree of saturation) and loading are analyzed. It is anticipated that results obtained would be useful in mapping the trend of the combined effect thus the basis for evaluating soil collapsibility or collapse potentials encountered in construction with volume loss problems attributed to collapse.
Keywords: Collapsible soil, Geomorphological process, Soil Collapsibility properties, Soil test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3683261 Genetic Folding: Analyzing the Mercer-s Kernels Effect in Support Vector Machine using Genetic Folding
Authors: Mohd A. Mezher, Maysam F. Abbod
Abstract:
Genetic Folding (GF) a new class of EA named as is introduced for the first time. It is based on chromosomes composed of floating genes structurally organized in a parent form and separated by dots. Although, the genotype/phenotype system of GF generates a kernel expression, which is the objective function of superior classifier. In this work the question of the satisfying mapping-s rules in evolving populations is addressed by analyzing populations undergoing either Mercer-s or none Mercer-s rule. The results presented here show that populations undergoing Mercer-s rules improve practically models selection of Support Vector Machine (SVM). The experiment is trained multi-classification problem and tested on nonlinear Ionosphere dataset. The target of this paper is to answer the question of evolving Mercer-s rule in SVM addressed using either genetic folding satisfied kernel-s rules or not applied to complicated domains and problems.Keywords: Genetic Folding, GF, Evolutionary Algorithms, Support Vector Machine, Genetic Algorithm, Genetic Programming, Multi-Classification, Mercer's Rules
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627260 Elemental Graph Data Model: A Semantic and Topological Representation of Building Elements
Authors: Yasmeen A. S. Essawy, Khaled Nassar
Abstract:
With the rapid increase of complexity in the building industry, professionals in the A/E/C industry were forced to adopt Building Information Modeling (BIM) in order to enhance the communication between the different project stakeholders throughout the project life cycle and create a semantic object-oriented building model that can support geometric-topological analysis of building elements during design and construction. This paper presents a model that extracts topological relationships and geometrical properties of building elements from an existing fully designed BIM, and maps this information into a directed acyclic Elemental Graph Data Model (EGDM). The model incorporates BIM-based search algorithms for automatic deduction of geometrical data and topological relationships for each building element type. Using graph search algorithms, such as Depth First Search (DFS) and topological sortings, all possible construction sequences can be generated and compared against production and construction rules to generate an optimized construction sequence and its associated schedule. The model is implemented in a C# platform.
Keywords: Building information modeling, elemental graph data model, geometric and topological data models, and graph theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203259 An Approach to Integrate Ontologies of Open Educational Resources in Knowledge Based Management Systems
Authors: Firas A. Al Laban, Mohamed Chabi, Sammani Danwawu Abdullahi
Abstract:
There are real needs to integrate types of Open Educational Resources (OER) with an intelligent system to extract information and knowledge in the semantic searching level. The needs came because most of current learning standard adopted web based learning and the e-learning systems do not always serve all educational goals. Semantic Web systems provide educators, students, and researchers with intelligent queries based on a semantic knowledge management learning system. An ontology-based learning system is an advanced system, where ontology plays the core of the semantic web in a smart learning environment. The objective of this paper is to discuss the potentials of ontologies and mapping different kinds of ontologies; heterogeneous or homogenous to manage and control different types of Open Educational Resources. The important contribution of this research is that it uses logical rules and conceptual relations to map between ontologies of different educational resources. We expect from this methodology to establish an intelligent educational system supporting student tutoring, self and lifelong learning system.Keywords: Knowledge Management Systems, Ontologies, Semantic Web, Open Educational Resources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577258 Corpus-Assisted Study of Gender Related Tiger Metaphors in the Chinese Context
Authors: Na Xiao
Abstract:
Animal metaphors have many different connotations, ranging from loving emotions to derogatory epithets, but gender expressions using animal metaphors are often imbalanced. Generally, animal metaphors related to females tend to be negative. Little known about the reasons for the negative expressions of animal female metaphors in Chinese contexts still have not been quantified. The study was based on the conceptual metaphor theory, and it used the Modern Chinese Corpus at the Center for Chinese Linguistics at Peking University (CCL Corpus) as a database, which identified the influencing variables of gender differences in the description of animal metaphors mapping humans in the Chinese context by observing the percentage of "tiger" metaphor. This study has proved that the tiger metaphors associated with humans in the Chinese context tend to be negative. Importantly, this study has also shown that the proportion of tiger metaphorical idioms that are related to women is very high. This finding can be used as crucial information for future studies on other gender-related animal metaphorical idioms and can offer additional insights for understanding trends in other animal metaphors.
Keywords: Chinese, CCL Corpus, gender differences, metaphorical idioms, tigers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 266257 A Hidden Markov Model-Based Isolated and Meaningful Hand Gesture Recognition
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Jörg Appenrodt, Bernd Michaelis
Abstract:
Gesture recognition is a challenging task for extracting meaningful gesture from continuous hand motion. In this paper, we propose an automatic system that recognizes isolated gesture, in addition meaningful gesture from continuous hand motion for Arabic numbers from 0 to 9 in real-time based on Hidden Markov Models (HMM). In order to handle isolated gesture, HMM using Ergodic, Left-Right (LR) and Left-Right Banded (LRB) topologies is applied over the discrete vector feature that is extracted from stereo color image sequences. These topologies are considered to different number of states ranging from 3 to 10. A new system is developed to recognize the meaningful gesture based on zero-codeword detection with static velocity motion for continuous gesture. Therefore, the LRB topology in conjunction with Baum-Welch (BW) algorithm for training and forward algorithm with Viterbi path for testing presents the best performance. Experimental results show that the proposed system can successfully recognize isolated and meaningful gesture and achieve average rate recognition 98.6% and 94.29% respectively.Keywords: Computer Vision & Image Processing, Gesture Recognition, Pattern Recognition, Application
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250256 Assessment of Time-Lapse in Visible and Thermal Face Recognition
Authors: Sajad Farokhi, Siti Mariyam Shamsuddin, Jan Flusser, Usman Ullah Sheikh
Abstract:
Although face recognition seems as an easy task for human, automatic face recognition is a much more challenging task due to variations in time, illumination and pose. In this paper, the influence of time-lapse on visible and thermal images is examined. Orthogonal moment invariants are used as a feature extractor to analyze the effect of time-lapse on thermal and visible images and the results are compared with conventional Principal Component Analysis (PCA). A new triangle square ratio criterion is employed instead of Euclidean distance to enhance the performance of nearest neighbor classifier. The results of this study indicate that the ideal feature vectors can be represented with high discrimination power due to the global characteristic of orthogonal moment invariants. Moreover, the effect of time-lapse has been decreasing and enhancing the accuracy of face recognition considerably in comparison with PCA. Furthermore, our experimental results based on moment invariant and triangle square ratio criterion show that the proposed approach achieves on average 13.6% higher in recognition rate than PCA.Keywords: Infrared Face recognition, Time-lapse, Zernike moment invariants
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784255 Automatic Detection and Classification of Microcalcification, Mass, Architectural Distortion and Bilateral Asymmetry in Digital Mammogram
Authors: S. Shanthi, V. Muralibhaskaran
Abstract:
Mammography has been one of the most reliable methods for early detection of breast cancer. There are different lesions which are breast cancer characteristic such as microcalcifications, masses, architectural distortions and bilateral asymmetry. One of the major challenges of analysing digital mammogram is how to extract efficient features from it for accurate cancer classification. In this paper we proposed a hybrid feature extraction method to detect and classify all four signs of breast cancer. The proposed method is based on multiscale surrounding region dependence method, Gabor filters, multi fractal analysis, directional and morphological analysis. The extracted features are input to self adaptive resource allocation network (SRAN) classifier for classification. The validity of our approach is extensively demonstrated using the two benchmark data sets Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammograph (DDSM) and the results have been proved to be progressive.
Keywords: Feature extraction, fractal analysis, Gabor filters, multiscale surrounding region dependence method, SRAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2944254 The Use of Fractional Brownian Motion in the Generation of Bed Topography for Bodies of Water Coupled with the Lattice Boltzmann Method
Authors: Elysia Barker, Jian Guo Zhou, Ling Qian, Steve Decent
Abstract:
A method of modelling topography used in the simulation of riverbeds is proposed in this paper which removes the need for datapoints and measurements of a physical terrain. While complex scans of the contours of a surface can be achieved with other methods, this requires specialised tools which the proposed method overcomes by using fractional Brownian motion (FBM) as a basis to estimate the real surface within a 15% margin of error while attempting to optimise algorithmic efficiency. This removes the need for complex, expensive equipment and reduces resources spent modelling bed topography. This method also accounts for the change in topography over time due to erosion, sediment transport, and other external factors which could affect the topography of the ground by updating its parameters and generating a new bed. The lattice Boltzmann method (LBM) is used to simulate both stationary and steady flow cases in a side-by-side comparison over the generated bed topography using the proposed method, and a test case taken from an external source. The method, if successful, will be incorporated into the current LBM program used in the testing phase, which will allow an automatic generation of topography for the given situation in future research, removing the need for bed data to be specified.
Keywords: Bed topography, FBM, LBM, shallow water, simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 305253 A PI Controller for Enhancing the Transient Stability of Multi Pulse Inverter Based Static Synchronous Series Compensator (SSSC) With Superconducting Magnetic Energy Storage(SMES)
Authors: S. Padma, Dr. R. Lakshmipathi, K. Ramash Kumar, P. Nandagopal
Abstract:
The power system network is becoming more complex nowadays and it is very difficult to maintain the stability of the system. Today-s enhancement of technology makes it possible to include new energy storage devices in the electric power system. In addition, with the aid of power electronic devices, it is possible to independently exchange active and reactive power flow with the utility grid. The main purpose of this paper proposes a Proportional – Integral (PI) control based 48 – pulse Inverter based Static Synchronous Series Compensator (SSSC) with and without Superconducting Magnetic Energy Storage (SMES) used for enhancing the transient stability and regulating power flow in automatic mode. Using a test power system through the dynamic simulation in Matlab/Simulink platform validates the performance of the proposed SSSC with and without SMES system.Keywords: Flexible AC transmission system (FACTS), PIControl, Superconducting Magnetic Energy Storage (SMES), Static Synchronous Series Compensator (SSSC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2354252 Assessing and Evaluating the Course Outcomes of Electrical Circuit Course for Bachelor of Science in Electrical and Electronic Engineering Program
Authors: Muhibul Haque Bhuyan, Sher Shermin Azmiri Khan
Abstract:
At present, it is an imperative and stimulating task to grow the concepts and skills of undergraduate students in any course. Educators must build up students' higher-order complex and critical thinking abilities. But many of them find it difficult to assess and evaluate these abilities of students who undertake their courses during undergraduate studies. In this research work, a simple assessment and evaluation process for the electrical circuit course of the undergraduate Electrical and Electronic Engineering (EEE) program is reported using the Outcome-Based Education (OBE) approach. The methodology of the work, course contents design, course outcomes (COs) preparation and mapping it with program outcomes (POs), question setting following Bloom's taxonomy, assessment strategy of the students, CO and PO evaluation records, statistics, and charts have been reported for a student-cohort of electrical circuit course taken in Spring 2019 Semester at EEE Department of Southeast University (SEU). It is found that the benchmark fixed by the course instructor has been achieved by the students of that course through CO assessment and evaluation. Recommendations of the course teacher for further quality enhancement based on CO achievement are also presented.
Keywords: OBE, COs, POs, assessment and evaluation, electrical circuit course.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629251 Developing a New Relationship between Undrained Shear Strength and Over-Consolidation Ratio
Authors: Wael M Albadri, Hassnen M Jafer, Ehab H Sfoog
Abstract:
Relationship between undrained shear strength (Su) and over consolidation ratio (OCR) of clay soil (marine clay) is very important in the field of geotechnical engineering to estimate the settlement behaviour of clay and to prepare a small scale physical modelling test. In this study, a relationship between shear strength and OCR parameters was determined using the laboratory vane shear apparatus and the fully automatic consolidated apparatus. The main objective was to establish non-linear correlation formula between shear strength and OCR and comparing it with previous studies. Therefore, in order to achieve this objective, three points were chosen to obtain 18 undisturbed samples which were collected with an increasing depth of 1.0 m to 3.5 m each 0.5 m. Clay samples were prepared under undrained condition for both tests. It was found that the OCR and shear strength are inversely proportional at similar depth and at same undrained conditions. However, a good correlation was obtained from the relationships where the R2 values were very close to 1.0 using polynomial equations. The comparison between the experimental result and previous equation from other researchers produced a non-linear correlation which has a similar pattern with this study.Keywords: Shear strength, over-consolidation ratio, vane shear test, clayey soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145250 Optimization Approaches for a Complex Dairy Farm Simulation Model
Authors: Jagannath Aryal, Don Kulasiri, Dishi Liu
Abstract:
This paper describes the optimization of a complex dairy farm simulation model using two quite different methods of optimization, the Genetic algorithm (GA) and the Lipschitz Branch-and-Bound (LBB) algorithm. These techniques have been used to improve an agricultural system model developed by Dexcel Limited, New Zealand, which describes a detailed representation of pastoral dairying scenarios and contains an 8-dimensional parameter space. The model incorporates the sub-models of pasture growth and animal metabolism, which are themselves complex in many cases. Each evaluation of the objective function, a composite 'Farm Performance Index (FPI)', requires simulation of at least a one-year period of farm operation with a daily time-step, and is therefore computationally expensive. The problem of visualization of the objective function (response surface) in high-dimensional spaces is also considered in the context of the farm optimization problem. Adaptations of the sammon mapping and parallel coordinates visualization are described which help visualize some important properties of the model-s output topography. From this study, it is found that GA requires fewer function evaluations in optimization than the LBB algorithm.Keywords: Genetic Algorithm, Linux Cluster, LipschitzBranch-and-Bound, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109249 Efficient DTW-Based Speech Recognition System for Isolated Words of Arabic Language
Authors: Khalid A. Darabkh, Ala F. Khalifeh, Baraa A. Bathech, Saed W. Sabah
Abstract:
Despite the fact that Arabic language is currently one of the most common languages worldwide, there has been only a little research on Arabic speech recognition relative to other languages such as English and Japanese. Generally, digital speech processing and voice recognition algorithms are of special importance for designing efficient, accurate, as well as fast automatic speech recognition systems. However, the speech recognition process carried out in this paper is divided into three stages as follows: firstly, the signal is preprocessed to reduce noise effects. After that, the signal is digitized and hearingized. Consequently, the voice activity regions are segmented using voice activity detection (VAD) algorithm. Secondly, features are extracted from the speech signal using Mel-frequency cepstral coefficients (MFCC) algorithm. Moreover, delta and acceleration (delta-delta) coefficients have been added for the reason of improving the recognition accuracy. Finally, each test word-s features are compared to the training database using dynamic time warping (DTW) algorithm. Utilizing the best set up made for all affected parameters to the aforementioned techniques, the proposed system achieved a recognition rate of about 98.5% which outperformed other HMM and ANN-based approaches available in the literature.Keywords: Arabic speech recognition, MFCC, DTW, VAD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4075248 Practical Applications and Connectivity Algorithms in Future Wireless Sensor Networks
Authors: Mohamed K. Watfa
Abstract:
Like any sentient organism, a smart environment relies first and foremost on sensory data captured from the real world. The sensory data come from sensor nodes of different modalities deployed on different locations forming a Wireless Sensor Network (WSN). Embedding smart sensors in humans has been a research challenge due to the limitations imposed by these sensors from computational capabilities to limited power. In this paper, we first propose a practical WSN application that will enable blind people to see what their neighboring partners can see. The challenge is that the actual mapping between the input images to brain pattern is too complex and not well understood. We also study the connectivity problem in 3D/2D wireless sensor networks and propose distributed efficient algorithms to accomplish the required connectivity of the system. We provide a new connectivity algorithm CDCA to connect disconnected parts of a network using cooperative diversity. Through simulations, we analyze the connectivity gains and energy savings provided by this novel form of cooperative diversity in WSNs.Keywords: Wireless Sensor Networks, Pervasive Computing, Eye Vision Application, 3D Connectivity, Clusters, Energy Efficient, Cooperative diversity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627247 Towards Model-Driven Communications
Authors: Antonio Natali, Ambra Molesini
Abstract:
In modern distributed software systems, the issue of communication among composing parts represents a critical point, but the idea of extending conventional programming languages with general purpose communication constructs seems difficult to realize. As a consequence, there is a (growing) gap between the abstraction level required by distributed applications and the concepts provided by platforms that enable communication. This work intends to discuss how the Model Driven Software Development approach can be considered as a mature technology to generate in automatic way the schematic part of applications related to communication, by providing at the same time high level specialized languages useful in all the phases of software production. To achieve the goal, a stack of languages (meta-meta¬models) has been introduced in order to describe – at different levels of abstraction – the collaborative behavior of generic entities in terms of communication actions related to a taxonomy of messages. Finally, the generation of platforms for communication is viewed as a form of specification of language semantics, that provides executable models of applications together with model-checking supports and effective runtime environments.
Keywords: Interactions, specific languages, meta-models, model driven development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850246 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM
Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad
Abstract:
Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.Keywords: Cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993245 Some Issues on Integrating Telepresence Technology into Industrial Robotic Assembly
Authors: Gunther Reinhart, Marwan Radi
Abstract:
Since the 1940s, many promising telepresence research results have been obtained. However, telepresence technology still has not reached industrial usage. As human intelligence is necessary for successful execution of most manual assembly tasks, the ability of the human is hindered in some cases, such as the assembly of heavy parts of small/medium lots or prototypes. In such a case of manual assembly, the help of industrial robots is mandatory. The telepresence technology can be considered as a solution for performing assembly tasks, where the human intelligence and haptic sense are needed to identify and minimize the errors during an assembly process and a robot is needed to carry heavy parts. In this paper, preliminary steps to integrate the telepresence technology into industrial robot systems are introduced. The system described here combines both, the human haptic sense and the industrial robot capability to perform a manual assembly task remotely using a force feedback joystick. Mapping between the joystick-s Degrees of Freedom (DOF) and the robot-s ones are introduced. Simulation and experimental results are shown and future work is discussed.Keywords: Assembly, Force Feedback, Industrial Robot, Teleassembly, Telepresence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244244 Low Complexity Multi Mode Interleaver Core for WiMAX with Support for Convolutional Interleaving
Authors: Rizwan Asghar, Dake Liu
Abstract:
A hardware efficient, multi mode, re-configurable architecture of interleaver/de-interleaver for multiple standards, like DVB, WiMAX and WLAN is presented. The interleavers consume a large part of silicon area when implemented by using conventional methods as they use memories to store permutation patterns. In addition, different types of interleavers in different standards cannot share the hardware due to different construction methodologies. The novelty of the work presented in this paper is threefold: 1) Mapping of vital types of interleavers including convolutional interleaver onto a single architecture with flexibility to change interleaver size; 2) Hardware complexity for channel interleaving in WiMAX is reduced by using 2-D realization of the interleaver functions; and 3) Silicon cost overheads reduced by avoiding the use of small memories. The proposed architecture consumes 0.18mm2 silicon area for 0.12μm process and can operate at a frequency of 140 MHz. The reduced complexity helps in minimizing the memory utilization, and at the same time provides strong support to on-the-fly computation of permutation patterns.Keywords: Hardware interleaver implementation, WiMAX, DVB, block interleaver, convolutional interleaver, hardwaremultiplexing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036243 Level of Service Based Methodology for Municipal Infrastructure Management
Authors: Z. Khan, O. Moselhi, T. Zayed
Abstract:
Development of levels of service in municipal context is a flexible vehicle to assist in performing quality-cost trade-off analysis for municipal services. This trade-off depends on the willingness of a community to pay as well as on the condition of the assets. Community perspective of the performance of an asset from service point of view may be quite different from the municipality perspective of the performance of the same asset from condition point of view. This paper presents a three phased level of service based methodology for water mains that consists of :1)development of an Analytical Hierarchy model of level of service 2) development of Fuzzy Weighted Sum model of water main condition index and 3) deriving a Fuzzy logic based function that maps level of service to asset condition index. This mapping will assist asset managers in quantifying condition improvement requirement to meet service goals and to make more informed decisions on interventions and relayed priorities.Keywords: Asset Management, Level of Service, Condition Index, Analytical Hierarchy, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950242 Implementation of a New Neural Network Function Block to Programmable Logic Controllers Library Function
Authors: Hamid Abdi, Abolfazl Salami, Abolfazl Ahmadi
Abstract:
Programmable logic controllers are the main controllers in the today's industries; they are used for several applications in industrial control systems and there are lots of examples exist from the PLC applications in industries especially in big companies and plants such as refineries, power plants, petrochemical companies, steel companies, and food and production companies. In the PLCs there are some functions in the function library in software that can be used in PLC programs as basic program elements. The aim of this project are introducing and implementing a new function block of a neural network to the function library of PLC. This block can be applied for some control applications or nonlinear functions calculations after it has been trained for these applications. The implemented neural network is a Perceptron neural network with three layers, three input nodes and one output node. The block can be used in manual or automatic mode. In this paper the structure of the implemented function block, the parameters and the training method of the network are presented by considering the especial method of PLC programming and its complexities. Finally the application of the new block is compared with a classic simulated block and the results are presented.Keywords: Programmable Logic Controller, PLC Programming, Neural Networks, Perception Network, Intelligent Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3810241 High-Fidelity 1D Dynamic Model of a Hydraulic Servo Valve Using 3D Computational Fluid Dynamics and Electromagnetic Finite Element Analysis
Authors: D. Henninger, A. Zopey, T. Ihde, C. Mehring
Abstract:
The dynamic performance of a 4-way solenoid operated hydraulic spool valve has been analyzed by means of a one-dimensional modeling approach capturing flow, magnetic and fluid forces, valve inertia forces, fluid compressibility, and damping. Increased model accuracy was achieved by analyzing the detailed three-dimensional electromagnetic behavior of the solenoids and flow behavior through the spool valve body for a set of relevant operating conditions, thereby allowing the accurate mapping of flow and magnetic forces on the moving valve body, in lieu of representing the respective forces by lower-order models or by means of simplistic textbook correlations. The resulting high-fidelity one-dimensional model provided the basis for specific and timely design modification eliminating experimentally observed valve oscillations.Keywords: Dynamic performance model, high-fidelity model, 1D-3D decoupled analysis, solenoid-operated hydraulic servo valve, CFD and electromagnetic FEA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152240 Classification of State Transition by Using a Microwave Doppler Sensor for Wandering Detection
Authors: K. Shiba, T. Kaburagi, Y. Kurihara
Abstract:
With global aging, people who require care, such as people with dementia (PwD), are increasing within many developed countries. And PwDs may wander and unconsciously set foot outdoors, it may lead serious accidents, such as, traffic accidents. Here, round-the-clock monitoring by caregivers is necessary, which can be a burden for the caregivers. Therefore, an automatic wandering detection system is required when an elderly person wanders outdoors, in which case the detection system transmits a ‘moving’ followed by an ‘absence’ state. In this paper, we focus on the transition from the ‘resting’ to the ‘absence’ state, via the ‘moving’ state as one of the wandering transitions. To capture the transition of the three states, our method based on the hidden Markov model (HMM) is built. Using our method, the restraint where the ‘resting’ state and ‘absence’ state cannot be transmitted to each other is applied. To validate our method, we conducted the experiment with 10 subjects. Our results show that the method can classify three states with 0.92 accuracy.Keywords: Wander, microwave Doppler sensor, respiratory frequency band, the state transition, hidden Markov model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850