Search results for: Physical Performance
311 Neighborhood Sustainability Assessment Tools: A Conceptual Framework for Their Use in Building Adaptive Capacity to Climate Change
Authors: Sally Naji, Julie Gwilliam
Abstract:
Climate change remains a challenging matter for the human and the built environment in the 21st century, where the need to consider adaptation to climate change in the development process is paramount. However, there remains a lack of information regarding how we should prepare responses to this issue, such as through developing organized and sophisticated tools enabling the adaptation process. This study aims to build a systematic framework approach to investigate the potentials that Neighborhood Sustainability Assessment tools (NSA) might offer in enabling both the analysis of the emerging adaptive capacity to climate change. The analysis of the framework presented in this paper aims to discuss this issue in three main phases. The first part attempts to link sustainability and climate change, in the context of adaptive capacity. It is argued that in deciding to promote sustainability in the context of climate change, both the resilience and vulnerability processes become central. However, there is still a gap in the current literature regarding how the sustainable development process can respond to climate change. As well as how the resilience of practical strategies might be evaluated. It is suggested that the integration of the sustainability assessment processes with both the resilience thinking process, and vulnerability might provide important components for addressing the adaptive capacity to climate change. A critical review of existing literature is presented illustrating the current lack of work in this field, integrating these three concepts in the context of addressing the adaptive capacity to climate change. The second part aims to identify the most appropriate scale at which to address the built environment for the climate change adaptation. It is suggested that the neighborhood scale can be considered as more suitable than either the building or urban scales. It then presents the example of NSAs, and discusses the need to explore their potential role in promoting the adaptive capacity to climate change. The third part of the framework presents a comparison among three example NSAs, BREEAM Communities, LEED-ND, and CASBEE-UD. These three tools have been selected as the most developed and comprehensive assessment tools that are currently available for the neighborhood scale. This study concludes that NSAs are likely to present the basis for an organized framework to address the practical process for analyzing and yet promoting Adaptive Capacity to Climate Change. It is further argued that vulnerability (exposure & sensitivity) and resilience (Interdependence & Recovery) form essential aspects to be addressed in the future assessment of NSA’s capability to adapt to both short and long term climate change impacts. Finally, it is acknowledged that further work is now required to understand impact assessment in terms of the range of physical sectors (Water, Energy, Transportation, Building, Land Use and Ecosystems), Actor and stakeholder engagement as well as a detailed evaluation of the NSA indicators, together with a barriers diagnosis process.Keywords: Adaptive capacity, climate change, NSA tools, resilience, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172310 On the AC-Side Interface Filter in Three-Phase Shunt Active Power Filter Systems
Authors: Mihaela Popescu, Alexandru Bitoleanu, Mircea Dobriceanu
Abstract:
The proper selection of the AC-side passive filter interconnecting the voltage source converter to the power supply is essential to obtain satisfactory performances of an active power filter system. The use of the LCL-type filter has the advantage of eliminating the high frequency switching harmonics in the current injected into the power supply. This paper is mainly focused on analyzing the influence of the interface filter parameters on the active filtering performances. Some design aspects are pointed out. Thus, the design of the AC interface filter starts from transfer functions by imposing the filter performance which refers to the significant current attenuation of the switching harmonics without affecting the harmonics to be compensated. A Matlab/Simulink model of the entire active filtering system including a concrete nonlinear load has been developed to examine the system performances. It is shown that a gamma LC filter could accomplish the attenuation requirement of the current provided by converter. Moreover, the existence of an optimal value of the grid-side inductance which minimizes the total harmonic distortion factor of the power supply current is pointed out. Nevertheless, a small converter-side inductance and a damping resistance in series with the filter capacitance are absolutely needed in order to keep the ripple and oscillations of the current at the converter side within acceptable limits. The effect of change in the LCL-filter parameters is evaluated. It is concluded that good active filtering performances can be achieved with small values of the capacitance and converter-side inductance.Keywords: Active power filter, LCL filter, Matlab/Simulinkmodeling, Passive filters, Transfer function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3020309 Study of Pipes Scaling of Purified Wastewater Intended for the Irrigation of Agadir Golf Grass
Authors: A. Driouiche, S. Mohareb, A. Hadfi
Abstract:
In Morocco’s Agadir region, the reuse of treated wastewater for irrigation of green spaces has faced the problem of scaling of the pipes of these waters. This research paper aims at studying the phenomenon of scaling caused by the treated wastewater from the Mzar sewage treatment plant. These waters are used in the irrigation of golf turf for the Ocean Golf Resort. Ocean Golf, located about 10 km from the center of the city of Agadir, is one of the most important recreation centers in Morocco. The course is a Belt Collins design with 27 holes, and is quite open with deep challenging bunkers. The formation of solid deposits in the irrigation systems has led to a decrease in their lifetime and, consequently, a loss of load and performance. Thus, the sprinklers used in golf turf irrigation are plugged in the first weeks of operation. To study this phenomenon, the wastewater used for the irrigation of the golf turf was taken and analyzed at various points, and also samples of scale formed in the circuits of the passage of these waters were characterized. This characterization of the scale was performed by X-ray fluorescence spectrometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy (SEM). The results of the physicochemical analysis of the waters show that they are full of bicarbonates (653 mg/L), chloride (478 mg/L), nitrate (412 mg/L), sodium (425 mg/L) and calcium (199mg/L). Their pH is slightly alkaline. The analysis of the scale reveals that it is rich in calcium and phosphorus. It is formed of calcium carbonate (CaCO₃), silica (SiO₂), calcium silicate (Ca₂SiO₄), hydroxylapatite (Ca₁₀P₆O₂₆), calcium carbonate and phosphate (Ca₁₀(PO₄) 6CO₃) and silicate calcium and magnesium (Ca₅MgSi₃O₁₂).
Keywords: Agadir, irrigation, scaling water, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723308 Effect of Mixing Process on Polypropylene Modified Bituminous Concrete Mix Properties
Authors: Noor Zainab Habib, Ibrahim Kamaruddin, Madzalan Napiah, Isa Mohd Tan
Abstract:
This paper presents a research conducted to investigate the effect of mixing process on polypropylene (PP) modified bitumen mixed with well graded aggregate to form modified bituminous concrete mix. Two mode of mixing, namely dry and wet with different concentration of polymer polypropylene was used with 80/100 pen bitumen, to evaluate the bituminous concrete mix properties. Three percentages of polymer varying from 1-3% by the weight of bitumen was used in this study. Three mixes namely control mix, wet mix and dry mix were prepared. Optimum binder content was calculated considering Marshall Stability, flow, air voids and Marshall Quotient at different bitumen content varying from 4% - 6.5% for control, dry and wet mix. Engineering properties thus obtained at the calculated optimum bitumen content revealed that wet mixing process is advantageous in comparison to dry mixing as it increases the stiffness of the mixture with the increase in polymer content in bitumen. Stiffness value for wet mix increases with the increase in polymer content which is beneficial in terms of rutting. 1% PP dry mix also shows enhanced stiffness, with the air void content limited to 4%.The flow behaviour of dry mix doesn't indicate any major difference with the increase in polymer content revealing that polymer acting as an aggregate only without affecting the viscosity of the binder in the mix. Polypropylene (PP) when interacted with 80 pen base bitumen enhances its performance characteristics which were brought about by altered rheological properties of the modified bitumen. The decrease in flow with the increase in binder content reflects the increase in viscosity of binder which induces the plastic flow in the mix. Workability index indicates that wet mix were easy to compact up to desired void ratio in comparison to dry mix samples.
Keywords: Marshall Flow, Marshall Stability, Polymer modified bitumen, Polypropylene, Stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4497307 Investigating the Formation of Nano-Hydroxyapatite on a Biocompatible and Antibacterial Cu/Mg-Substituted Bioglass
Authors: Elhamalsadat Ghaffari, Moghan Amirhosseinian, Amir Khaleghipour
Abstract:
Multifunctional bioactive glasses (BGs) are designed with a focus on the provision of bactericidal and biological properties desired for angiogenesis, osteogenesis, and ultimately potential applications in bone tissue engineering. To achieve these, six sol-gel copper/magnesium substituted derivatives of 58S-BG, i.e. a mol% series of 60SiO2-4P2O5-5CuO-(31-x) CaO/xMgO (where x=0, 1, 3, 5, 8, and 10), were synthesized. Afterwards, the effect of MgO/CaO substitution on the in vitro formation of nano-hydroxyapatite (HA), osteoblast-like cell responses and BGs antibacterial performance were studied. During the BGs synthesis, the elimination of nitrates was achieved at 700 °C that prevented the BGs crystallization and stabilized the obtained dried gels. The structural and morphological evaluations were performed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These characterizations revealed that Cu-substituted 58S-BG consisting of 5 mol% MgO (BG-5/5) slightly had retarded the formation of HA. In addition, Cu-substituted 58S-BGs consisting 8 mol% and 10 mol% MgO (BG-5/8 and BG-5/10) displayed lower bioactivity probably due to the lower ion release rate of Ca–Si into the simulated body fluid (SBF). The determination of 3-(4, 5 dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and alkaline phosphate (ALP) activities proved that the highest values of both differentiation and proliferation of MC3T3-E1 cells can be obtained from a 5 mol% MgO substituted BG, while the over addition of MgO (8 mol% and 10 mol%) decreased the bioactivity. Furthermore, these novel Cu/Mg-substituted 58S-BGs displayed antibacterial effect against methicillin-resistant Staphylococcus aureus bacteria. Taken together, the results suggest the equally-substituted BG-5/5 (i.e. the one consists of 5 mol% of both CuO and MgO) as a promising candidate for bone tissue engineering, among all newly designed BGs in this work, owing to its desirable cell proliferation, ALP activity and antibacterial properties.Keywords: Apatite, bioactivity, biomedical applications sol-gel processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 832306 The Valuable Triad of Adipokine Indices to Differentiate Pediatric Obesity from Metabolic Syndrome: Chemerin, Progranulin, Vaspin
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Obesity is associated with cardiovascular disease risk factors and metabolic syndrome (MetS). In this study, associations between adipokines and adipokine as well as obesity indices were evaluated. Plasma adipokine levels may exhibit variations according to body adipose tissue mass. Besides, upon consideration of obesity as an inflammatory disease, adipokines may play some roles in this process. The ratios of proinflammatory adipokines to adiponectin may act as highly sensitive indicators of body adipokine status. The aim of the study is to present some adipokine indices, which are thought to be helpful for the evaluation of childhood obesity and also to determine the best discriminators in the diagnosis of MetS. 80 prepubertal children (aged between 6-9.5 years) included in the study were divided into three groups; 30 children with normal weight (NW), 25 morbid obese (MO) children and 25 MO children with MetS. Physical examinations were performed. Written informed consent forms were obtained from the parents. The study protocol was approved by Ethics Committee of Namik Kemal University Medical Faculty. Anthropometric measurements, such as weight, height, waist circumference (C), hip C, head C, neck C were recorded. Values for body mass index (BMI), diagnostic obesity notation model assessment Index-II (D2 index) as well as waist-to-hip, head-to-neck ratios were calculated. Adiponectin, resistin, leptin, chemerin, vaspin, progranulin assays were performed by ELISA. Adipokine-to-adiponectin ratios were obtained. SPSS Version 20 was used for the evaluation of data. p values ≤ 0.05 were accepted as statistically significant. Values of BMI and D2 index, waist-to-hip, head-to-neck ratios did not differ between MO and MetS groups (p ≥ 0.05). Except progranulin (p ≤ 0.01), similar patterns were observed for plasma levels of each adipokine. There was not any difference in vaspin as well as resistin levels between NW and MO groups. Significantly increased leptin-to-adiponectin, chemerin-to-adiponectin and vaspin-to-adiponectin values were noted in MO in comparison with those of NW. The most valuable adipokine index was progranulin-to-adiponectin (p ≤ 0.01). This index was strongly correlated with vaspin-to-adiponectin ratio in all groups (p ≤ 0.05). There was no correlation between vaspin-to-adiponectin and chemerin-to--adiponectin in NW group. However, a correlation existed in MO group (r = 0.486; p ≤ 0.05). Much stronger correlation (r = 0.609; p ≤ 0.01) was observed in MetS group between these two adipokine indices. No correlations were detected between vaspin and progranulin as well as vaspin and chemerin levels. Correlation analyses showed a unique profile confined to MetS children. Adiponectin was found to be correlated with waist-to-hip (r = -0.435; p ≤ 0.05) as well as head-to-neck (r = 0.541; p ≤ 0.05) ratios only in MetS children. In this study, it has been investigated if adipokine indices have priority over adipokine levels. In conclusion, vaspin-to-adiponectin, progranulin-to-adiponectin, chemerin-to-adiponectin along with waist-to-hip and head-to-neck ratios were the optimal combinations. Adiponectin, waist-to-hip, head-to-neck, vaspin-to-adiponectin, chemerin-to-adiponectin ratios had appropriate discriminatory capability for MetS children.Keywords: Adipokine indices, metabolic syndrome, obesity indices, pediatric obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761305 Inquiry on the Improvement Teaching Quality in the Classroom with Meta-Teaching Skills
Authors: Shahlan Surat, Saemah Rahman, Saadiah Kummin
Abstract:
When teachers reflect and evaluate whether their teaching methods actually have an impact on students’ learning, they will adjust their practices accordingly. This inevitably improves their students’ learning and performance. The approach in meta-teaching can invigorate and create a passion for teaching. It thus helps to increase the commitment and love for the teaching profession. This study was conducted to determine the level of metacognitive thinking of teachers in the process of teaching and learning in the classroom. Metacognitive thinking teachers include the use of metacognitive knowledge which consists of different types of knowledge: declarative, procedural and conditional. The ability of the teachers to plan, monitor and evaluate the teaching process can also be determined. This study was conducted on 377 graduate teachers in Klang Valley, Malaysia. The stratified sampling method was selected for the purpose of this study. The metacognitive teaching inventory consisting of 24 items is called InKePMG (Teacher Indicators of Effectiveness Meta-Teaching). The results showed the level of mean is high for two components of metacognitive knowledge; declarative knowledge (mean = 4.16) and conditional (mean = 4.11) whereas, the mean of procedural knowledge is 4.00 (moderately high). Similarly, the level of knowledge in monitoring (mean = 4.11), evaluating (mean = 4.00) which indicate high score and planning (mean = 4.00) are moderately high score among teachers. In conclusion, this study shows that the planning and procedural knowledge is an important element in improving the quality of teachers teaching in the classroom. Thus, the researcher recommended that further studies should focus on training programs for teachers on metacognitive skills and also on developing creative thinking among teachers.Keywords: Metacognitive thinking skills, procedural knowledge, conditional knowledge, declarative knowledge, meta-teaching and regulation of cognitive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436304 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization
Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz
Abstract:
PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.
Keywords: Electrowinning, intercell bars, PV energy, current modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623303 Parental Attitudes as a Predictor of Cyber Bullying among Primary School Children
Authors: Bülent Dilmaç, Didem Aydoğan
Abstract:
Problem Statement:Rapid technological developments of the 21st century have advanced our daily lives in various ways. Particularly in education, students frequently utilize technological resources to aid their homework and to access information. listen to radio or watch television (26.9 %) and e-mails (34.2 %) [26]. Not surprisingly, the increase in the use of technologies also resulted in an increase in the use of e-mail, instant messaging, chat rooms, mobile phones, mobile phone cameras and web sites by adolescents to bully peers. As cyber bullying occurs in the cyber space, lesser access to technologies would mean lesser cyber-harm. Therefore, the frequency of technology use is a significant predictor of cyber bullying and cyber victims. Cyber bullies try to harm the victim using various media. These tools include sending derogatory texts via mobile phones, sending threatening e-mails and forwarding confidential emails to everyone on the contacts list. Another way of cyber bullying is to set up a humiliating website and invite others to post comments. In other words, cyber bullies use e-mail, chat rooms, instant messaging, pagers, mobile texts and online voting tools to humiliate and frighten others and to create a sense of helplessness. No matter what type of bullying it is, it negatively affects its victims. Children who bully exhibit more emotional inhibition and attribute themselves more negative self-statements compared to non-bullies. Students whose families are not sympathetic and who receive lower emotional support are more prone to bully their peers. Bullies have authoritarian families and do not get along well with them. The family is the place where the children-s physical, social and psychological needs are satisfied and where their personalities develop. As the use of the internet became prevalent so did parents- restrictions on their children-s internet use. However, parents are unaware of the real harm. Studies that explain the relationship between parental attitudes and cyber bullying are scarce in literature. Thus, this study aims to investigate the relationship between cyber bullying and parental attitudes in the primary school. Purpose of Study: This study aimed to investigate the relationship between cyber bullying and parental attitudes. A second aim was to determine whether parental attitudes could predict cyber bullying and if so which variables could predict it significantly. Methods:The study had a cross-sectional and relational survey model. A demographics information form, questions about cyber bullying and a Parental Attitudes Inventory were conducted with a total of 346 students (189 females and 157 males) registered at various primary schools. Data was analysed by multiple regression analysis using the software package SPSS 16.
Keywords: Cyber bullying, cyber victim, parental attitudes, primary school students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3867302 Automation of Heat Exchanger using Neural Network
Authors: Sudhir Agashe, Ashok Ghatol, Sujata Agashe
Abstract:
In this paper the development of a heat exchanger as a pilot plant for educational purpose is discussed and the use of neural network for controlling the process is being presented. The aim of the study is to highlight the need of a specific Pseudo Random Binary Sequence (PRBS) to excite a process under control. As the neural network is a data driven technique, the method for data generation plays an important role. In light of this a careful experimentation procedure for data generation was crucial task. Heat exchange is a complex process, which has a capacity and a time lag as process elements. The proposed system is a typical pipe-in- pipe type heat exchanger. The complexity of the system demands careful selection, proper installation and commissioning. The temperature, flow, and pressure sensors play a vital role in the control performance. The final control element used is a pneumatically operated control valve. While carrying out the experimentation on heat exchanger a welldrafted procedure is followed giving utmost attention towards safety of the system. The results obtained are encouraging and revealing the fact that if the process details are known completely as far as process parameters are concerned and utilities are well stabilized then feedback systems are suitable, whereas neural network control paradigm is useful for the processes with nonlinearity and less knowledge about process. The implementation of NN control reinforces the concepts of process control and NN control paradigm. The result also underlined the importance of excitation signal typically for that process. Data acquisition, processing, and presentation in a typical format are the most important parameters while validating the results.Keywords: Process identification, neural network, heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573301 Multiaxial Fatigue Analysis of a High Performance Nickel-Based Superalloy
Authors: P. Selva, B. Lorrain, J. Alexis, A. Seror, A. Longuet, C. Mary, F. Denard
Abstract:
Over the past four decades, the fatigue behavior of nickel-based alloys has been widely studied. However, in recent years, significant advances in the fabrication process leading to grain size reduction have been made in order to improve fatigue properties of aircraft turbine discs. Indeed, a change in particle size affects the initiation mode of fatigue cracks as well as the fatigue life of the material. The present study aims to investigate the fatigue behavior of a newly developed nickel-based superalloy under biaxial-planar loading. Low Cycle Fatigue (LCF) tests are performed at different stress ratios so as to study the influence of the multiaxial stress state on the fatigue life of the material. Full-field displacement and strain measurements as well as crack initiation detection are obtained using Digital Image Correlation (DIC) techniques. The aim of this presentation is first to provide an in-depth description of both the experimental set-up and protocol: the multiaxial testing machine, the specific design of the cruciform specimen and performances of the DIC code are introduced. Second, results for sixteen specimens related to different load ratios are presented. Crack detection, strain amplitude and number of cycles to crack initiation vs. triaxial stress ratio for each loading case are given. Third, from fractographic investigations by scanning electron microscopy it is found that the mechanism of fatigue crack initiation does not depend on the triaxial stress ratio and that most fatigue cracks initiate from subsurface carbides.
Keywords: Cruciform specimen, multiaxial fatigue, Nickelbased superalloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193300 In-situ Chemical Oxidation of Residual TCE by Permanganate in Epikarst
Authors: Nihat Hakan Akyol, Irfan Yolcubal
Abstract:
In-situ chemical oxidation (ISCO) has been widely used for source zone remediation of Dense Nonaqueous Phase Liquids (DNAPLs) in subsurface environments. DNAPL source zones for karst aquifers are generally located in epikarst where the DNAPL mass is trapped either in karst soil or at the regolith contact with carbonate bedrock. This study aims to investigate the performance of oxidation of residual trichloroethylene found in such environments by potassium permanganate. Batch and flow cell experiments were conducted to determine the kinetics and the mass removal rate of TCE. pH change, Cl production, TCE and MnO4 destruction were monitored routinely during experiments. Nonreactive tracer tests were also conducted prior and after the oxidation process to determine the influence of oxidation on flow conditions. The results show that oxidant consumption rate of the calcareous epikarst soil was significant and the oxidant demand was determined to be 20 g KMnO4/kg soil. Oxidation rate of residual TCE (1.26x10-3 s-1) was faster than the oxidant consumption rate of the soil (2.54 - 2.92x10-4 s-1) at only high oxidant concentrations (> 40 mM KMnO4). Half life of TCE oxidation ranged from 7.9 to 10.7 min. Although highly significant fraction of residual TCE mass in the system was destroyed by permanganate oxidation, TCE concentration in the effluent remained above its MCL. Flow interruption tests indicate that efficiency of ISCO was limited by the rate of TCE dissolution and the rate-limited desorption of TCE. The residence time and the initial concentration of the oxidant in the source zone also controlled the efficiency of ISCO in epikarst.Keywords: Epikarst, in-situ chemical oxidation, permanganate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027299 Comparison of Polynomial and Radial Basis Kernel Functions based SVR and MLR in Modeling Mass Transfer by Vertical and Inclined Multiple Plunging Jets
Abstract:
Presently various computational techniques are used in modeling and analyzing environmental engineering data. In the present study, an intra-comparison of polynomial and radial basis kernel functions based on Support Vector Regression and, in turn, an inter-comparison with Multi Linear Regression has been attempted in modeling mass transfer capacity of vertical (θ = 90O) and inclined (θ multiple plunging jets (varying from 1 to 16 numbers). The data set used in this study consists of four input parameters with a total of eighty eight cases, forty four each for vertical and inclined multiple plunging jets. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 along with corresponding root mean square error values of 0.0025 and 0.0020 were achieved by using polynomial and radial basis kernel functions based Support Vector Regression respectively. An intra-comparison suggests improved performance by radial basis function in comparison to polynomial kernel based Support Vector Regression. Further, an inter-comparison with Multi Linear Regression (correlation coefficient = 0.973 and root mean square error = 0.0024) reveals that radial basis kernel functions based Support Vector Regression performs better in modeling and estimating mass transfer by multiple plunging jets.Keywords: Mass transfer, multiple plunging jets, polynomial and radial basis kernel functions, Support Vector Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433298 Job Satisfaction of Midwives Working in Labor Ward of the Lady Dufferin Hospital: A Cross-Sectional Study
Authors: B. Muhammadani
Abstract:
Health workforce is a fundamental component of health system and plays a significant role in delivering effective health care services. However, there is a crucial shortage of skilled personnel which make them prone to work in stressful conditions. In spite of excessively high workload and burnout among the staff, little attention is given to their job satisfaction level which has serious implications on the productivity and effective performance of staff to achieve organizational goals. Therefore, this study aims to explore the job satisfaction of midwives working in the labor ward of the Lady Dufferin Hospital, Karachi. A cross-sectional survey was conducted. The short version of Minnesota Job Satisfaction Questionnaire was administered on a convenient sample group of 22 midwives to gather information on their job satisfaction. The results demonstrated that midwives were overall satisfied with their job. The level of job satisfaction was however found different in various positions within midwifery cadre. The head of midwives was highly satisfied as compared to midwifery staff who works under the supervision of head. The level of satisfaction of team leaders fall between the head and staff of midwifery. Similar trends were observed for both intrinsic and extrinsic job satisfaction. Such evidences on these issues are essential and useful as it helps explore the attitudes of individuals towards work which has direct implications on access to quality care services. Strategic interventions are required at organizational level to provide motivators and satisfiers to health workers for their work related satisfaction and enhanced motivation.Keywords: Health workforce, job satisfaction, motivation, workload, burnout, midwives, health system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305297 Experimental Study on Two-Step Pyrolysis of Automotive Shredder Residue
Authors: Letizia Marchetti, Federica Annunzi, Federico Fiorini, Cristiano Nicolella
Abstract:
Automotive shredder residue (ASR) is a mixture of waste that makes up 20-25% of end-of-life vehicles. For many years, ASR was commonly disposed of in landfills or incinerated, causing serious environmental problems. Nowadays, thermochemical treatments are a promising alternative, although the heterogeneity of ASR still poses some challenges. One of the emerging thermochemical treatments for ASR is pyrolysis, which promotes the decomposition of long polymeric chains by providing heat in the absence of an oxidizing agent. In this way, pyrolysis promotes the conversion of ASR into solid, liquid, and gaseous phases. This work aims to improve the performance of a two-step pyrolysis process. After the characterization of the analysed ASR, the focus is on determining the effects of residence time on product yields and gas composition. A batch experimental setup that reproduces the entire process was used. The setup consists of three sections: the pyrolysis section (made of two reactors), the separation section, and the analysis section. Two different residence times were investigated to find suitable conditions for the first sample of ASR. These first tests showed that the products obtained were more sensitive to residence time in the second reactor. Indeed, slightly increasing residence time in the second reactor managed to raise the yield of gas and carbon residue and decrease the yield of liquid fraction. Then, to test the versatility of the setup, the same conditions were applied to a different sample of ASR coming from a different chemical plant. The comparison between the two ASR samples shows that similar product yields and compositions are obtained using the same setup.
Keywords: Automotive shredder residue, experimental tests, heterogeneity, product yields, two-step pyrolysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50296 Software Product Quality Evaluation Model with Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
This paper presents a software product quality evaluation model based on the ISO/IEC 25010 quality model. The evaluation characteristics and sub characteristics were identified from the ISO/IEC 25010 quality model. The multidimensional structure of the quality model is based on characteristics such as functional suitability, performance efficiency, compatibility, usability, reliability, security, maintainability, and portability, and associated sub characteristics. Random numbers are generated to establish the decision maker’s importance weights for each sub characteristics. Also, random numbers are generated to establish the decision matrix of the decision maker’s final scores for each software product against each sub characteristics. Thus, objective criteria importance weights and index scores for datasets were obtained from the random numbers. In the proposed model, five different software product quality evaluation datasets under three different weight vectors were applied to multiple criteria decision analysis method, preference analysis for reference ideal solution (PARIS) for comparison, and sensitivity analysis procedure. This study contributes to provide a better understanding of the application of MCDMA methods and ISO/IEC 25010 quality model guidelines in software product quality evaluation process.
Keywords: ISO/IEC 25010 quality model, multiple criteria decisions making, multiple criteria decision making analysis, MCDMA, PARIS, Software Product Quality Evaluation Model, Software Product Quality Evaluation, Software Evaluation, Software Selection, Software
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448295 Discovery of Quantified Hierarchical Production Rules from Large Set of Discovered Rules
Authors: Tamanna Siddiqui, M. Afshar Alam
Abstract:
Automated discovery of Rule is, due to its applicability, one of the most fundamental and important method in KDD. It has been an active research area in the recent past. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form: Decision If < condition> Generality
Keywords: Knowledge discovery in database, quantification, dempster shafer theory, genetic programming, hierarchy, subsumption matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527294 An Improved Total Variation Regularization Method for Denoising Magnetocardiography
Authors: Yanping Liao, Congcong He, Ruigang Zhao
Abstract:
The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.Keywords: Constraint parameters, derivative matrix, magnetocardiography, regular term, total variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698293 Efficient Design Optimization of Multi-State Flow Network for Multiple Commodities
Authors: Yu-Cheng Chou, Po Ting Lin
Abstract:
The network of delivering commodities has been an important design problem in our daily lives and many transportation applications. The delivery performance is evaluated based on the system reliability of delivering commodities from a source node to a sink node in the network. The system reliability is thus maximized to find the optimal routing. However, the design problem is not simple because (1) each path segment has randomly distributed attributes; (2) there are multiple commodities that consume various path capacities; (3) the optimal routing must successfully complete the delivery process within the allowable time constraints. In this paper, we want to focus on the design optimization of the Multi-State Flow Network (MSFN) for multiple commodities. We propose an efficient approach to evaluate the system reliability in the MSFN with respect to randomly distributed path attributes and find the optimal routing subject to the allowable time constraints. The delivery rates, also known as delivery currents, of the path segments are evaluated and the minimal-current arcs are eliminated to reduce the complexity of the MSFN. Accordingly, the correct optimal routing is found and the worst-case reliability is evaluated. It has been shown that the reliability of the optimal routing is at least higher than worst-case measure. Two benchmark examples are utilized to demonstrate the proposed method. The comparisons between the original and the reduced networks show that the proposed method is very efficient.
Keywords: Multiple Commodities, Multi-State Flow Network (MSFN), Time Constraints, Worst-Case Reliability (WCR)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449292 A Vehicle Monitoring System Based on the LoRa Technique
Authors: Chao-Linag Hsieh, Zheng-Wei Ye, Chen-Kang Huang, Yeun-Chung Lee, Chih-Hong Sun, Tzai-Hung Wen, Jehn-Yih Juang, Joe-Air Jiang
Abstract:
Air pollution and climate warming become more and more intensified in many areas, especially in urban areas. Environmental parameters are critical information to air pollution and weather monitoring. Thus, it is necessary to develop a suitable air pollution and weather monitoring system for urban areas. In this study, a vehicle monitoring system (VMS) based on the IoT technique is developed. Cars are selected as the research tool because it can reach a greater number of streets to collect data. The VMS can monitor different environmental parameters, including ambient temperature and humidity, and air quality parameters, including PM2.5, NO2, CO, and O3. The VMS can provide other information, including GPS signals and the vibration information through driving a car on the street. Different sensor modules are used to measure the parameters and collect the measured data and transmit them to a cloud server through the LoRa protocol. A user interface is used to show the sensing data storing at the cloud server. To examine the performance of the system, a researcher drove a Nissan x-trail 1998 to the area close to the Da’an District office in Taipei to collect monitoring data. The collected data are instantly shown on the user interface. The four kinds of information are provided by the interface: GPS positions, weather parameters, vehicle information, and air quality information. With the VMS, users can obtain the information regarding air quality and weather conditions when they drive their car to an urban area. Also, government agencies can make decisions on traffic planning based on the information provided by the proposed VMS.
Keywords: Vehicle, monitoring system, LoRa, smart city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3101291 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems
Authors: Vijaya K. Srivastava, Davide Spinello
Abstract:
This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.
Keywords: Constrained integer problems, enumerative search algorithm, Heuristic algorithm, tunneling algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800290 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.
Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594289 Overview Studies of High Strength Self-Consolidating Concrete
Authors: Raya Harkouss, Bilal Hamad
Abstract:
Self-Consolidating Concrete (SCC) is considered as a relatively new technology created as an effective solution to problems associated with low quality consolidation. A SCC mix is defined as successful if it flows freely and cohesively without the intervention of mechanical compaction. The construction industry is showing high tendency to use SCC in many contemporary projects to benefit from the various advantages offered by this technology.
At this point, a main question is raised regarding the effect of enhanced fluidity of SCC on the structural behavior of high strength self-consolidating reinforced concrete.
A three phase research program was conducted at the American University of Beirut (AUB) to address this concern. The first two phases consisted of comparative studies conducted on concrete and mortar mixes prepared with second generation Sulphonated Naphtalene-based superplasticizer (SNF) or third generation Polycarboxylate Ethers-based superplasticizer (PCE). The third phase of the research program investigates and compares the structural performance of high strength reinforced concrete beam specimens prepared with two different generations of superplasticizers that formed the unique variable between the concrete mixes. The beams were designed to test and exhibit flexure, shear, or bond splitting failure.
The outcomes of the experimental work revealed comparable resistance of beam specimens cast using self-compacting concrete and conventional vibrated concrete. The dissimilarities in the experimental values between the SCC and the control VC beams were minimal, leading to a conclusion, that the high consistency of SCC has little effect on the flexural, shear and bond strengths of concrete members.
Keywords: Self-consolidating concrete (SCC), high-strength concrete, concrete admixtures, mechanical properties of hardened SCC, structural behavior of reinforced concrete beams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2970288 Cirrhosis Mortality Prediction as Classification Using Frequent Subgraph Mining
Authors: Abdolghani Ebrahimi, Diego Klabjan, Chenxi Ge, Daniela Ladner, Parker Stride
Abstract:
In this work, we use machine learning and data analysis techniques to predict the one-year mortality of cirrhotic patients. Data from 2,322 patients with liver cirrhosis are collected at a single medical center. Different machine learning models are applied to predict one-year mortality. A comprehensive feature space including demographic information, comorbidity, clinical procedure and laboratory tests is being analyzed. A temporal pattern mining technic called Frequent Subgraph Mining (FSM) is being used. Model for End-stage liver disease (MELD) prediction of mortality is used as a comparator. All of our models statistically significantly outperform the MELD-score model and show an average 10% improvement of the area under the curve (AUC). The FSM technic itself does not improve the model significantly, but FSM, together with a machine learning technique called an ensemble, further improves the model performance. With the abundance of data available in healthcare through electronic health records (EHR), existing predictive models can be refined to identify and treat patients at risk for higher mortality. However, due to the sparsity of the temporal information needed by FSM, the FSM model does not yield significant improvements. Our work applies modern machine learning algorithms and data analysis methods on predicting one-year mortality of cirrhotic patients and builds a model that predicts one-year mortality significantly more accurate than the MELD score. We have also tested the potential of FSM and provided a new perspective of the importance of clinical features.
Keywords: machine learning, liver cirrhosis, subgraph mining, supervised learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449287 A Novel Neighborhood Defined Feature Selection on Phase Congruency Images for Recognition of Faces with Extreme Variations
Authors: Satyanadh Gundimada, Vijayan K Asari
Abstract:
A novel feature selection strategy to improve the recognition accuracy on the faces that are affected due to nonuniform illumination, partial occlusions and varying expressions is proposed in this paper. This technique is applicable especially in scenarios where the possibility of obtaining a reliable intra-class probability distribution is minimal due to fewer numbers of training samples. Phase congruency features in an image are defined as the points where the Fourier components of that image are maximally inphase. These features are invariant to brightness and contrast of the image under consideration. This property allows to achieve the goal of lighting invariant face recognition. Phase congruency maps of the training samples are generated and a novel modular feature selection strategy is implemented. Smaller sub regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are arranged in the order of increasing distance between the sub regions involved in merging. The assumption behind the proposed implementation of the region merging and arrangement strategy is that, local dependencies among the pixels are more important than global dependencies. The obtained feature sets are then arranged in the decreasing order of discriminating capability using a criterion function, which is the ratio of the between class variance to the within class variance of the sample set, in the PCA domain. The results indicate high improvement in the classification performance compared to baseline algorithms.
Keywords: Discriminant analysis, intra-class probability distribution, principal component analysis, phase congruency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850286 Signing the First Packet in Amortization Scheme for Multicast Stream Authentication
Authors: Mohammed Shatnawi, Qusai Abuein, Susumu Shibusawa
Abstract:
Signature amortization schemes have been introduced for authenticating multicast streams, in which, a single signature is amortized over several packets. The hash value of each packet is computed, some hash values are appended to other packets, forming what is known as hash chain. These schemes divide the stream into blocks, each block is a number of packets, the signature packet in these schemes is either the first or the last packet of the block. Amortization schemes are efficient solutions in terms of computation and communication overhead, specially in real-time environment. The main effictive factor of amortization schemes is it-s hash chain construction. Some studies show that signing the first packet of each block reduces the receiver-s delay and prevents DoS attacks, other studies show that signing the last packet reduces the sender-s delay. To our knowledge, there is no studies that show which is better, to sign the first or the last packet in terms of authentication probability and resistance to packet loss. In th is paper we will introduce another scheme for authenticating multicast streams that is robust against packet loss, reduces the overhead, and prevents the DoS attacks experienced by the receiver in the same time. Our scheme-The Multiple Connected Chain signing the First packet (MCF) is to append the hash values of specific packets to other packets,then append some hashes to the signature packet which is sent as the first packet in the block. This scheme is aspecially efficient in terms of receiver-s delay. We discuss and evaluate the performance of our proposed scheme against those that sign the last packet of the block.Keywords: multicast stream authentication, hash chain construction, signature amortization, authentication probability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518285 Opponent Color and Curvelet Transform Based Image Retrieval System Using Genetic Algorithm
Authors: Yesubai Rubavathi Charles, Ravi Ramraj
Abstract:
In order to retrieve images efficiently from a large database, a unique method integrating color and texture features using genetic programming has been proposed. Opponent color histogram which gives shadow, shade, and light intensity invariant property is employed in the proposed framework for extracting color features. For texture feature extraction, fast discrete curvelet transform which captures more orientation information at different scales is incorporated to represent curved like edges. The recent scenario in the issues of image retrieval is to reduce the semantic gap between user’s preference and low level features. To address this concern, genetic algorithm combined with relevance feedback is embedded to reduce semantic gap and retrieve user’s preference images. Extensive and comparative experiments have been conducted to evaluate proposed framework for content based image retrieval on two databases, i.e., COIL-100 and Corel-1000. Experimental results clearly show that the proposed system surpassed other existing systems in terms of precision and recall. The proposed work achieves highest performance with average precision of 88.2% on COIL-100 and 76.3% on Corel, the average recall of 69.9% on COIL and 76.3% on Corel. Thus, the experimental results confirm that the proposed content based image retrieval system architecture attains better solution for image retrieval.Keywords: Content based image retrieval, Curvelet transform, Genetic algorithm, Opponent color histogram, Relevance feedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822284 The Effect of Cow Reproductive Traits on Lifetime Productivity and Longevity
Authors: Lāsma Cielava, Daina Jonkus, Līga Paura
Abstract:
The age of first calving (AFC) is one of the most important factors that have a significant impact on cow productivity in different lactations and its whole life. A belated AFC leads to reduced reproductive performance and it is one of the main reasons for reduced longevity. Cows that calved in time period from 2001-2007 and in this time finished at least four lactations were included in the database. Data were obtained from 68841 crossbred Holstein Black and White (HM), crossbred Latvian Brown (LB), and Latvian Brown genetic resources (LBGR) cows. Cows were distributed in four groups depending on age at first calving. The longest lifespan was conducted for LBGR cows, but they were also characterized with lowest lifetime milk yield and life day milk yield. HM breed cows had the shortest lifespan, but in the lifespan of 2862.2 days was obtained in average 37916.4 kg milk accordingly 13.2 kg milk in one life day. HM breed cows were also characterized with longer calving intervals (CI) in first four lactations, but LBGR cows had the shortest CI in the study group. Age at first calving significantly affected the length of CI in different lactations (p<0.05). HM cows that first time calved >30 months old in the fourth lactation had the longest CI in all study groups (421.4 days). The LBGR cows were characterized with the shortest CI, but there was slight increase in second and third lactation. Age at first calving had a significant impact on cows’ age in each calving time. In the analysis, cow group was conducted that cows with age at first calving <24 months or in average 580.5 days at the time of fifth calving were 2156.7 days (5.9 years) old, but cows with age at first calving >30 months (932.6 days) at the time of fifth calving were 2560.9 days (7.3 years) old.
Keywords: Age at first calving, calving interval, longevity, milk yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634283 Very Large Scale Integration Architecture of Finite Impulse Response Filter Implementation Using Retiming Technique
Authors: S. Jalaja, A. M. Vijaya Prakash
Abstract:
Recursive combination of an algorithm based on Karatsuba multiplication is exploited to design a generalized transpose and parallel Finite Impulse Response (FIR) Filter. Mid-range Karatsuba multiplication and Carry Save adder based on Karatsuba multiplication reduce time complexity for higher order multiplication implemented up to n-bit. As a result, we design modified N-tap Transpose and Parallel Symmetric FIR Filter Structure using Karatsuba algorithm. The mathematical formulation of the FFA Filter is derived. The proposed architecture involves significantly less area delay product (APD) then the existing block implementation. By adopting retiming technique, hardware cost is reduced further. The filter architecture is designed by using 90 nm technology library and is implemented by using cadence EDA Tool. The synthesized result shows better performance for different word length and block size. The design achieves switching activity reduction and low power consumption by applying with and without retiming for different combination of the circuit. The proposed structure achieves more than a half of the power reduction by adopting with and without retiming techniques compared to the earlier design structure. As a proof of the concept for block size 16 and filter length 64 for CKA method, it achieves a 51% as well as 70% less power by applying retiming technique, and for CSA method it achieves a 57% as well as 77% less power by applying retiming technique compared to the previously proposed design.Keywords: Carry save adder Karatsuba multiplication, mid-range Karatsuba multiplication, modified FFA, transposed filter, retiming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910282 An Autonomous Collaborative Forecasting System Implementation – The First Step towards Successful CPFR System
Authors: Chi-Fang Huang, Yun-Shiow Chen, Yun-Kung Chung
Abstract:
In the past decade, artificial neural networks (ANNs) have been regarded as an instrument for problem-solving and decision-making; indeed, they have already done with a substantial efficiency and effectiveness improvement in industries and businesses. In this paper, the Back-Propagation neural Networks (BPNs) will be modulated to demonstrate the performance of the collaborative forecasting (CF) function of a Collaborative Planning, Forecasting and Replenishment (CPFR®) system. CPFR functions the balance between the sufficient product supply and the necessary customer demand in a Supply and Demand Chain (SDC). Several classical standard BPN will be grouped, collaborated and exploited for the easy implementation of the proposed modular ANN framework based on the topology of a SDC. Each individual BPN is applied as a modular tool to perform the task of forecasting SKUs (Stock-Keeping Units) levels that are managed and supervised at a POS (point of sale), a wholesaler, and a manufacturer in an SDC. The proposed modular BPN-based CF system will be exemplified and experimentally verified using lots of datasets of the simulated SDC. The experimental results showed that a complex CF problem can be divided into a group of simpler sub-problems based on the single independent trading partners distributed over SDC, and its SKU forecasting accuracy was satisfied when the system forecasted values compared to the original simulated SDC data. The primary task of implementing an autonomous CF involves the study of supervised ANN learning methodology which aims at making “knowledgeable" decision for the best SKU sales plan and stocks management.Keywords: CPFR, artificial neural networks, global logistics, supply and demand chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993