Search results for: Pulse Similarity Vector.
722 Comparison of Frequency Estimation Methods for Reflected Signals in Mobile Platforms
Authors: Kathrin Reinhold
Abstract:
Precise frequency estimation methods for pulseshaped echoes are a prerequisite to determine the relative velocity between sensor and reflector. Signal frequencies are analysed using three different methods: Fourier Transform, Chirp ZTransform and the MUSIC algorithm. Simulations of echoes are performed varying both the noise level and the number of reflecting points. The superposition of echoes with a random initial phase is found to influence the precision of frequency estimation severely for FFT and MUSIC. The standard deviation of the frequency using FFT is larger than for MUSIC. However, MUSIC is more noise-sensitive. The distorting effect of superpositions is less pronounced in experimental data.
Keywords: Frequency estimation, pulse-echo-method, superposition, echoes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168721 Multifunctional Cell Processing with Plasmonic Nanobubbles
Authors: Ekaterina Y. Lukianova-Hleb, Dmitri O. Lapotko
Abstract:
Cell processing techniques for gene and cell therapies use several separate procedures for gene transfer and cell separation or elimination, because no current technology can offer simultaneous multi-functional processing of specific cell sub-sets in heterogeneous cell systems. Using our novel on-demand nonstationary intracellular events instead of permanent materials, plasmonic nanobubbles, generated with a short laser pulse only in target cells, we achieved simultaneous multifunctional cell-specific processing with the rate up to 50 million cells per minute.
Keywords: Delivery, cell separation, graft, laser, plasmonic nanobubble, cell therapy, gold nanoparticle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726720 A New Spectral-based Approach to Query-by-Humming for MP3 Songs Database
Authors: Leon Fu, Xiangyang Xue
Abstract:
In this paper, we propose a new approach to query-by-humming, focusing on MP3 songs database. Since MP3 songs are much more difficult in melody representation than symbolic performance data, we adopt to extract feature descriptors from the vocal sounds part of the songs. Our approach is based on signal filtering, sub-band spectral processing, MDCT coefficients analysis and peak energy detection by ignorance of the background music as much as possible. Finally, we apply dual dynamic programming algorithm for feature similarity matching. Experiments will show us its online performance in precision and efficiency. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780719 Study of Qualitative and Quantitative Metric for Pixel Factor Mapping and Extended Pixel Mapping Method
Authors: Indradip Banerjee, Souvik Bhattacharyya, Gautam Sanyal
Abstract:
In this paper, an approach is presented to investigate the performance of Pixel Factor Mapping (PFM) and Extended PMM (Pixel Mapping Method) through the qualitative and quantitative approach. These methods are tested against a number of well-known image similarity metrics and statistical distribution techniques. The PFM has been performed in spatial domain as well as frequency domain and the Extended PMM has also been performed in spatial domain through large set of images available in the internet.Keywords: Qualitative, quantitative, PFM, EXTENDED PMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063718 Development of A Jacobean Model for A 4-Axes Indigenously Developed SCARA System
Authors: T.C.Manjunath, C. Ardil
Abstract:
This paper deals with the development of a Jacobean model for a 4-axes indigenously developed scara robot arm in the laboratory. This model is used to study the relation between the velocities and the forces in the robot while it is doing the pick and place operation.
Keywords: SCARA, Jacobean, Tool Configuration Vector, Computer Control , Visual Basic , Interfacing , Drivers,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3261717 Stability of Electrical Drives Supplied by a Three Level Inverter
Authors: M. S. Kelaiaia, H. Labar, S. Kelaiaia, T. Mesbah
Abstract:
The development of the power electronics has allowed increasing the precision and reliability of the electrical devices, thanks to the adjustable inverters, as the Pulse Wide Modulation (PWM) applied to the three level inverters, which is the object of this study. The authors treat the relation between the law order adopted for a given system and the oscillations of the electrical and mechanical parameters of which the tolerance depends on the process with which they are integrated (paper factory, lifting of the heavy loads, etc.).Thus, the best choice of the regulation indexes allows us to achieve stability and safety training without investment (management of existing equipment). The optimal behavior of any electric device can be achieved by the minimization of the stored electrical and mechanical energy.Keywords: Multi level inverter, PWM, Harmonics, oscillation, control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373716 Dengue Disease Mapping with Standardized Morbidity Ratio and Poisson-gamma Model: An Analysis of Dengue Disease in Perak, Malaysia
Authors: N. A. Samat, S. H. Mohd Imam Ma’arof
Abstract:
Dengue disease is an infectious vector-borne viral disease that is commonly found in tropical and sub-tropical regions, especially in urban and semi-urban areas, around the world and including Malaysia. There is no currently available vaccine or chemotherapy for the prevention or treatment of dengue disease. Therefore prevention and treatment of the disease depend on vector surveillance and control measures. Disease risk mapping has been recognized as an important tool in the prevention and control strategies for diseases. The choice of statistical model used for relative risk estimation is important as a good model will subsequently produce a good disease risk map. Therefore, the aim of this study is to estimate the relative risk for dengue disease based initially on the most common statistic used in disease mapping called Standardized Morbidity Ratio (SMR) and one of the earliest applications of Bayesian methodology called Poisson-gamma model. This paper begins by providing a review of the SMR method, which we then apply to dengue data of Perak, Malaysia. We then fit an extension of the SMR method, which is the Poisson-gamma model. Both results are displayed and compared using graph, tables and maps. Results of the analysis shows that the latter method gives a better relative risk estimates compared with using the SMR. The Poisson-gamma model has been demonstrated can overcome the problem of SMR when there is no observed dengue cases in certain regions. However, covariate adjustment in this model is difficult and there is no possibility for allowing spatial correlation between risks in adjacent areas. The drawbacks of this model have motivated many researchers to propose other alternative methods for estimating the risk.
Keywords: Dengue disease, Disease mapping, Standardized Morbidity Ratio, Poisson-gamma model, Relative risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3294715 Semantic Enhanced Social Media Sentiments for Stock Market Prediction
Authors: K. Nirmala Devi, V. Murali Bhaskaran
Abstract:
Traditional document representation for classification follows Bag of Words (BoW) approach to represent the term weights. The conventional method uses the Vector Space Model (VSM) to exploit the statistical information of terms in the documents and they fail to address the semantic information as well as order of the terms present in the documents. Although, the phrase based approach follows the order of the terms present in the documents rather than semantics behind the word. Therefore, a semantic concept based approach is used in this paper for enhancing the semantics by incorporating the ontology information. In this paper a novel method is proposed to forecast the intraday stock market price directional movement based on the sentiments from Twitter and money control news articles. The stock market forecasting is a very difficult and highly complicated task because it is affected by many factors such as economic conditions, political events and investor’s sentiment etc. The stock market series are generally dynamic, nonparametric, noisy and chaotic by nature. The sentiment analysis along with wisdom of crowds can automatically compute the collective intelligence of future performance in many areas like stock market, box office sales and election outcomes. The proposed method utilizes collective sentiments for stock market to predict the stock price directional movements. The collective sentiments in the above social media have powerful prediction on the stock price directional movements as up/down by using Granger Causality test.
Keywords: Bag of Words, Collective Sentiments, Ontology, Semantic relations, Sentiments, Social media, Stock Prediction, Twitter, Vector Space Model and wisdom of crowds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800714 Accelerating GLA with an M-Tree
Authors: Olli Luoma, Johannes Tuikkala, Olli Nevalainen
Abstract:
In this paper, we propose a novel improvement for the generalized Lloyd Algorithm (GLA). Our algorithm makes use of an M-tree index built on the codebook which makes it possible to reduce the number of distance computations when the nearest code words are searched. Our method does not impose the use of any specific distance function, but works with any metric distance, making it more general than many other fast GLA variants. Finally, we present the positive results of our performance experiments.Keywords: Clustering, GLA, M-Tree, Vector Quantization .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524713 Design and Study of a DC/DC Converter for High Power, 14.4 V and 300 A for Automotive Applications
Authors: Julio Cesar Lopes de Oliveira, Carlos Henrique Gonc¸alves Treviso
Abstract:
The shortage of the automotive market in relation to options for sources of high power car audio systems, led to development of this work. Thus, we developed a source with stabilized voltage with 4320 W effective power. Designed to the voltage of 14.4 V and a choice of two currents: 30 A load option in battery banks and 300 A at full load. This source can also be considered as a source of general use dedicated commercial with a simple control circuit in analog form based on discrete components. The assembly of power circuit uses a methodology for higher power than the initially stipulated.
Keywords: DC-DC power converters, converters, power convertion, pulse width modulation converters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2908712 Transformations between Bivariate Polynomial Bases
Authors: Dimitris Varsamis, Nicholas Karampetakis
Abstract:
It is well known, that any interpolating polynomial p (x, y) on the vector space Pn,m of two-variable polynomials with degree less than n in terms of x and less than m in terms of y, has various representations that depends on the basis of Pn,m that we select i.e. monomial, Newton and Lagrange basis e.t.c.. The aim of this short note is twofold : a) to present transformations between the coordinates of the polynomial p (x, y) in the aforementioned basis and b) to present transformations between these bases.
Keywords: Bivariate interpolation polynomial, Polynomial basis, Transformations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282711 A New Decision Making Approach based on Possibilistic Influence Diagrams
Authors: Wided Guezguez, Nahla Ben Amor
Abstract:
This paper proposes a new decision making approch based on quantitative possibilistic influence diagrams which are extension of standard influence diagrams in the possibilistic framework. We will in particular treat the case where several expert opinions relative to value nodes are available. An initial expert assigns confidence degrees to other experts and fixes a similarity threshold that provided possibility distributions should respect. To illustrate our approach an evaluation algorithm for these multi-source possibilistic influence diagrams will also be proposed.Keywords: influnece diagram, decision making, graphical decision models, influence diagrams, possibility theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301710 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment
Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee
Abstract:
Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.Keywords: Deep neural models, natural language inference, recognizing textual entailment, sentence-to-sentence relation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454709 Exchange Rate Volatility, Its Determinants and Effects on the Manufacturing Sector in Nigeria
Authors: Chimaobi V. Okolo, Onyinye S. Ugwuanyi, Kenneth A. Okpala
Abstract:
This study evaluated the effect of exchange rate volatility on the manufacturing sector of Nigeria. The flow and stock market theories of exchange rate determination was adopted considering macroeconomic determinants such as balance of trade, trade openness, and net international investment. Furthermore, the influence of changes in parallel exchange rate, official exchange rate and real effective exchange rate was modeled on the manufacturing sector output. Vector autoregression techniques and vector error correction mechanism were adopted to explore the macroeconomic determinants of exchange rate fluctuation in Nigeria and to examine the influence of exchange rate volatility on the manufacturing sector output in Nigeria. The exchange rate showed an unstable and volatile movement in Nigeria. Official exchange rate significantly impacted on the manufacturing sector of Nigeria and shock to previous manufacturing sector output caused 60.76% of the fluctuation in the manufacturing sector output in Nigeria. Trade balance, trade openness and net international investments did not significantly determine exchange rate in Nigeria. However, own shock accounted for about 95% of the variation of exchange rate fluctuation in the short-run and long-run. Among other macroeconomic variables, net international investment accounted for about 2.85% variation of the real effective exchange rate fluctuation in the short-run and in the long-run. Monetary authorities should maintain stability of the exchange rates through proper management so as to encourage local production and government should formulate and implement policies that will develop other sectors of the economy as this will widen the country’s revenue base, reduce our over reliance on oil sector for our foreign exchange earnings and in turn reduce the shocks on our domestic economy.
Keywords: Exchange rate volatility, exchange rate determinants, manufacturing sector, official exchange rate, parallel exchange rate, real effective exchange rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931708 Shot Detection Using Modified Dugad Model
Authors: Lenka Krulikovská, Jaroslav Polec
Abstract:
In this paper we present a modification to existed model of threshold for shot cut detection, which is able to adapt itself to the sequence statistics and operate in real time, because it use for calculation only previously evaluated frames. The efficiency of proposed modified adaptive threshold scheme was verified through extensive test experiment with several similarity metrics and achieved results were compared to the results reached by the original model. According to results proposed threshold scheme reached higher accuracy than existed original model.
Keywords: Abrupt cut, shot cut detection, adaptive threshold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533707 New Adaptive Linear Discriminante Analysis for Face Recognition with SVM
Authors: Mehdi Ghayoumi
Abstract:
We have applied new accelerated algorithm for linear discriminate analysis (LDA) in face recognition with support vector machine. The new algorithm has the advantage of optimal selection of the step size. The gradient descent method and new algorithm has been implemented in software and evaluated on the Yale face database B. The eigenfaces of these approaches have been used to training a KNN. Recognition rate with new algorithm is compared with gradient.Keywords: lda, adaptive, svm, face recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422706 Fuzzy Processing of Uncertain Data
Authors: Petr Morávek, Miloš Šeda
Abstract:
In practice, we often come across situations where it is necessary to make decisions based on incomplete or uncertain data. In control systems it may be due to the unknown exact mathematical model, or its excessive complexity (e.g. nonlinearity) when it is necessary to simplify it, respectively, to solve it using a rule base. In the case of databases, searching data we compare a similarity measure with of the requirements of the selection with stored data, where both the select query and the data itself may contain vague terms, for example in the form of linguistic qualifiers. In this paper, we focus on the processing of uncertain data in databases and demonstrate it on the example multi-criteria decision making in the selection of variants, specified by higher number of technical parameters.Keywords: fuzzy logic, linguistic variable, multicriteria decision
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418705 Impedance of an Encircling Coil due to a Cylindrical Tube with Varying Properties
Authors: Valentina Koliskina
Abstract:
Change in impedance of an encircling coil is obtained in the present paper for the case where the electric conductivity and magnetic permeability of a metal cylindrical tube depend on the radial coordinate. The system of equations for the vector potential is solved by means of the Fourier cosine transform. The solution is expressed in terms of improper integral containing modified Bessel functions of complex order.Keywords: Eddy currents, magnetic permeability, Besselfunctions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773704 Spherical Spectrum Properties of Quaternionic Operators
Authors: Yiwan Guo, Fahui Zhai
Abstract:
In this paper, the similarity invariant and the upper semi-continuity of spherical spectrum, and the spherical spectrum properties for infinite direct sums of quaternionic operators are characterized, respectively. As an application of some results established, a concrete example about the computation of the spherical spectrum of a compact quaternionic operator with form of infinite direct sums of quaternionic matrices is also given.Keywords: Spherical spectrum, Quaternionic operator, Upper semi-continuity, Direct sum of operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421703 Machine Learning Techniques in Bank Credit Analysis
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner
Abstract:
The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.
Keywords: Artificial Neural Networks, ANNs, classifier algorithms, credit risk assessment, logistic regression, machine learning, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281702 Analysis of Filtering in Stochastic Systems on Continuous-Time Memory Observations in the Presence of Anomalous Noises
Authors: S. Rozhkova, O. Rozhkova, A. Harlova, V. Lasukov
Abstract:
For optimal unbiased filter as mean-square and in the case of functioning anomalous noises in the observation memory channel, we have proved insensitivity of filter to inaccurate knowledge of the anomalous noise intensity matrix and its equivalence to truncated filter plotted only by non anomalous components of an observation vector.
Keywords: Mathematical expectation, filtration, anomalous noise, memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048701 Rice cDNA Encoding PROLM is Capable of Rescuing Salt Sensitive Yeast Phenotypes G19 and Axt3K from Salt Stress
Authors: Prasad Senadheera, Younousse Saidi, Frans JM Maathuis
Abstract:
Rice seed expression (cDNA) library in the Lambda Zap 11® phage constructed from the developing grain 10-20 days after flowering was transformed into yeast for functional complementation assays in three salt sensitive yeast mutants S. cerevisiae strain CY162, G19 and Axt3K. Transformed cells of G19 and Axt3K with pYES vector with cDNA inserts showed enhance tolerance than those with empty pYes vector. Sequencing of the cDNA inserts revealed that they encode for the putative proteins with the sequence homologous to rice putative protein PROLM24 (Os06g31070), a prolamin precursor. Expression of this cDNA did not affect yeast growth in absence of salt. Axt3k and G19 strains expressing the PROLM24 were able to grow upto 400 mM and 600 mM of NaCl respectively. Similarly, Axt3k mutant with PROLM24 expression showed comparatively higher growth rate in the medium with excess LiCl (50 mM). The observation that expression of PROLM24 rescued the salt sensitive phenotypes of G19 and Axt3k indicates the existence of a regulatory system that ameliorates the effect of salt stress in the transformed yeast mutants. However, the exact function of the cDNA sequence, which shows partial sequence homology to yeast UTR1 is not clear. Although UTR1 involved in ferrous uptake and iron homeostasis in yeast cells, there is no evidence to prove its role in Na+ homeostasis in yeast cells. Absence of transmembrane regions in Os06g31070 protein indicates that salt tolerance is achieved not through the direct functional complementation of the mutant genes but through an alternative mechanism.Keywords: Rice seed expression, salt stress, prolamin, salinitytolerance, Oryza sativa
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907700 Neural Network Based Predictive DTC Algorithm for Induction Motors
Authors: N.Vahdatifar, Ss.Mortazavi, R.Kianinezhad
Abstract:
In this paper, a Neural Network based predictive DTC algorithm is proposed .This approach is used as an alternative to classical approaches .An appropriate riate Feed - forward network is chosen and based on its value of derivative electromagnetic torque ; optimal stator voltage vector is determined to be applied to the induction motor (by inverter). Moreover, an appropriate torque and flux observer is proposed.Keywords: Neural Networks, Predictive DTC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392699 Mathematical Modeling of Machining Parameters in Electrical Discharge Machining of FW4 Welded Steel
Authors: M.R.Shabgard, R.M.Shotorbani
Abstract:
FW4 is a newly developed hot die material widely used in Forging Dies manufacturing. The right selection of the machining conditions is one of the most important aspects to take into consideration in the Electrical Discharge Machining (EDM) of FW4. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Wear Ratio (TWR) and surface roughness (Ra) to machining parameters (current, pulse-on time and voltage). Furthermore, a study was carried out to analyze the effects of machining parameters in respect of listed technological characteristics. The results of analysis of variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied.Keywords: Electrical Discharge Machining (EDM), linearregression technique, Response Surface Methodology (RSM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917698 A Bayesian Classification System for Facilitating an Institutional Risk Profile Definition
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for easy creation and classification of institutional risk profiles supporting endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support set up of the most important risk factors. Subsequently, risk profiles employ risk factors classifier and associated configurations to support digital preservation experts with a semi-automatic estimation of endangerment group for file format risk profiles. Our goal is to make use of an expert knowledge base, accuired through a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation of risk factors for a requried dimension for analysis. Using the naive Bayes method, the decision support system recommends to an expert the matching risk profile group for the previously selected institutional risk profile. The proposed methods improve the visibility of risk factor values and the quality of a digital preservation process. The presented approach is designed to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and values of file format risk profiles. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert and to define its profile group. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.Keywords: linked open data, information integration, digital libraries, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730697 Learning and Evaluating Possibilistic Decision Trees using Information Affinity
Authors: Ilyes Jenhani, Salem Benferhat, Zied Elouedi
Abstract:
This paper investigates the issue of building decision trees from data with imprecise class values where imprecision is encoded in the form of possibility distributions. The Information Affinity similarity measure is introduced into the well-known gain ratio criterion in order to assess the homogeneity of a set of possibility distributions representing instances-s classes belonging to a given training partition. For the experimental study, we proposed an information affinity based performance criterion which we have used in order to show the performance of the approach on well-known benchmarks.Keywords: Data mining from uncertain data, Decision Trees, Possibility Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515696 Numerical Solution of Riccati Differential Equations by Using Hybrid Functions and Tau Method
Authors: Changqing Yang, Jianhua Hou, Beibo Qin
Abstract:
A numerical method for Riccati equation is presented in this work. The method is based on the replacement of unknown functions through a truncated series of hybrid of block-pulse functions and Chebyshev polynomials. The operational matrices of derivative and product of hybrid functions are presented. These matrices together with the tau method are then utilized to transform the differential equation into a system of algebraic equations. Corresponding numerical examples are presented to demonstrate the accuracy of the proposed method.
Keywords: Hybrid functions, Riccati differential equation, Blockpulse, Chebyshev polynomials, Tau method, operational matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2589695 Using the Keystrokes Dynamic for Systems of Personal Security
Authors: Gláucya C. Boechat, Jeneffer C. Ferreira, Edson C. B. Carvalho
Abstract:
This paper presents a boarding on biometric authentication through the Keystrokes Dynamics that it intends to identify a person from its habitual rhythm to type in conventional keyboard. Seven done experiments: verifying amount of prototypes, threshold, features and the variation of the choice of the times of the features vector. The results show that the use of the Keystroke Dynamics is simple and efficient for personal authentication, getting optimum resulted using 90% of the features with 4.44% FRR and 0% FAR.Keywords: Biometrics techniques, Keystroke Dynamics, patternrecognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741694 Bitrate Reduction Using FMO for Video Streaming over Packet Networks
Authors: Le Thanh Ha, Hye-Soo Kim, Chun-Su Park, Seung-Won Jung, Sung-Jea Ko
Abstract:
Flexible macroblock ordering (FMO), adopted in the H.264 standard, allows to partition all macroblocks (MBs) in a frame into separate groups of MBs called Slice Groups (SGs). FMO can not only support error-resilience, but also control the size of video packets for different network types. However, it is well-known that the number of bits required for encoding the frame is increased by adopting FMO. In this paper, we propose a novel algorithm that can reduce the bitrate overhead caused by utilizing FMO. In the proposed algorithm, all MBs are grouped in SGs based on the similarity of the transform coefficients. Experimental results show that our algorithm can reduce the bitrate as compared with conventional FMO.Keywords: Data Partition, Entropy Coding, Greedy Algorithm, H.264/AVC, Slice Group.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306693 Optimal Placement of Processors based on Effective Communication Load
Authors: A. R. Aswatha, T. Basavaraju, N. Bhaskara Rao
Abstract:
This paper presents a new technique for the optimum placement of processors to minimize the total effective communication load under multi-processor communication dominated environment. This is achieved by placing heavily loaded processors near each other and lightly loaded ones far away from one another in the physical grid locations. The results are mathematically proved for the Algorithms are described.Keywords: Ascending Sort Index Vector, EffectiveCommunication Load, Effective Distance Matrix, OptimalPlacement, Sorting Order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349