Search results for: Wind velocity.
644 New Echocardiographic Morphofunctional Diastolic Index (MFDI) in Differentiation of Normal Left Ventricular Filling from Pseudonormal and Restrictive
Authors: N. Nelasov, D. Safonov, M. Babaev, E. Mirzojan, O. Eroshenko, M. Morgunov, A. Erofeeva
Abstract:
We have shown previously that reflected high intensity motion signals (RIMS) can be used for detection of left ventricular (LV) diastolic dysfunction (DD). It is also well known, that left atrial (LA) dimension can be used as a marker of DD. In this study we decided to analyze the diagnostic role of new echocardiographic morphofunctional diastolic index (MFDI) in differentiation of normal filling of LV from pseudonormal and restrictive. MFDI includes LA dimension and velocity of early diastolic component ea of RIMS (MFDI = LA/ea).
343 healthy subjects and patients with various cardiac pathology underwent dopplerechocardiographic exam. According to the criteria of "Don" classification scheme 155 subjects had signs of normal LV filling (N) and 55 - of pseudonormal and restrictive filling (PN + R). LA dimension was performed in standard manner. RIMS were registered by conventional pulsed wave Doppler from apical 4-chamber view, when the sample volume was positioned between the tips of mitral leaflets. The velocity of early diastolic component of RIMS was measured. After calculation of MFDI mean values of this index in two groups (N and PN + R) were compared. The cutoff value of MFDI for differentiation of patients with N and PN + R was determined.
Mean value of MFDI in subjects with normal filling was 1.38+0.33 and in patients with pseudonormal and restrictive filling 2.43+0.43; p<0.0001. The cutoff value of MFDI > 2.0 separated subjects with normal LV filling from subjects with pseudonormal and restrictive filling with sensitivity 89.1% and specificity 97.4%.
Keywords: Dopplerechocardiography, diastolic dysfunction, left atrium, reflected high intensity motion signals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590643 The Effect of Response Feedback on Performance of Active Controlled Nonlinear Frames
Authors: M. Mohebbi, K. Shakeri
Abstract:
The effect of different combinations of response feedback on the performance of active control system on nonlinear frames has been studied in this paper. To this end different feedback combinations including displacement, velocity, acceleration and full response feedback have been utilized in controlling the response of an eight story bilinear hysteretic frame which has been subjected to a white noise excitation and controlled by eight actuators which could fully control the frame. For active control of nonlinear frame Newmark nonlinear instantaneous optimal control algorithm has been used which a diagonal matrix has been selected for weighting matrices in performance index. For optimal design of active control system while the objective has been to reduce the maximum drift to below the yielding level, Distributed Genetic Algorithm (DGA) has been used to determine the proper set of weighting matrices. The criteria to assess the effect of each combination of response feedback have been the minimum required control force to reduce the maximum drift to below the yielding drift. The results of numerical simulation show that the performance of active control system is dependent on the type of response feedback where the velocity feedback is more effective in designing optimal control system in comparison with displacement and acceleration feedback. Also using full feedback of response in controller design leads to minimum control force amongst other combinations. Also the distributed genetic algorithm shows acceptable convergence speed in solving the optimization problem of designing active control systems.Keywords: Active control, Distributed genetic algorithms, Response feedback, Weighting matrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406642 Multi-Criteria Selection and Improvement of Effective Design for Generating Power from Sea Waves
Authors: Khaled M. Khader, Mamdouh I. Elimy, Omayma A. Nada
Abstract:
Sustainable development is the nominal goal of most countries at present. In general, fossil fuels are the development mainstay of most world countries. Regrettably, the fossil fuel consumption rate is very high, and the world is facing the problem of conventional fuels depletion soon. In addition, there are many problems of environmental pollution resulting from the emission of harmful gases and vapors during fuel burning. Thus, clean, renewable energy became the main concern of most countries for filling the gap between available energy resources and their growing needs. There are many renewable energy sources such as wind, solar and wave energy. Energy can be obtained from the motion of sea waves almost all the time. However, power generation from solar or wind energy is highly restricted to sunny periods or the availability of suitable wind speeds. Moreover, energy produced from sea wave motion is one of the cheapest types of clean energy. In addition, renewable energy usage of sea waves guarantees safe environmental conditions. Cheap electricity can be generated from wave energy using different systems such as oscillating bodies' system, pendulum gate system, ocean wave dragon system and oscillating water column device. In this paper, a multi-criteria model has been developed using Analytic Hierarchy Process (AHP) to support the decision of selecting the most effective system for generating power from sea waves. This paper provides a widespread overview of the different design alternatives for sea wave energy converter systems. The considered design alternatives have been evaluated using the developed AHP model. The multi-criteria assessment reveals that the off-shore Oscillating Water Column (OWC) system is the most appropriate system for generating power from sea waves. The OWC system consists of a suitable hollow chamber at the shore which is completely closed except at its base which has an open area for gathering moving sea waves. Sea wave's motion pushes the air up and down passing through a suitable well turbine for generating power. Improving the power generation capability of the OWC system is one of the main objectives of this research. After investigating the effect of some design modifications, it has been concluded that selecting the appropriate settings of some effective design parameters such as the number of layers of Wells turbine fans and the intermediate distance between the fans can result in significant improvements. Moreover, simple dynamic analysis of the Wells turbine is introduced. Furthermore, this paper strives for comparing the theoretical and experimental results of the built experimental prototype.Keywords: Renewable energy, oscillating water column, multi-criteria selection, wells turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243641 Sea Level Characteristics Referenced to Specific Geodetic Datum in Alexandria, Egypt
Authors: Ahmed M. Khedr, Saad M. Abdelrahman, Kareem M. Tonbol
Abstract:
Two geo-referenced sea level datasets (September 2008 – November 2010) and (April 2012 – January 2014) were recorded at Alexandria Western Harbour (AWH). Accurate re-definition of tidal datum, referred to the latest International Terrestrial Reference Frame (ITRF-2014), was discussed and updated to improve our understanding of the old predefined tidal datum at Alexandria. Tidal and non-tidal components of sea level were separated with the use of Delft-3D hydrodynamic model-tide suit (Delft-3D, 2015). Tidal characteristics at AWH were investigated and harmonic analysis showed the most significant 34 constituents with their amplitudes and phases. Tide was identified as semi-diurnal pattern as indicated by a “Form Factor” of 0.24 and 0.25, respectively. Principle tidal datums related to major tidal phenomena were recalculated referred to a meaningful geodetic height datum. The portion of residual energy (surge) out of the total sea level energy was computed for each dataset and found 77% and 72%, respectively. Power spectral density (PSD) showed accurate resolvability in high band (1–6) cycle/days for the nominated independent constituents, except some neighbouring constituents, which are too close in frequency. Wind and atmospheric pressure data, during the recorded sea level time, were analysed and cross-correlated with the surge signals. Moderate association between surge and wind and atmospheric pressure data were obtained. In addition, long-term sea level rise trend at AWH was computed and showed good agreement with earlier estimated rates.
Keywords: Alexandria, Delft-3D, Egypt, geodetic reference, harmonic analysis, sea level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360640 Flow Acoustics in Solid-Fluid Structures
Authors: Morten Willatzen, Mikhail Vladimirovich Deryabin
Abstract:
The governing two-dimensional equations of a heterogeneous material composed of a fluid (allowed to flow in the absence of acoustic excitations) and a crystalline piezoelectric cubic solid stacked one-dimensionally (along the z direction) are derived and special emphasis is given to the discussion of acoustic group velocity for the structure as a function of the wavenumber component perpendicular to the stacking direction (being the x axis). Variations in physical parameters with y are neglected assuming infinite material homogeneity along the y direction and the flow velocity is assumed to be directed along the x direction. In the first part of the paper, the governing set of differential equations are derived as well as the imposed boundary conditions. Solutions are provided using Hamilton-s equations for the wavenumber vs. frequency as a function of the number and thickness of solid layers and fluid layers in cases with and without flow (also the case of a position-dependent flow in the fluid layer is considered). In the first part of the paper, emphasis is given to the small-frequency case. Boundary conditions at the bottom and top parts of the full structure are left unspecified in the general solution but examples are provided for the case where these are subject to rigid-wall conditions (Neumann boundary conditions in the acoustic pressure). In the second part of the paper, emphasis is given to the general case of larger frequencies and wavenumber-frequency bandstructure formation. A wavenumber condition for an arbitrary set of consecutive solid and fluid layers, involving four propagating waves in each solid region, is obtained again using the monodromy matrix method. Case examples are finally discussed.
Keywords: Flow, acoustics, solid-fluid structures, periodicity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588639 Study of Aerodynamic Characteristics of the Unmanned Aircraft in the Wake
Authors: O. Solovyov, S. Eryomenko, V. Kobrin, V. Chmovzh
Abstract:
The methodology of numerical simulation and calculation of aerodynamic characteristics of aircraft taking into account impact of wake on it has been developed. The results of numerical experiment in comparison with the data obtained in the wind tunnel are presented. Efficiency of methodology of calculation and the reliability of the results is shown.
Keywords: Unmanned aircraft, vortex wake, aerodynamic characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787638 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid
Authors: Abdulla Rahil, Rupert Gammon, Neil Brown
Abstract:
The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.
Keywords: Hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263637 Dislocation Modelling of the 1997-2009 High-Precision Global Positioning System Displacements in Darjiling- Sikkim Himalaya, India
Authors: Kutubuddin Ansari, Malay Mukul, Sridevi Jade
Abstract:
We used high-precision Global Positioning System (GPS) to geodetically constrain the motion of stations in the Darjiling-Sikkim Himalayan (DSH) wedge and examine the deformation at the Indian-Tibetan plate boundary using IGS (International GPS Service) fiducial stations. High-precision GPS based displacement and velocity field was measured in the DSH between 1997 and 2009. To obtain additional insight north of the Indo-Tibetan border and in the Darjiling-Sikkim-Tibet (DaSiT) wedge, published velocities from four stations J037, XIGA, J029 and YADO were also included in the analysis. India-fixed velocities or the back-slip was computed relative to the pole of rotation of the Indian Plate (Latitude 52.97 ± 0.22º, Longitude - 0.30 ± 3.76º, and Angular Velocity 0.500 ± 0.008º/ Myr) in the DaSiT wedge. Dislocation modelling was carried out with the back-slip to model the best possible solution of a finite rectangular dislocation or the causative fault based on dislocation theory that produced the observed back-slip using a forward modelling approach. To find the best possible solution, three different models were attempted. First, slip along a single thrust fault, then two thrust faults and in finally, three thrust faults were modelled to simulate the back-slip in the DaSiT wedge. The three-fault case bests the measured displacements and is taken as the best possible solution.
Keywords: Global Positioning System, Darjiling-Sikkim Himalaya, Dislocation modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104636 Numerical Study of Bubbling Fluidized Beds Operating at Sub-atmospheric Conditions
Authors: Lanka Dinushke Weerasiri, Subrat Das, Daniel Fabijanic, William Yang
Abstract:
Fluidization at vacuum pressure has been a topic that is of growing research interest. Several industrial applications (such as drying, extractive metallurgy, and chemical vapor deposition (CVD)) can potentially take advantage of vacuum pressure fluidization. Particularly, the fine chemical industry requires processing under safe conditions for thermolabile substances, and reduced pressure fluidized beds offer an alternative. Fluidized beds under vacuum conditions provide optimal conditions for treatment of granular materials where the reduced gas pressure maintains an operational environment outside of flammability conditions. The fluidization at low-pressure is markedly different from the usual gas flow patterns of atmospheric fluidization. The different flow regimes can be characterized by the dimensionless Knudsen number. Nevertheless, hydrodynamics of bubbling vacuum fluidized beds has not been investigated to author’s best knowledge. In this work, the two-fluid numerical method was used to determine the impact of reduced pressure on the fundamental properties of a fluidized bed. The slip flow model implemented by Ansys Fluent User Defined Functions (UDF) was used to determine the interphase momentum exchange coefficient. A wide range of operating pressures was investigated (1.01, 0.5, 0.25, 0.1 and 0.03 Bar). The gas was supplied by a uniform inlet at 1.5Umf and 2Umf. The predicted minimum fluidization velocity (Umf) shows excellent agreement with the experimental data. The results show that the operating pressure has a notable impact on the bed properties and its hydrodynamics. Furthermore, it also shows that the existing Gorosko correlation that predicts bed expansion is not applicable under reduced pressure conditions.
Keywords: Computational fluid dynamics, fluidized bed, gas-solid flow, vacuum pressure, slip flow, minimum fluidization velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774635 Hybrid Energy Supply with Dominantly Renewable Option for Small Industrial Complex
Authors: Tomislav Stambolic, Anton Causevski
Abstract:
The deficit of power for electricity demand reaches almost 30% for consumers in the last few years. This reflects with continually increasing the price of electricity, and today the price for small industry is almost 110Euro/MWh. The high price is additional problem for the owners in the economy crisis which is reflected with higher price of the goods. The paper gives analyses of the energy needs for real agro complex in Macedonia, private vinery with capacity of over 2 million liters in a year and with self grapes and fruits fields. The existing power supply is from grid with 10/04 kV transformer. The geographical and meteorological condition of the vinery location gives opportunity for including renewable as a power supply option for the vinery complex. After observation of the monthly energy needs for the vinery, the base scenario is the existing power supply from the distribution grid. The electricity bill in small industry has three factors: electricity in high and low tariffs in kWh and the power engaged for the technological process of production in kW. These three factors make the total electricity bill and it is over 110 Euro/MWh which is the price near competitive for renewable option. On the other side investments in renewable (especially photovoltaic (PV)) has tendency of decreasing with price of near 1,5 Euro/W. This means that renewable with PV can be real option for power supply for small industry capacities (under 500kW installed power). Therefore, the other scenarios give the option with PV and the last one includes wind option. The paper presents some scenarios for power supply of the vinery as the followings: • Base scenario of existing conventional power supply from the grid • Scenario with implementation of renewable of Photovoltaic • Scenario with implementation of renewable of Photovoltaic and Wind power The total power installed in a vinery is near 570 kW, but the maximum needs are around 250kW. At the end of the full paper some of the results from scenarios will be presented. The paper also includes the environmental impacts of the renewable scenarios, as well as financial needs for investments and revenues from renewable.Keywords: Energy, Power Supply, Renewable, Efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518634 Numerical Investigation of Unsteady MHD Flow of Second Order Fluid in a Tube of Elliptical Cross-Section on the Porous Boundary
Authors: S. B. Kulkarni, Hasim A. Chikte, V. Murali Mohan
Abstract:
Exact solution of an unsteady MHD flow of elasticoviscous fluid through a porous media in a tube of elliptic cross section under the influence of magnetic field and constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of elliptical cross section by taking into account of the porosity factor and magnetic parameter of the bounding surface is investigated. The problem is solved in two-stages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a non-dimensional porosity parameter, magnetic parameter and elastico-viscosity parameter, which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter, magnetic parameter tends to zero, and porosity tends to infinity. The numerical results were simulated in MATLAB software to analyze the effect of Elastico-viscous parameter, porosity parameter, and magnetic parameter on velocity profile. Boundary conditions were satisfied. It is seen that the effect of elastico-viscosity parameter, porosity parameter and magnetic parameter of the bounding surface has significant effect on the velocity parameter.Keywords: Elastico-viscous fluid, Porous media, Elliptic cross-section, Magnetic parameter, Numerical Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816633 Hydrodynamic Performance of a Moored Barge in Irregular Wave
Authors: Srinivasan Chandrasekaran, Shihas A. Khader
Abstract:
Motion response of floating structures is of great concern in marine engineering. Nonlinearity is an inherent property of any floating bodies subjected to irregular waves. These floating structures are continuously subjected to environmental loadings from wave, current, wind etc. This can result in undesirable motions of the vessel which may challenge the operability. For a floating body to remain in its position, it should be able to induce a restoring force when displaced. Mooring is provided to enable this restoring force. This paper discusses the hydrodynamic performance and motion characteristics of an 8 point spread mooring system applied to a pipe laying barge operating in the West African sea. The modelling of the barge is done using a computer aided-design (CAD) software RHINOCEROS. Irregular waves are generated using a suitable wave spectrum. Both frequency domain and time domain analysis is done. Numerical simulations based on potential theory are carried out to find the responses and hydrodynamic performance of the barge in both free floating as well as moored conditions. Initially, potential flow frequency domain analysis is done to obtain the Response Amplitude Operator (RAO) which gives an idea about the structural motion in free floating state. RAOs for different wave headings are analyzed. In the following step, a time domain analysis is carried out to obtain the responses of the structure in the moored condition. In this study, wave induced motions are only taken into consideration. Wind and current loads are ruled out and shall be included in further studies. For the current study, 2000 seconds simulation is taken. The results represent wave induced motion responses, mooring line tensions and identify critical mooring lines.
Keywords: Irregular wave, moored barge, time domain analysis, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763632 Tropical Cyclogenesis Response to Solar Activity in the Eastern Pacific Region
Authors: Marni Pazos, Blanca Mendoza, Luis Gimeno
Abstract:
The relationship between tropical cyclogenesis and solar activity is addressed in this paper, analyzing the relationship between important parameters in the evolution of tropical cyclones as the CAPE, wind shear and relative vorticity, and the Dst geomagnetic index as a parameter of solar activity. The apparent relationship between all this phenomena has a different response depending on the phase of the solar cycles.
Keywords: tropical cyclones, solar-earth relationship, climate change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407631 Adhesion Strength Evaluation Methods in Thermally Sprayed Coatings
Authors: M.Jalali Azizpour, H.Mohammadi majd, Milad Jalali, H.Fasihi
Abstract:
The techniques for estimating the adhesive and cohesive strength in high velocity oxy fuel (HVOF) thermal spray coatings have been discussed and compared. The development trend and the last investigation have been studied. We will focus on benefits and limitations of these methods in different process and materials.
Keywords: Adhesion, Bonding strength, Cohesion, HVOF Thermal spray
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3139630 Modelling of a Biomechanical Vertebral System for Seat Ejection in Aircrafts Using Lumped Mass Approach
Authors: R. Unnikrishnan, K. Shankar
Abstract:
In the case of high-speed fighter aircrafts, seat ejection is designed mainly for the safety of the pilot in case of an emergency. Strong windblast due to the high velocity of flight is one main difficulty in clearing the tail of the aircraft. Excessive G-forces generated, immobilizes the pilot from escape. In most of the cases, seats are ejected out of the aircrafts by explosives or by rocket motors attached to the bottom of the seat. Ejection forces are primarily in the vertical direction with the objective of attaining the maximum possible velocity in a specified period of time. The safe ejection parameters are studied to estimate the critical time of ejection for various geometries and velocities of flight. An equivalent analytical 2-dimensional biomechanical model of the human spine has been modelled consisting of vertebrae and intervertebral discs with a lumped mass approach. The 24 vertebrae, which consists of the cervical, thoracic and lumbar regions, in addition to the head mass and the pelvis has been designed as 26 rigid structures and the intervertebral discs are assumed as 25 flexible joint structures. The rigid structures are modelled as mass elements and the flexible joints as spring and damper elements. Here, the motions are restricted only in the mid-sagittal plane to form a 26 degree of freedom system. The equations of motions are derived for translational movement of the spinal column. An ejection force with a linearly increasing acceleration profile is applied as vertical base excitation on to the pelvis. The dynamic vibrational response of each vertebra in time-domain is estimated.
Keywords: Biomechanical model, lumped mass, seat ejection, vibrational response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051629 Evaluation of Sustainable Business Model Innovation in Increasing the Penetration of Renewable Energy in the Ghana Power Sector
Authors: Victor Birikorang Danquah
Abstract:
Ghana's primary energy supply is heavily reliant on petroleum, biomass, and hydropower. Currently, Ghana gets its energy from hydropower (Akosombo and Bui), thermal power plants powered by crude oil, natural gas, and diesel, solar power, and imports from La Cote d'Ivoire. Until the early 2000s, large hydroelectric dams dominated Ghana's electricity generation. Due to the unreliable weather patterns, Ghana increased its reliance on thermal power. Thermal power contributes the highest percentage in terms of electricity generation in Ghana and is predominantly supplied by Independent Power Producers (IPPs). Ghana's electricity industry operates the corporate utility model as its business model. This model is typically 'vertically integrated', with a single corporation selling the majority of power generated by its generation assets to its retail business, which then sells the electricity to retail market consumers. The corporate utility model has a straightforward value proposition that is based on increasing the number of energy units sold. The unit volume business model drives the entire energy value chain to increase throughput, locking system users into unsustainable practices. This report uses the qualitative research approach to explore the electricity industry in Ghana. There is the need for increasing renewable energy such as wind and solar in the electricity generation. The research recommends two critical business models for the penetration of renewable energy in Ghana's power sector. The first model is the peer-to-peer electricity trading model which relies on a software platform to connect consumers and generators in order for them to trade energy directly with one another. The second model is about encouraging local energy generation, incentivizing optimal time-of-use behaviour, and allow any financial gains to be shared among the community members.
Keywords: business model innovation, electricity generation, renewable energy, solar energy, sustainability, wind energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857628 Another Approach of Similarity Solution in Reversed Stagnation-point Flow
Authors: Vai Kuong Sin, Chon Kit Chio
Abstract:
In this paper, the two-dimensional reversed stagnationpoint flow is solved by means of an anlytic approach. There are similarity solutions in case the similarity equation and the boundary condition are modified. Finite analytic method are applied to obtain the similarity velocity function.Keywords: reversed stagnation-point flow, similarity solutions, asymptotic solution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750627 Designing a Fuzzy Logic Controller to Enhance Directional Stability of Vehicles under Difficult Maneuvers
Authors: Mehrdad N. Khajavi , Golamhassan Paygane, Ali Hakima
Abstract:
Vehicle which are turning or maneuvering at high speeds are susceptible to sliding and subsequently deviate from desired path. In this paper the dynamics governing the Yaw/Roll behavior of a vehicle has been simulated. Two different simulations have been used one for the real vehicle, for which a fuzzy controller is designed to increase its directional stability property. The other simulation is for a hypothetical vehicle with much higher tire cornering stiffness which is capable of developing the required lateral forces at the tire-ground patch contact to attain the desired lateral acceleration for the vehicle to follow the desired path without slippage. This simulation model is our reference model. The logic for keeping the vehicle on the desired track in the cornering or maneuvering state is to have some braking forces on the inner or outer tires based on the direction of vehicle deviation from the desired path. The inputs to our vehicle simulation model is steer angle δ and vehicle velocity V , and the outputs can be any kinematical parameters like yaw rate, yaw acceleration, side slip angle, rate of side slip angle and so on. The proposed fuzzy controller is a feed forward controller. This controller has two inputs which are steer angle δ and vehicle velocity V, and the output of the controller is the correcting moment M, which guides the vehicle back to the desired track. To develop the membership functions for the controller inputs and output and the fuzzy rules, the vehicle simulation has been run for 1000 times and the correcting moment have been determined by trial and error. Results of the vehicle simulation with fuzzy controller are very promising and show the vehicle performance is enhanced greatly over the vehicle without the controller. In fact the vehicle performance with the controller is very near the performance of the reference ideal model.Keywords: Vehicle, Directional Stability, Fuzzy Logic Controller, ANFIS..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515626 Impact Temperature in Splat and Splat-Substrate Interface in HVOF Thermal Spraying
Authors: M. Jalali Azizpour, D. Sajedipour, H. Mohammadi Majd, M.R. Tahmasbi Birgani, M.Rabiae
Abstract:
An explicit axisymmetrical FE methodology is developed here to study the particle temperature arising in WC-Co particle on an AISI 1045 steel substrate. Parameters of constitutive Johnson-cook model were used for simulation. The results show that particle velocity and kinetic energy have important role in temperature arising of particles.Keywords: FEM, HVOF, Interfacial Temperature, Splat
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887625 Photovoltaic Array Sizing for PV-Electrolyzer
Authors: Panhathai Buasri
Abstract:
Hydrogen that used as fuel in fuel cell vehicles can be produced from renewable sources such as wind, solar, and hydro technologies. PV-electrolyzer is one of the promising methods to produce hydrogen with zero pollution emission. Hydrogen production from a PV-electrolyzer system depends on the efficiency of the electrolyzer and photovoltaic array, and sun irradiance at that site. In this study, the amount of hydrogen is obtained using mathematical equations for difference driving distance and sun peak hours. The results show that the minimum of 99 PV modules are used to generate 1.75 kgH2 per day for two vehicles.Keywords: About four key words or phrases in alphabetical order, separated by commas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753624 A Trends Analysis of Dinghy Yacht Simulator
Authors: Jae-Neung Lee, Sung-Bum Pan, Keun-Chang Kwak
Abstract:
This paper describes an analysis of Yacht Simulator international trends and also explains about Yacht. The results are summarized as follows. Attached to the cockpit are sensors that feed -back information on rudder angle, boat heel angle and mainsheet tension to the computer. Energy expenditure of the sailor measure indirectly using expired gas analysis for the measurement of VO2 and VCO2. At sea course configurations and wind conditions can be preset to suit any level of sailor from complete beginner to advanced sailor.
Keywords: Trends Analysis, Yacht Simulator, Sailing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225623 Oil-Water Two-Phase Flow Characteristics in Horizontal Pipeline – A Comprehensive CFD Study
Authors: Anand B. Desamala, Ashok Kumar Dasamahapatra, Tapas K. Mandal
Abstract:
In the present work, detailed analysis on flow characteristics of a pair of immiscible liquids through horizontal pipeline is simulated by using ANSYS FLUENT 6.2. Moderately viscous oil and water (viscosity ratio = 107, density ratio = 0.89 and interfacial tension = 0.024 N/m) have been taken as system fluids for the study. Volume of Fluid (VOF) method has been employed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, and co-axial flow. Meshing has been done using GAMBIT. Quadrilateral mesh type has been chosen to account for the surface tension effect more accurately. From the grid independent study, we have selected 47037 number of mesh elements for the entire geometry. Simulation successfully predicts slug, stratified wavy, stratified mixed and annular flow, except dispersion of oil in water, and dispersion of water in oil. Simulation results are validated with horizontal literature data and good conformity is observed. Subsequently, we have simulated the hydrodynamics (viz., velocity profile, area average pressure across a cross section and volume fraction profile along the radius) of stratified wavy and annular flow at different phase velocities. The simulation results show that in the annular flow, total pressure of the mixture decreases with increase in oil velocity due to the fact that pipe cross section is completely wetted with water. Simulated oil volume fraction shows maximum at the centre in core annular flow, whereas, in stratified flow, maximum value appears at upper side of the pipeline. These results are in accord with the actual flow configuration. Our findings could be useful in designing pipeline for transportation of crude oil.
Keywords: CFD, Horizontal pipeline, Oil-water flow, VOF technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5711622 Average Turbulent Pipe Flow with Heat Transfer Using a Three-Equation Model
Authors: Khalid Alammar
Abstract:
Aim of this study is to evaluate a new three-equation turbulence model applied to flow and heat transfer through a pipe. Uncertainty is approximated by comparing with published direct numerical simulation results for fully-developed flow. Error in the mean axial velocity, temperature, friction, and heat transfer is found to be negligible.
Keywords: Heat Transfer, Nusselt number, Skin friction, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2447621 Drone On-time Obstacle Avoidance for Static and Dynamic Obstacles
Authors: Herath MPC Jayaweera, Samer Hanoun
Abstract:
Path planning for on-time obstacle avoidance is an essential and challenging task that enables drones to achieve safe operation in any application domain. The level of challenge increases significantly on the obstacle avoidance technique when the drone is following a ground mobile entity (GME). This is mainly due to the change in direction and magnitude of the GMEs velocity in dynamic and unstructured environments. Force field techniques are the most widely used obstacle avoidance methods due to their simplicity, ease of use and potential to be adopted for three-dimensional dynamic environments. However, the existing force field obstacle avoidance techniques suffer many drawbacks including their tendency to generate longer routes when the obstacles are sideways of the drones route, poor ability to find the shortest flyable path, propensity to fall into local minima, producing a non-smooth path, and high failure rate in the presence of symmetrical obstacles. To overcome these shortcomings, this paper proposes an on-time three-dimensional obstacle avoidance method for drones to effectively and efficiently avoid dynamic and static obstacles in unknown environments while pursuing a GME. This on-time obstacle avoidance technique generates velocity waypoints for its obstacle-free and efficient path based on the shape of the encountered obstacles. This method can be utilize on most types of drones that have basic distance measurement sensors and autopilot supported flight controllers. The proposed obstacle avoidance technique is validated and evaluated against existing force field methods for different simulation scenarios in Gazebo and ROS supported PX4-SITL. The simulation results show that the proposed obstacle avoidance technique outperforms the existing force field techniques and is better suited for real-world applications.
Keywords: Drones, force field methods, obstacle avoidance, path planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78620 Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow
Authors: Mohamed Elghorab, Vendra C. Madhav Rao, Jennifer X. Wen
Abstract:
Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, ReT = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.
Keywords: Flux limiters, MILES, OpenFOAM, turbulence structures, TVD schemes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124619 Study on Seismic Performance of Reinforced Soil Walls to Modify the Pseudo Static Method
Authors: Majid Yazdandoust
Abstract:
This study, tries to suggest a design method based on displacement using finite difference numerical modeling in reinforcing soil retaining wall with steel strip. In this case, dynamic loading characteristics such as duration, frequency, peak ground acceleration, geometrical characteristics of reinforced soil structure and type of the site are considered to correct the pseudo static method and finally introduce the pseudo static coefficient as a function of seismic performance level and peak ground acceleration. For this purpose, the influence of dynamic loading characteristics, reinforcement length, height of reinforced system and type of the site are investigated on seismic behavior of reinforcing soil retaining wall with steel strip. Numerical results illustrate that the seismic response of this type of wall is highly dependent to cumulative absolute velocity, maximum acceleration, and height and reinforcement length so that the reinforcement length can be introduced as the main factor in shape of failure. Considering the loading parameters, geometric parameters of the wall and type of the site showed that the used method in this study leads to efficient designs in comparison with other methods, which are usually based on limit-equilibrium concept. The outputs show the over-estimation of equilibrium design methods in comparison with proposed displacement based methods here.Keywords: Pseudo static coefficient, seismic performance design, numerical modeling, steel strip reinforcement, retaining walls, cumulative absolute velocity, failure shape.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153618 Innovative Power Engineering in a Selected Rural Commune
Authors: Pawel Sowa, Joachim Bargiel
Abstract:
This paper presents modern solutions of distributed generation in rural communities aiming at the improvement of energy and environmental security, as well as power supply reliability to important customers (e.g. health care, sensitive consumer required continuity). Distributed sources are mainly gas and biogas cogeneration units, as well as wind and photovoltaic sources. Some examples of their applications in a selected Silesian community are given.
Keywords: Energy security, power supply reliability, power engineering, mini energy centers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397617 Quantum Ion Acoustic Solitary and Shock Waves in Dissipative Warm Plasma with Fermi Electron and Positron
Authors: Hamid Reza Pakzad
Abstract:
Ion-acoustic solitary and shock waves in dense quantum plasmas whose constituents are electrons, positrons, and positive ions are investigated. We assume that ion velocity is weakly relativistic and also the effects of kinematic viscosity among the plasma constituents is considered. By using the reductive perturbation method, the Korteweg–deVries–Burger (KdV-B) equation is derived.Keywords: Ion acoustic shock waves; Quantum plasmas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745616 Model and Control of Renewable Energy Systems
Authors: Yelena Chaiko
Abstract:
This paper presents a developed method for controlling multi-renewable energy generators. The control system depends basically on three sensors (wind anemometer, solar sensor, and voltage sensor). These sensors represent PLC-s analogue inputs. Controlling the output voltage supply can be achieved by an enhanced method of interlocking between the renewable energy generators, depending on those sensors and output contactors.Keywords: Renewable, energy, control, model, generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497615 Development Trend in Investigation of Residual Stresses in WC-Co Coating by HVOF Thermal Spraying
Authors: M.Jalali Azizpour, S.Norouzi, , H.Mohammadi Majd, D.Sajedipour , R.Mohammadi Sadr, M.Derakhshan Mehr, S.A Shoabi, R.Mohammadi
Abstract:
In this paper, the techniques for estimating the residual stress in high velocity oxy fuel thermal spray coatings have been discussed and compared. The development trend and the last investigation have been studied. It is seemed that the there is not effective study on the effect of the peening action in HVOF analytically and numerically.Keywords: HVOF, WC-Co, Residual stress, Compressive stress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390