Search results for: cognitive load
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1766

Search results for: cognitive load

1106 Friction Calculation and Simulation of Column Electric Power Steering System

Authors: Seyed Hamid Mirmohammad Sadeghi, Raffaella Sesana, Daniela Maffiodo

Abstract:

This study presents a procedure for friction calculation of column electric power steering (C-EPS) system which affects handling and comfort in driving. The friction losses estimation is obtained from experimental tests and mathematical calculation. Parts in C-EPS mainly involved in friction losses are bearings and worm gear. In the theoretical approach, the gear geometry and Hertz law were employed to measure the normal load and the sliding velocity and contact areas from the worm gears driving conditions. The viscous friction generated in the worm gear was obtained with a theoretical approach and the result was applied to model the friction in the steering system. Finally, by viscous friction coefficient and Coulomb friction coefficient, values of friction in worm gear were calculated. According to the Bearing Company and the characteristics of each bearing, the friction torques due to load and due to speed were calculated. A MATLAB Simulink model for calculating the friction in bearings and worm gear in C-EPS were done and the total friction value was estimated.

Keywords: Friction, worm gear, column electric power steering system, Simulink, bearing, electric power steering, EPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
1105 Reliability Analysis of P-I Diagram Formula for RC Column Subjected to Blast Load

Authors: Masoud Abedini, Azrul A. Mutalib, Shahrizan Baharom, Hong Hao

Abstract:

This study was conducted published to investigate there liability of the equation pressure-impulse (PI) reinforced concrete column inprevious studies. Equation involves three different levels of damage criteria known as D =0. 2, D =0. 5 and D =0. 8.The damage criteria known as a minor when 0-0.2, 0.2-0.5is known as moderate damage, high damage known as 0.5-0.8, and 0.8-1 of the structure is considered a failure. In this study, two types of reliability analyzes conducted. First, using pressure-impulse equation with different parameters. The parameters involved are the concrete strength, depth, width, and height column, the ratio of longitudinal reinforcement and transverse reinforcement ratio. In the first analysis of the reliability of this new equation is derived to improve the previous equations. The second reliability analysis involves three types of columns used to derive the PI curve diagram using the derived equation to compare with the equation derived from other researchers and graph minimum standoff versus weapon yield Federal Emergency Management Agency (FEMA). The results showed that the derived equation is more accurate with FEMA standards than previous researchers.

Keywords: Blast load, RC column, P-I curve, Analytical formulae, Standard FEMA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2912
1104 Thermal Load Calculations of Multilayered Walls

Authors: Bashir M. Suleiman

Abstract:

Thermal load calculations have been performed for multi-layered walls that are composed of three different parts; a common (sand and cement) plaster, and two types of locally produced soft and hard bricks. The masonry construction of these layered walls was based on concrete-backed stone masonry made of limestone bricks joined by mortar. These multilayered walls are forming the outer walls of the building envelope of a typical Libyan house. Based on the periodic seasonal weather conditions, within the Libyan cost region during summer and winter, measured thermal conductivity values were used to implement such seasonal variation of heat flow and the temperature variations through the walls. The experimental measured thermal conductivity values were obtained using the Hot Disk technique. The estimation of the thermal resistance of the wall layers ( R-values) is based on measurements and calculations. The numerical calculations were done using a simplified analytical model that considers two different wall constructions which are characteristics of such houses. According to the obtained results, the R-values were quite low and therefore, several suggestions have been proposed to improve the thermal loading performance that will lead to a reasonable human comfort and reduce energy consumption.

Keywords: Thermal loading, multilayered walls, Libyan bricks, thermal resistance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
1103 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare

Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams

Abstract:

The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.

Keywords: Ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1044
1102 Memory Types in Hemodialysis Patients: A Study Based on Hemodialysis Duration, Zahedan, South East of Iran

Authors: B. Sabayan, A. Alidadi, S. Ebrahimi, N. M. Bakhshani

Abstract:

Neuropsychological problems are more common in hemodialysis (HD) patients than in healthy individuals. The aim of this study was to investigate the effect of long term HD on memory types of HD patients. To assess the different type of memory, we used memory parts of the Persian Papers and Pencil Cognitive assessment package (PCAP) and Addenbrooke's Cognitive Examination (ACE-R). Our study included 80 HD patients of whom 39 had less than six months of HD and 41 patients and another group which had a history of HD more than six months. The population had a mean age of 51.60 years old and 27.5% of them were female. The scores of patients who have been hemodialyzed for a long time (median time of HD was up to 4 years) had lower score in anterograde, explicit, visual, recall and recognition memory (5.44±1.07, 9.49±3.472, 22.805±6.6913, 5.59±10.435, 11.02±3.190 score) than the HD patients who underwent HD for a shorter term, where the median time was 3 to 5 months (P<0.01). The regression result shows that, by increasing the HD duration, all memory types are reduced (R2=0.600, P<0.01). The present study demonstrated that HD patients who were under HD for a long time had significantly lower scores in the different types of memory. However, additional researches are needed in this area.

Keywords: Hemodialysis patients, duration of hemodialysis, memory types, Zahedan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
1101 Seismic Response of Hill Side Step-back RC Framed Buildings with Shear Wall and Bracing System

Authors: Birendra Kumar Bohara

Abstract:

The hillside building shows different behavior as a flat ground building in lateral loading. Especially the step back building in the sloping ground has different seismic behavior. The hillside building 3D model having different types of structural elements is introduced and analyzed with a seismic effect. The structural elements such as the shear wall, steel, and concrete bracing are used to resist the earthquake load and compared with without using any shear wall and bracing system. The X, inverted V, and diagonal bracing are used. The total nine models are prepared in ETABs finite element coding software. The linear dynamic analysis is the response spectrum analysis (RSA) carried out to study dynamic behaviors in means of top story displacement, story drift, fundamental time period, story stiffness, and story shear. The results are analyzed and made some decisions based on seismic performance. It is also observed that it is better to use the X bracing system for lateral load resisting elements.

Keywords: Step-back buildings, bracing system, hill side buildings, response spectrum method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 519
1100 The Efficacy of Self-Administered Danger Ideation Reduction Therapy for a 50-year Old Woman with a 20 Year History of Obsessive- Compulsive Disorder: A Case Study

Authors: Mairwen K. Jones, Lynne Harris, Lisa D. Vaccaro

Abstract:

Obsessive-Compulsive Disorder (OCD) is a common and disabling condition. Therapist-delivered treatments that use exposure and response prevention have been found to be very effective in treating OCD, although they are costly and associated with high rates of attrition. Effective treatments that can be made widely available without the need for therapist contact are urgently needed. This case study represents the first published investigation of a self-administered cognitive treatment for OCD in a 50-year old female with a 20 year history of OCD. The treatment evaluation occurred over 27 weeks, including 12 weeks of self-administration of the Danger Ideation Reduction Therapy (DIRT) program. Decreases of between 23% to 33% on measures from pre-treatment to follow-up were observed. Bearing in mind the methodological limitations associated with a case study, we conclude that the results reported here are encouraging and indicate that further research effort evaluating the effectiveness of self-administered DIRT is warranted.

Keywords: Anxiety Treatment, Cognitive Therapy, Danger Ideation Reduction Therapy, Obsessive–Compulsive Disorder, Self- Administered Danger Ideation Reduction Therapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
1099 Supervisory Control for Induction Machine with a Modified Star/Delta Switch in Fluid Transportation

Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain

Abstract:

This paper proposes an intelligent, supervisory, hysteresis liquid-level control with three-state energy saving mode (ESM) for induction motor (IM) in fluid transportation system (FTS) including storage tank. The IM pump drive comprises a modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to the computer’s ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. Considering the motor’s thermal capacity used (TCU) and grid-compatible tariff structure, a logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction. Fuzzy-logic (FL) based availability assessment is designed and deployed on cloud, in order to provide mobilized service for the star/delta switch and highly reliable contactors. Moreover, an artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and computer simulations are performed to demonstrate the validity and effectiveness of the proposed control system in terms of reliability, power quality and operational cost reduction with a motivation of power factor correction.

Keywords: Artificial Neural Network, ANN, Contactor Health Assessment, Energy Saving Mode, Induction Machine, IM, Supervisory Control, Fluid Transportation, Fuzzy Logic, FL, cloud computing, pumped storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 445
1098 Preservation of Coconut Toddy Sediments as a Leavening Agent for Bakery Products

Authors: B. R. Madushan, S. B. Navaratne, I. Wickramasinghe

Abstract:

Toddy sediment (TS) was cultured in a PDA medium to determine initial yeast load, and also it was undergone sun, shade, solar, dehumidified cold air (DCA) and hot air oven (at 400, 500 and 60oC) drying with a view to preserve viability of yeast. Thereafter, this study was conducted according to two factor factorial design in order to determine best preservation method. Therein the dried TS from the best drying method was taken and divided into two portions. One portion was mixed with 3: 7 ratio of TS: rice flour and the mixture was divided in to two again. While one portion was kept under in house condition the other was in a refrigerator. Same procedure was followed to the rest portion of TS too but it was at the same ratio of corn flour. All treatments were vacuum packed in triple laminate pouches and the best preservation method was determined in terms of leavening index (LI). The TS obtained from the best preservation method was used to make foods (bread and hopper) and organoleptic properties of it were evaluated against same of ordinary foods using sensory panel with a five point hedonic scale. Results revealed that yeast load or fresh TS was 58×106 CFU/g. The best drying method in preserving viability of yeast was DCA because LI of this treatment (96%) is higher than that of other three treatments. Organoleptic properties of foods prepared from best preservation method are as same as ordinary foods according to Duo trio test.

Keywords: Biological leavening agent, coconut toddy, fermentation, yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
1097 Fiber-Based 3D Cellular Reinforcing Structures for Mineral-Bonded Composites with Enhanced Structural Impact Tolerance

Authors: Duy M. P. Vo, Cornelia Sennewald, Gerald Hoffmann, Chokri Cherif

Abstract:

The development of solutions to improve the resistance of buildings to short-term dynamic loads, particularly impact load, is driven by the urgent demand worldwide on securing human life and critical infrastructures. The research training group GRK 2250/1 aims to develop mineral-bonded composites that allow the fabrication of thin-layered strengthening layers providing available concrete members with enhanced impact resistance. This paper presents the development of 3D woven wire cellular structures that can be used as innovative reinforcement for targeted composites. 3D woven wire cellular structures are truss-like architectures that can be fabricated in an automatized process with a great customization possibility. The specific architecture allows this kind of structures to have good load bearing capability and forming behavior, which is of great potential to give strength against impact loading. An appropriate combination of topology and material enables an optimal use of thin-layered reinforcement in concrete constructions.

Keywords: 3D woven cellular structures, ductile behavior, energy absorption, fiber-based reinforced concrete, impact resistant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699
1096 Advanced Energy Absorbers Used in Blast Resistant Systems

Authors: Martina Drdlová, Michal Frank, Radek Řídký, Jaroslav Buchar, Josef Krátký

Abstract:

The main aim of the presented experiments is to improve behaviour of sandwich structures under dynamic loading, such as crash or explosion. This paper describes experimental investigation on the response of new advanced materials to low and high velocity load. Blast wave energy absorbers were designed using two types of porous lightweight raw particle materials based on expanded glass and ceramics with dimensions of 0.5-1 mm, combined with polymeric binder. The effect of binder amount on the static and dynamic properties of designed materials was observed. Prism shaped specimens were prepared and loaded to obtain physicomechanical parameters – bulk density, compressive and flexural strength under quasistatic load, the dynamic response was determined using Split Hopkinson Pressure bar apparatus. Numerical investigation of the material behaviour in sandwich structure was performed using implicit/explicit solver LS-Dyna. As the last step, the developed material was used as the interlayer of blast resistant litter bin, and it´s functionality was verified by real field blast tests.

Keywords: Blast energy absorber, SHPB, expanded glass, expanded ceramics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438
1095 Inelastic Strength of Laterally Unsupported Top- Loaded Built-Up Slender Beams

Authors: M. Massoud El Sa'adawy, F. F. F. El Dib

Abstract:

Lateral-torsional buckling (LTB) is one of the phenomenae controlling the ultimate bending strength of steel Ibeams carrying distributed loads on top flange. Built-up I-sections are used as main beams and distributors. This study investigates the ultimate bending strength of such beams with sections of different classes including slender elements. The nominal strengths of the selected beams are calculated for different unsupported lengths according to the Provisions of the American Institute of Steel Constructions (AISC-LRFD). These calculations are compared with results of a nonlinear inelastic study using accurate FE model for this type of loading. The goal is to investigate the performance of the provisions for the selected sections. Continuous distributed load at the top flange of the beams was applied at the FE model. Imperfections of different values are implemented to the FE model to examine their effect on the LTB of beams at failure, and hence, their effect on the ultimate strength of beams. The study also introduces a procedure for evaluating the performance of the provisions compared with the accurate FEA results of the selected sections. A simplified design procedure is given and recommendations for future code updates are made.

Keywords: Lateral buckling, Top Loading, Ultimate load, Slender Sections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697
1094 Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading

Authors: Jin Y. Park, Jeong Wan Lee

Abstract:

An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the Isection. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted in a high shear and almost zero moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.

Keywords: Strain sensor, displacement sensor, shear buckling, polymer composite I-section, asymmetric loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
1093 Numerical Study of Steel Structures Responses to External Explosions

Authors: Mohammad Abdallah

Abstract:

Due to the constant increase in terrorist attacks, the research and engineering communities have given significant attention to building performance under explosions. This paper presents a methodology for studying and simulating the dynamic responses of steel structures during external detonations, particularly for accurately investigating the impact of incrementing charge weight on the members total behavior, resistance and failure. Prediction damage method was introduced to evaluate the damage level of the steel members based on five scenarios of explosions. Johnson–Cook strength and failure model have been used as well as ABAQUS finite element code to simulate the explicit dynamic analysis, and antecedent field tests were used to verify the acceptance and accuracy of the proposed material strength and failure model. Based on the structural response, evaluation criteria such as deflection, vertical displacement, drift index, and damage level; the obtained results show the vulnerability of steel columns and un-braced steel frames which are designed and optimized to carry dead and live load to resist and endure blast loading.

Keywords: Steel structure, blast load, terrorist attacks, charge weight, damage level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775
1092 Effect of Stitching Pattern on Composite Tubular Structures Subjected to Quasi-Static Crushing

Authors: Ali Rabiee, Hessam Ghasemnejad

Abstract:

Extensive experimental investigation on the effect of stitching pattern on tubular composite structures was conducted. The effect of stitching reinforcement through thickness on using glass flux yarn on energy absorption of fiber-reinforced polymer (FRP) was investigated under high speed loading conditions at axial loading. Keeping the mass of the structure at 125 grams and applying different pattern of stitching at various locations in theory enables better energy absorption, and also enables the control over the behaviour of force-crush distance curve. The study consists of simple non-stitch absorber comparison with single and multi-location stitching behaviour and its effect on energy absorption capabilities. The locations of reinforcements are 10 mm, 20 mm, 30 mm, 10-20 mm, 10-30 mm, 20-30 mm, 10-20-30 mm and 10-15-20-25-30-35 mm from the top of the specimen. The effect of through the thickness reinforcements has shown increase in energy absorption capabilities and crushing load. The significance of this is that as the stitching locations are closer, the crushing load increases and consequently energy absorption capabilities are also increased. The implementation of this idea would improve the mean force by applying stitching and controlling the behaviour of force-crush distance curve.

Keywords: Through-thickness, stitching, reinforcement, Tulbular composite structures, energy absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
1091 Experimental Behavior of Composite Shear Walls Having L Shape Steel Sections in Boundary Regions

Authors: S. Bahadır Yüksel, Alptuğ Ünal

Abstract:

The Composite Shear Walls (CSW) with steel encased profiles can be used as lateral-load resisting systems for buildings that require considerable large lateral-load capacity. The aim of this work is to propose the experimental work conducted on CSW having L section folded plate (L shape steel made-up sections) as longitudinal reinforcement in boundary regions. The study in this paper present the experimental test conducted on CSW having L section folded plate as longitudinal reinforcement in boundary regions. The tested 1/3 geometric scaled CSW has aspect ratio of 3.2. L-shape structural steel materials with 2L-19x57x7mm dimensions were placed in shear wall boundary zones. The seismic behavior of CSW test specimen was investigated by evaluating and interpreting the hysteresis curves, envelope curves, rigidity and consumed energy graphs of this tested element. In addition to this, the experimental results, deformation and cracking patterns were evaluated, interpreted and suggestions of the design recommendations were proposed.

Keywords: Shear wall, composite shear wall, boundary reinforcement, earthquake resistant structural design, L section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
1090 Sensorless Speed Based on MRAS with Tuning of IP Speed Controller in FOC of Induction Motor Drive Using PSO

Authors: Youcef Bekakra, Djilani Ben attous

Abstract:

In this paper, a field oriented control (FOC) induction motor drive is presented. In order to eliminate the speed sensor, an adaptation algorithm for tuning the rotor speed is proposed. Based on the Model Reference Adaptive System (MRAS) scheme, the rotor speed is tuned to obtain an exact FOC induction motor drive. The reference and adjustable models, developed in stationary stator reference frame, are used in the MRAS scheme to estimate induction rotor speed from measured terminal voltages and currents. The Integral Proportional (IP) gains speed controller are tuned by a modern approach that is the Particle Swarm Optimization (PSO) algorithm in order to optimize the parameters of the IP controller. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. The proposed algorithm has been tested by numerical simulation, showing the capability of driving load.

Keywords: Induction motor drive, field oriented control, model reference adaptive system (MRAS), particle swarm optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
1089 A Ring-Shaped Tri-Axial Force Sensor for Minimally Invasive Surgery

Authors: Beibei Han, Yong-Jin Yoon, Muhammad Hamidullah, Angel Tsu-Hui Lin, Woo-Tae Park

Abstract:

This paper presents the design of a ring-shaped tri-axial fore sensor that can be incorporated into the tip of a guidewire for use in minimally invasive surgery (MIS). The designed sensor comprises a ring-shaped structure located at the center of four cantilever beams. The ringdesign allows surgical tools to be easily passed through which largely simplified the integration process. Silicon nanowires (SiNWs) are used aspiezoresistive sensing elementsembeddedon the four cantilevers of the sensor to detect the resistance change caused by the applied load.An integration scheme with new designed guidewire tip structure having two coils at the distal end is presented. Finite element modeling has been employed in the sensor design to find the maximum stress location in order to put the SiNWs at the high stress regions to obtain maximum output. A maximum applicable force of 5 mN is found from modeling. The interaction mechanism between the designed sensor and a steel wire has been modeled by FEM. A linear relationship between the applied load on the steel wire and the induced stress on the SiNWs were observed.

Keywords: Triaxial MEMS force sensor, Ring shape, Silicon Nanowire, Minimally invasive surgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
1088 A Numerical Study of Seismic Response of Shallow Square Tunnels in Two-Layered Ground

Authors: Mahmoud Hassanlourad, Mehran Naghizadehrokni, Vahid Molaei

Abstract:

In this study, the seismic behavior of a shallow tunnel with square cross section is investigated in a two layered and elastic heterogeneous environment using numerical method. To do so, FLAC finite difference software was used. Behavioral model of the ground and tunnel structure was assumed linear elastic. Dynamic load was applied to the model for 0.2 seconds from the bottom in form of a square pulse with maximum acceleration of 1 m/s2. The interface between the two layers was considered at three different levels of crest, middle, and bottom of the tunnel. The stiffness of the two upper and lower layers was considered to be varied from 10 MPa to 1000 MPa. Deformation of cross section of the tunnel due to dynamic load propagation, as well as the values of axial force and bending moment created in the tunnel structure, were examined in the three states mentioned above. The results of analyses show that heterogeneity of the environment, its stratification, and positioning of the interface of the two layers with respect to tunnel height and the stiffness ratio of the two layers have significant effects on the value of bending moment, axial force, and distortion of tunnel cross-section.

Keywords: Dynamic analysis, shallow-buried tunnel, two-layered ground.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
1087 An Investigation of the Relationship between the Need for Cognitive Closure and Religious Fundamentalism

Authors: Hadi G. Altabatabaei, Nguyen L. L. Anh

Abstract:

There are positive significant relationships between the Need for Cognitive Closure (NFC) and Religious Fundamentalism (RF) among students. The preliminary assumption of the current study was: There would be a stronger pattern of association between these constructs, if the participants of the study are more exposed to the study's main concept which is religiosity. In other words, close-mindedness would be more related to homogeneous samples of practicing devotees of monotheistic religions compared to student samples. The main hypothesis was that concerning the Muslim sample, there will be a significant and positive correlation between the need for closure (and all facets of it, except decisiveness) and RF. Both the student sample (n=88), and the Muslim practicing mosque attending sample (n=40), were administrated three scales of Need for Closure (NFCS), Religious Fundamentalism (RFS), and Four Basic Dimensions of Religiousness (FBDRS). The results of the study moderately confirmed the hypothesis and showed a positive correlation between NFCS and RFS with the Muslim sample. Specifically, preference for order, preference for predictability and discomfort with ambiguity facets of the NFCS positively correlated with RFS. However, with regards to the student sample such relationships between the constructs were not found.

Keywords: Religiosity, close-mindedness, religious fundamentalism, need for closure, monotheistic religions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
1086 The Influence of the Geogrid Layers on the Bearing Capacity of Layered Soils

Authors: S. A. Naeini, H. R. Rahmani, M. Hossein Zade

Abstract:

Many classical bearing capacity theories assume that the natural soil's layers are homogenous for determining the bearing capacity of the soil. But, in many practical projects, we encounter multi-layer soils. Geosynthetic as reinforcement materials have been extensively used in the construction of various structures. In this paper, numerical analysis of the Plate Load Test (PLT) using of ABAQUS software in double-layered soils with different thicknesses of sandy and gravelly layers reinforced with geogrid was considered. The PLT is one of the common filed methods to calculate parameters such as soil bearing capacity, the evaluation of the compressibility and the determination of the Subgrade Reaction module. In fact, the influence of the geogrid layers on the bearing capacity of the layered soils is investigated. Finally, the most appropriate mode for the distance and number of reinforcement layers is determined. Results show that using three layers of geogrid with a distance of 0.3 times the width of the loading plate has the highest efficiency in bearing capacity of double-layer (sand and gravel) soils. Also, the significant increase in bearing capacity between unreinforced and reinforced soil with three layers of geogrid is caused by the condition that the upper layer (gravel) thickness is equal to the loading plate width.

Keywords: Bearing capacity, reinforcement, geogrid, plate load test, layered soils.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844
1085 Contribution of Electrochemical Treatment in Treating Textile Dye Wastewater

Authors: Usha N. Murthy, Rekha H. B., Mahaveer Devoor

Abstract:

The introduction of more stringent pollution regulations, in relation to financial and social pressures for sustainable development, has pressed toward limiting the volumes of industrial and domestic effluents discharged into the environment - as well as to increase the efforts within research and development of new or more efficient wastewater treatment technologies. Considering both discharge volume and effluent composition, wastewater generated by the textile industry is rated as the most polluting among all industrial sectors. The pollution load is mainly due to spent dye baths, which are composed of unreacted dyes, dispersing agents, surfactants, salts and organics. In the present investigation, the textile dye wastewater was characterized by high color, chemical oxygen demand (COD), total dissolved solids (TDS) and pH. Electrochemical oxidation process for four plate electrodes was carried out at five different current intensities, out of which 0.14A has achieved maximum percentage removal of COD with 75% and 83% of color. The COD removal rate in kg COD/h/m2 decreases with increase in the current intensity. The energy consumption increases with increase in the current intensity. Hence, textile dye wastewater can be effectively pretreated by electrochemical oxidation method where the process limits objectionable color while leaving the COD associated with organics left for natural degradation thus causing a sustainable reduction in pollution load.

Keywords: Electrochemical treatment, COD, color.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2393
1084 Locus of Control, Emotion Venting Strategy and Internet Addiction

Authors: Jia-Ru Li, Chih-Hung Wang, Ching-Wen Lin

Abstract:

Internet addiction has become a critical problem on adolescents in Taiwan, and its negative effects on various dimensions of adolescent development caught the attention of educational and psychological experts. This study examined the correlation between cognitive (locus of control) and emotion (emotion venting strategies) factors on internet addiction of adolescents in Taiwan. Using the Compulsive Internet Use (CIU) and the Emotion Venting Strategy scales, a survey was conducted and 215 effective samples (students ranging from12 to14 years old) returned. Quantitative analysis methods such as descriptive statistics, t-test, ANOVA, Pearson correlations and multiple regression were adopted. The results were as follows: 1. Severity of Internet addiction has significant gender differences; boys were at a higher risk than girls in becoming addicted to the Internet. 2. Emotion venting, locus of control and internet addiction have been shown to be positive correlated with one another. 3. Setting the locus of control as the control variable, emotion venting strategy has positive and significant contribution to internet addiction. The results of this study suggest that coaching deconstructive emotion strategies and cognitive believes are encouraged to integrate with actual field work.

Keywords: Emotion venting strategy, locus of control, adolescent internet addiction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3104
1083 Impact of Wind Energy on Cost and Balancing Reserves

Authors: A. Khanal, A. Osareh, G. Lebby

Abstract:

Wind energy offers a significant advantage such as no fuel costs and no emissions from generation. However, wind energy sources are variable and non-dispatchable. The utility grid is able to accommodate the variability of wind in smaller proportion along with the daily load. However, at high penetration levels, the variability can severely impact the utility reserve requirements and the cost associated with it. In this paper the impact of wind energy is evaluated in detail in formulating the total utility cost. The objective is to minimize the overall cost of generation while ensuring the proper management of the load. Overall cost includes the curtailment cost, reserve cost and the reliability cost, as well as any other penalty imposed by the regulatory authority. Different levels of wind penetrations are explored and the cost impacts are evaluated. As the penetration level increases significantly, the reliability becomes a critical question to be answered. Here we increase the penetration from the wind yet keep the reliability factor within the acceptable limit provided by NERC. This paper uses an economic dispatch (ED) model to incorporate wind generation into the power grid. Power system costs are analyzed at various wind penetration levels using Linear Programming. The goal of this study is show how the increases in wind generation will affect power system economics.

Keywords: Balancing Reserves, Optimization, Wind Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646
1082 Interplay of Power Management at Core and Server Level

Authors: Jörg Lenhardt, Wolfram Schiffmann, Jörg Keller

Abstract:

While the feature sizes of recent Complementary Metal Oxid Semiconductor (CMOS) devices decrease the influence of static power prevails their energy consumption. Thus, power savings that benefit from Dynamic Frequency and Voltage Scaling (DVFS) are diminishing and temporal shutdown of cores or other microchip components become more worthwhile. A consequence of powering off unused parts of a chip is that the relative difference between idle and fully loaded power consumption is increased. That means, future chips and whole server systems gain more power saving potential through power-aware load balancing, whereas in former times this power saving approach had only limited effect, and thus, was not widely adopted. While powering off complete servers was used to save energy, it will be superfluous in many cases when cores can be powered down. An important advantage that comes with that is a largely reduced time to respond to increased computational demand. We include the above developments in a server power model and quantify the advantage. Our conclusion is that strategies from datacenters when to power off server systems might be used in the future on core level, while load balancing mechanisms previously used at core level might be used in the future at server level.

Keywords: Power efficiency, static power consumption, dynamic power consumption, CMOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
1081 A Constructivist Approach and Tool for Autonomous Agent Bottom-up Sequential Learning

Authors: Jianyong Xue, Olivier L. Georgeon, Salima Hassas

Abstract:

During the initial phase of cognitive development, infants exhibit amazing abilities to generate novel behaviors in unfamiliar situations, and explore actively to learn the best while lacking extrinsic rewards from the environment. These abilities set them apart from even the most advanced autonomous robots. This work seeks to contribute to understand and replicate some of these abilities. We propose the Bottom-up hiErarchical sequential Learning algorithm with Constructivist pAradigm (BEL-CA) to design agents capable of learning autonomously and continuously through interactions. The algorithm implements no assumption about the semantics of input and output data. It does not rely upon a model of the world given a priori in the form of a set of states and transitions as well. Besides, we propose a toolkit to analyze the learning process at run time called GAIT (Generating and Analyzing Interaction Traces). We use GAIT to report and explain the detailed learning process and the structured behaviors that the agent has learned on each decision making. We report an experiment in which the agent learned to successfully interact with its environment and to avoid unfavorable interactions using regularities discovered through interaction.

Keywords: Cognitive development, constructivist learning, hierarchical sequential learning, self-adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 533
1080 Design of a Hybrid Fuel Cell with Battery Energy Storage for Stand-Alone Distributed Generation Applications

Authors: N. A. Zambri, A. Mohamed, H. Shareef, M. Z. C. Wanik

Abstract:

This paper presents the modeling and simulation of a hybrid proton exchange membrane fuel cell (PEMFC) with an energy storage system for use in a stand-alone distributed generation (DG) system. The simulation model consists of fuel cell DG, lead-acid battery, maximum power point tracking and power conditioning unit which is modeled in the MATLAB/Simulink platform. Poor loadfollowing characteristics and slow response to rapid load changes are some of the weaknesses of PEMFC because of the gas processing reaction and the fuel cell dynamics. To address the load-tracking issues in PEMFC, a hybrid PEMFC and battery storage system is considered and modelled. The model utilizes PEMFC as the main energy source whereas the battery functions as energy storage to compensate for the limitations of PEMFC.Simulation results are given to show the overall system performance under light and heavyloading conditions.

Keywords: Hybrid, Lead–Acid Battery, Maximum Power Point Tracking, Proton Exchange Membrane Fuel Cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3123
1079 Study on Optimization Design of Pressure Hull for Underwater Vehicle

Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran

Abstract:

In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.

Keywords: Parameterization, response surface, structure optimization, pressure hull.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
1078 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network

Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas

Abstract:

The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.

Keywords: Distributed Generation(DG), Interconnected mode, Islanding mode, Maximum power point tracking (MPPT), Power Quality (PQ), Unified power quality conditioner (UPQC), Photovoltaic array (PV).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
1077 Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method

Authors: M. M. Shokrieh, A. Karamnejad

Abstract:

This paper deals with a numerical analysis of the transient response of composite beams with strain rate dependent mechanical properties by use of a finite difference method. The equations of motion based on Timoshenko beam theory are derived. The geometric nonlinearity effects are taken into account with von Kármán large deflection theory. The finite difference method in conjunction with Newmark average acceleration method is applied to solve the differential equations. A modified progressive damage model which accounts for strain rate effects is developed based on the material property degradation rules and modified Hashin-type failure criteria and added to the finite difference model. The components of the model are implemented into a computer code in Mathematica 6. Glass/epoxy laminated composite beams with constant and strain rate dependent mechanical properties under dynamic load are analyzed. Effects of strain rate on dynamic response of the beam for various stacking sequences, load and boundary conditions are investigated.

Keywords: Composite beam, Finite difference method, Progressive damage modeling, Strain rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990