Memory Types in Hemodialysis Patients: A Study Based on Hemodialysis Duration, Zahedan, South East of Iran
Authors: B. Sabayan, A. Alidadi, S. Ebrahimi, N. M. Bakhshani
Abstract:
Neuropsychological problems are more common in hemodialysis (HD) patients than in healthy individuals. The aim of this study was to investigate the effect of long term HD on memory types of HD patients. To assess the different type of memory, we used memory parts of the Persian Papers and Pencil Cognitive assessment package (PCAP) and Addenbrooke's Cognitive Examination (ACE-R). Our study included 80 HD patients of whom 39 had less than six months of HD and 41 patients and another group which had a history of HD more than six months. The population had a mean age of 51.60 years old and 27.5% of them were female. The scores of patients who have been hemodialyzed for a long time (median time of HD was up to 4 years) had lower score in anterograde, explicit, visual, recall and recognition memory (5.44±1.07, 9.49±3.472, 22.805±6.6913, 5.59±10.435, 11.02±3.190 score) than the HD patients who underwent HD for a shorter term, where the median time was 3 to 5 months (P<0.01). The regression result shows that, by increasing the HD duration, all memory types are reduced (R2=0.600, P<0.01). The present study demonstrated that HD patients who were under HD for a long time had significantly lower scores in the different types of memory. However, additional researches are needed in this area.
Keywords: Hemodialysis patients, duration of hemodialysis, memory types, Zahedan.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1316640
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305References:
[1] D. A. Drew, D. E. Weiner, H. Tighiouart, S. Duncan, A. Gupta, T. Scott, M. J. Sarnak, Cognitive Decline and Its Risk Factors in Prevalent Hemodialysis Patients, American Journal of Kidney Diseases, 69 (2017) 780-787.
[2] Y. Watanabe, K. Kitamura, K. Nakamura, K. Sanpei, M. Wakasugi, A. Yokoseki, K. Kabasawa, O. Onodera, T. Ikeuchi, R. Kuwano, Association between dialysis treatment and cognitive decline: A study from the Project in Sado for Total Health (PROST), Japan, Geriatrics & gerontology international, DOI (2016).
[3] M. F. Elias, P. K. Elias, S. L. Seliger, S. S. Narsipur, G. A. Dore, M. A. Robbins, Chronic kidney disease, creatinine and cognitive functioning, Nephrology Dialysis Transplantation, 24 (2009) 2446-2452.
[4] M. Kurella, G. M. Chertow, J. Luan, K. Yaffe, Cognitive impairment in chronic kidney disease, Journal of the American Geriatrics Society, 52 (2004) 1863-1869.
[5] A. S. Buchman, D. Tanne, P. Boyle, R. Shah, S. Leurgans, D. Bennett, Kidney function is associated with the rate of cognitive decline in the elderly, Neurology, 73 (2009) 920-927.
[6] M. Madero, A. Gul, M. J. Sarnak, Cognitive function in chronic kidney disease, Seminars in dialysis, Wiley Online Library, 2008, pp. 29-37.
[7] W. L. Thornton, R. J. Shapiro, S. Deria, S. Gelb, A. Hill, Differential impact of age on verbal memory and executive functioning in chronic kidney disease, Journal of the International Neuropsychological Society, 13 (2007) 344-353.
[8] A. L. Ostergaard, P. R. Meudell, Immediate memory span, recognition memory for subspan series of words, and serial position effects in recognition memory for supraspan series of verbal and nonverbal items in Broca's and Wernicke's aphasia, Brain and language, 22 (1984) 1-13.
[9] A. Orsini, D. Grossi, E. Capitani, M. Laiacona, C. Papagno, G. Vallar, Verbal and spatial immediate memory span: normative data from 1355 adults and 1112 children, The Italian Journal of Neurological Sciences, 8 (1987) 537-548.
[10] G. Winocur, Anterograde and retrograde amnesia in rats with dorsal hippocampal or dorsomedial thalamic lesions, Behavioural brain research, 38 (1990) 145-154.
[11] E. Turner, Hippocampus and memory, The Lancet, 294 (1969) 1123-1126.
[12] W. Penfield, B. Milner, Memory deficit produced by bilateral lesions in the hippocampal zone, AMA Archives of Neurology & Psychiatry, 79 (1958) 475-497.
[13] M. A. Cirillo, L. J. Seidman, Verbal declarative memory dysfunction in schizophrenia: from clinical assessment to genetics and brain mechanisms, Neuropsychology review, 13 (2003) 43-77.
[14] J. M. Andreano, L. Cahill, Sex influences on the neurobiology of learning and memory, Learning & memory, 16 (2009) 248-266.
[15] A. Alessio, L. Bonilha, C. Rorden, E. Kobayashi, L. L. Min, B. P. Damasceno, F. Cendes, Memory and language impairments and their relationships to hippocampal and perirhinal cortex damage in patients with medial temporal lobe epilepsy, Epilepsy & Behavior, 8 (2006) 593-600.
[16] L. Bonilha, A. Alessio, C. Rorden, G. Baylis, B. P. Damasceno, L. L. Min, F. Cendes, Extrahippocampal gray matter atrophy and memory impairment in patients with medial temporal lobe epilepsy, Human brain mapping, 28 (2007) 1376-1390.
[17] C. E. Curtis, M. D'Esposito, Persistent activity in the prefrontal cortex during working memory, Trends in cognitive sciences, 7 (2003) 415-423.
[18] Z. U. Khan, E. C. Muly, Molecular mechanisms of working memory, Behavioural brain research, 219 (2011) 329-341.
[19] S. J. Luck, E. K. Vogel, Visual working memory capacity: from psychophysics and neurobiology to individual differences, Trends in cognitive sciences, 17 (2013) 391-400.
[20] A. M. Albers, P. Kok, I. Toni, H. C. Dijkerman, F. P. de Lange, Shared representations for working memory and mental imagery in early visual cortex, Current Biology, 23 (2013) 1427-1431.
[21] S. A. Harrison, F. Tong, Decoding reveals the contents of visual working memory in early visual areas, Nature, 458 (2009) 632-635.
[22] J. T. Serences, E. F. Ester, E. K. Vogel, E. Awh, Stimulus-specific delay activity in human primary visual cortex, Psychological science, 20 (2009) 207-214.
[23] E. F. Ester, T. C. Sprague, J. T. Serences, Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory, Neuron, 87 (2015) 893-905.
[24] A. D. Baddeley, A. D. Baddeley, A. Braddlely, Working memory, Elsevier1986.
[25] A. Baddeley, Working memory, Current biology, 20 (2010) R136-R140.
[26] J. n. M. Fuster, The prefrontal cortex—an update: time is of the essence, Neuron, 30 (2001) 319-333.
[27] J. W. Dalley, R. N. Cardinal, T. W. Robbins, Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates, Neuroscience & Biobehavioral Reviews, 28 (2004) 771-784.
[28] R. P. Vertes, Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat, Neuroscience, 142 (2006) 1-20.
[29] N. K. Horst, M. Laubach, The role of rat dorsomedial prefrontal cortex in spatial working memory, Neuroscience, 164 (2009) 444-456.
[30] R. Steele, R. Morris, Delay‐dependent impairment of a matching‐to‐place task with chronic and intrahippocampal infusion of the NMDA‐antagonist D‐AP5, Hippocampus, 9 (1999) 118-136.
[31] D. M. Bannerman, B. Niewoehner, L. Lyon, C. Romberg, W. B. Schmitt, A. Taylor, D. J. Sanderson, J. Cottam, R. Sprengel, P.H. Seeburg, NMDA receptor subunit NR2A is required for rapidly acquired spatial working memory but not incremental spatial reference memory, Journal of Neuroscience, 28 (2008) 3623-3630.
[32] X.-H. Zhang, S.-S. Liu, F. Yi, M. Zhuo, B.-M. Li, Delay-dependent impairment of spatial working memory with inhibition of NR2B-containing NMDA receptors in hippocampal CA1 region of rats, Molecular brain, 6 (2013) 13.
[33] P.-K. O'Neill, J. A. Gordon, T. Sigurdsson, Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion, Journal of Neuroscience, 33 (2013) 14211-14224.
[34] J. L. McClelland, B. L. McNaughton, R. C. O'reilly, Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory, Psychological review, 102 (1995) 419.
[35] E. T. Rolls, The mechanisms for pattern completion and pattern separation in the hippocampus, Frontiers in systems neuroscience, 7 (2013).
[36] S. E. Bosch, J. F. Jehee, G. Fernández, C. F. Doeller, Reinstatement of associative memories in early visual cortex is signaled by the hippocampus, Journal of Neuroscience, 34 (2014) 7493-7500.
[37] M. W. Brown, J. P. Aggleton, Recognition memory: what are the roles of the perirhinal cortex and hippocampus?, Nature Reviews Neuroscience, 2 (2001) 51-61.
[38] C. Ranganath, Binding items and contexts: The cognitive neuroscience of episodic memory, Current Directions in Psychological Science, 19 (2010) 131-137.
[39] E. Hampson, S. J. Duff-Canning, Salivary cortisol and explicit memory in postmenopausal women using hormone replacement therapy, Psychoneuroendocrinology, 64 (2016) 99-107.
[40] L. Squire, Declarative and nondeclarative memory: Multiple brain systems supporting brain systems, DOI (1994).
[41] R. Kail, The development of memory in children, WH Freeman/Times Books/Henry Holt & Co1990.
[42] L. R. Squire, J. T. Wixted, R. E. Clark, Recognition memory and the medial temporal lobe: a new perspective, Nature reviews. Neuroscience, 8 (2007) 872.
[43] E. Warburton, M. Brown, Neural circuitry for rat recognition memory, Behavioural brain research, 285 (2015) 131-139.
[44] C. Marra, G. Gainotti, L. Fadda, R. Perri, G. Lacidogna, E. Scaricamazza, C. Piccininni, D. Quaranta, Usefulness of an integrated analysis of different memory tasks to predict the progression from mild cognitive impairment to Alzheimer’s disease: the episodic memory score (EMS), Journal of Alzheimer's Disease, 50 (2016) 61-70.
[45] M. Kritchevsky, J. Chang, L. R. Squire, Functional amnesia: clinical description and neuropsychological profile of 10 cases, Learning & Memory, 11 (2004) 213-226.
[46] A. Poreh, G. Winocur, M. Moscovitch, M. Backon, E. Goshen, Z. Ram, Z. Feldman, Anterograde and retrograde amnesia in a person with bilateral fornix lesions following removal of a colloid cyst, Neuropsychologia, 44 (2006) 2241-2248.
[47] P. J. Bayley, J. J. Gold, R. O. Hopkins, L. R. Squire, The neuroanatomy of remote memory, Neuron, 46 (2005) 799-810.
[48] P. J. Bayley, R. O. Hopkins, L. R. Squire, Successful recollection of remote autobiographical memories by amnesic patients with medial temporal lobe lesions, Neuron, 38 (2003) 135-144.
[49] K. Lambert, J. Mullan, K. Mansfield, An integrative review of the methodology and findings regarding dietary adherence in end stage kidney disease, BMC nephrology, 18 (2017) 318.
[50] D. S. Gipson, S. R. Hooper, P. J. Duquette, C. E. Wetherington, K. K. Stellwagen, T. L. Jenkins, M. E. Ferris, Memory and executive functions in pediatric chronic kidney disease, Child Neuropsychology, 12 (2006) 391-405.
[51] S. L. Seliger, D. L. Gillen, W. Longstreth, B. Kestenbaum, C. O. Stehman-Breen, Elevated risk of stroke among patients with end-stage renal disease, Kidney international, 64 (2003) 603-609.
[52] Y. Stern, Cognitive reserve in ageing and Alzheimer's disease, The Lancet Neurology, 11 (2012) 1006-1012.
[53] H. Xie, C. Zhang, Y. Wang, S. Huang, W. Cui, W. Yang, L. Koski, X. Xu, Y. Li, M. Zheng, Distinct Patterns of Cognitive Aging Modified by Education Level and Gender among Adults with Limited or No Formal Education: A Normative Study of the Mini-Mental State Examination, Journal of Alzheimer's Disease, 49 (2016) 961-969.
[54] A. Vidal, O. Puig, T. Boget, M. Salamero, Gender differences in cognitive functions and influence of sex hormones, Actas Esp Psiquiatr, 34 (2006) 408-415.
[55] J. S. Hyde, Sex and cognition: gender and cognitive functions, Current opinion in neurobiology, 38 (2016) 53-56.
[56] H. M. M. Abdelrahman, A. E. E. Elawam, A. N. Alghitany, Cognitive impairment among Egyptian older adults on hemodialysis, Middle East Journal of Age and Ageing, 11 (2014) 18-24.
[57] A. Medalia, J. Choi, Cognitive remediation in schizophrenia, Neuropsychology review, 19 (2009) 353.
[58] A. Medalia, B. Freilich, The Neuropsychological Educational Approach to Cognitive Remediation (NEAR) model: practice principles and outcome studies, American Journal of Psychiatric Rehabilitation, 11 (2008) 123-143.