Search results for: WLAN-Wireless Local Area Network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6093

Search results for: WLAN-Wireless Local Area Network

5463 E-Learning Network Support Services: A Comparative Case Study of Australian and United States Universities

Authors: Sayed Hadi Sadeghi

Abstract:

This research study examines the current state of support services for e-network practice in an Australian and an American university. It identifies information that will be of assistance to Australian and American universities to improve their existing online programs. The study investigated the two universities using a quantitative methodological approach. Participants were students, lecturers and admins of universities engaged with online courses and learning management systems. The support services for e-network practice variables, namely academic support services, administrative support and technical support, were investigated for e-practice. Evaluations of e-network support service and its sub factors were above average and excellent in both countries, although the American admins and lecturers tended to evaluate this factor higher than others did. Support practice was evaluated higher by all participants of an American university than by Australians. One explanation for the results may be that most suppliers of the Australian university e-learning system were from eastern Asian cultural backgrounds with a western networking support perspective about e-learning.

Keywords: Support services, e-network practice, Australian universities, United States universities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987
5462 The Planning and Development of Green Public Places in Urban South Africa: A Child-Friendly Approach

Authors: E. J. Cilliers, Z. Goosen

Abstract:

The impact that urban green spaces have on sustainability and quality of life is phenomenal. This is also true for the local South African environment. However, in reality green spaces in urban environments are decreasing due to growing populations, increasing urbanization and development pressure. This further impacts on the provision of child-friendly spaces, a concept that is already limited in local context. Child-friendly spaces are described as environments in which people (children) feel intimately connected to, influencing the physical, social, emotional, and ecological health of individuals and communities. The benefits of providing such spaces for the youth are well documented in literature. This research therefore aimed to investigate the concept of child-friendly spaces and its applicability to the South African planning context, in order to guide the planning of such spaces for future communities and use. Child-friendly spaces in the urban environment of the city of Durban, was used as local case study, along with two international case studies namely Mullerpier public playground in Rotterdam, the Netherlands, and Kadidjiny Park in Melville, Australia. The aim was to determine how these spaces were planned and developed and to identify tools that were used to accomplish the goal of providing successful child-friendly green spaces within urban areas. The need and significance of planning for such spaces was portrayed within the international case studies. It is confirmed that minimal provision is made for green space planning within the South African context, when there is reflected on the international examples. As a result international examples and disciples of providing child-friendly green spaces should direct planning guidelines within local context. The research concluded that child-friendly green spaces have a positive impact on the urban environment and assist in a child’s development and interaction with the natural environment. Regrettably, the planning of these child-friendly spaces is not given priority within current spatial plans, despite the proven benefits of such.

Keywords: Built environment, child-friendly spaces, green spaces. public places, urban area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
5461 Embedded Throughput Improving of Low-rate EDR Packets for Lower-latency

Authors: M. A. M. El-Bendary, A. E. Abu El-Azm, N. A. El-Fishawy, F. Shawky, F. E. El-Samie

Abstract:

With increasing utilization of the wireless devices in different fields such as medical devices and industrial fields, the paper presents a method for simplify the Bluetooth packets with throughput enhancing. The paper studies a vital issue in wireless communications, which is the throughput of data over wireless networks. In fact, the Bluetooth and ZigBee are a Wireless Personal Area Network (WPAN). With taking these two systems competition consideration, the paper proposes different schemes for improve the throughput of Bluetooth network over a reliable channel. The proposition depends on the Channel Quality Driven Data Rate (CQDDR) rules, which determines the suitable packet in the transmission process according to the channel conditions. The proposed packet is studied over additive White Gaussian Noise (AWGN) and fading channels. The Experimental results reveal the capability of extension of the PL length by 8, 16, 24 bytes for classic and EDR packets, respectively. Also, the proposed method is suitable for the low throughput Bluetooth.

Keywords: Bluetooth, throughput, adaptive packets, EDRpackets, CQDDR, low latency. Channel condition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
5460 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping

Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa

Abstract:

The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.

Keywords: Neural network computing, information processing, input-output mapping, training time, computers with high memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
5459 Determination of an Efficient Differentiation Pathway of Stem Cells Employing Predictory Neural Network Model

Authors: Mughal Yar M, Israr Ul Haq, Bushra Noman

Abstract:

The stem cells have ability to differentiated themselves through mitotic cell division and various range of specialized cell types. Cellular differentiation is a way by which few specialized cell develops into more specialized.This paper studies the fundamental problem of computational schema for an artificial neural network based on chemical, physical and biological variables of state. By doing this type of study system could be model for a viable propagation of various economically important stem cells differentiation. This paper proposes various differentiation outcomes of artificial neural network into variety of potential specialized cells on implementing MATLAB version 2009. A feed-forward back propagation kind of network was created to input vector (five input elements) with single hidden layer and one output unit in output layer. The efficiency of neural network was done by the assessment of results achieved from this study with that of experimental data input and chosen target data. The propose solution for the efficiency of artificial neural network assessed by the comparatative analysis of “Mean Square Error" at zero epochs. There are different variables of data in order to test the targeted results.

Keywords: Computational shcmin, meiosis, mitosis, neuralnetwork, Stem cell SOM;

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
5458 A Review on Soft Computing Technique in Intrusion Detection System

Authors: Noor Suhana Sulaiman, Rohani Abu Bakar, Norrozila Sulaiman

Abstract:

Intrusion Detection System is significant in network security. It detects and identifies intrusion behavior or intrusion attempts in a computer system by monitoring and analyzing the network packets in real time. In the recent year, intelligent algorithms applied in the intrusion detection system (IDS) have been an increasing concern with the rapid growth of the network security. IDS data deals with a huge amount of data which contains irrelevant and redundant features causing slow training and testing process, higher resource consumption as well as poor detection rate. Since the amount of audit data that an IDS needs to examine is very large even for a small network, classification by hand is impossible. Hence, the primary objective of this review is to review the techniques prior to classification process suit to IDS data.

Keywords: Intrusion Detection System, security, soft computing, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
5457 Two States Mapping Based Neural Network Model for Decreasing of Prediction Residual Error

Authors: Insung Jung, lockjo Koo, Gi-Nam Wang

Abstract:

The objective of this paper is to design a model of human vital sign prediction for decreasing prediction error by using two states mapping based time series neural network BP (back-propagation) model. Normally, lot of industries has been applying the neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has a residual error between real value and prediction output. Therefore, we designed two states of neural network model for compensation of residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We found that most of simulations cases were satisfied by the two states mapping based time series prediction model compared to normal BP. In particular, small sample size of times series were more accurate than the standard MLP model. We expect that this algorithm can be available to sudden death prevention and monitoring AGENT system in a ubiquitous homecare environment.

Keywords: Neural network, U-healthcare, prediction, timeseries, computer aided prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
5456 Topology Influence on TCP Congestion Control Performance in Multi-hop Ad Hoc Wireless

Authors: Haniza N., Md Khambari, M. N, Shahrin S., Adib M.Monzer Habbal, Suhaidi Hassan

Abstract:

Wireless ad hoc nodes are freely and dynamically self-organize in communicating with others. Each node can act as host or router. However it actually depends on the capability of nodes in terms of its current power level, signal strength, number of hops, routing protocol, interference and others. In this research, a study was conducted to observe the effect of hops count over different network topologies that contribute to TCP Congestion Control performance degradation. To achieve this objective, a simulation using NS-2 with different topologies have been evaluated. The comparative analysis has been discussed based on standard observation metrics: throughput, delay and packet loss ratio. As a result, there is a relationship between types of topology and hops counts towards the performance of ad hoc network. In future, the extension study will be carried out to investigate the effect of different error rate and background traffic over same topologies.

Keywords: NS-2, network topology, network performance, multi-hops

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
5455 Remaining Useful Life Prediction Using Elliptical Basis Function Network and Markov Chain

Authors: Yi Yu, Lin Ma, Yong Sun, Yuantong Gu

Abstract:

This paper presents a novel method for remaining useful life prediction using the Elliptical Basis Function (EBF) network and a Markov chain. The EBF structure is trained by a modified Expectation-Maximization (EM) algorithm in order to take into account the missing covariate set. No explicit extrapolation is needed for internal covariates while a Markov chain is constructed to represent the evolution of external covariates in the study. The estimated external and the unknown internal covariates constitute an incomplete covariate set which are then used and analyzed by the EBF network to provide survival information of the asset. It is shown in the case study that the method slightly underestimates the remaining useful life of an asset which is a desirable result for early maintenance decision and resource planning.

Keywords: Elliptical Basis Function Network, Markov Chain, Missing Covariates, Remaining Useful Life

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
5454 Location Based Clustering in Wireless Sensor Networks

Authors: Ashok Kumar, Narottam Chand, Vinod Kumar

Abstract:

Due to the limited energy resources, energy efficient operation of sensor node is a key issue in wireless sensor networks. Clustering is an effective method to prolong the lifetime of energy constrained wireless sensor network. However, clustering in wireless sensor network faces several challenges such as selection of an optimal group of sensor nodes as cluster, optimum selection of cluster head, energy balanced optimal strategy for rotating the role of cluster head in a cluster, maintaining intra and inter cluster connectivity and optimal data routing in the network. In this paper, we propose a protocol supporting an energy efficient clustering, cluster head selection/rotation and data routing method to prolong the lifetime of sensor network. Simulation results demonstrate that the proposed protocol prolongs network lifetime due to the use of efficient clustering, cluster head selection/rotation and data routing.

Keywords: Wireless sensor networks, clustering, energy efficient, localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685
5453 Effect of Clustering on Energy Efficiency and Network Lifetime in Wireless Sensor Networks

Authors: Prakash G L, Chaitra K Meti, Poojitha K, Divya R.K.

Abstract:

Wireless Sensor Network is Multi hop Self-configuring Wireless Network consisting of sensor nodes. The deployment of wireless sensor networks in many application areas, e.g., aggregation services, requires self-organization of the network nodes into clusters. Efficient way to enhance the lifetime of the system is to partition the network into distinct clusters with a high energy node as cluster head. The different methods of node clustering techniques have appeared in the literature, and roughly fall into two families; those based on the construction of a dominating set and those which are based solely on energy considerations. Energy optimized cluster formation for a set of randomly scattered wireless sensors is presented. Sensors within a cluster are expected to be communicating with cluster head only. The energy constraint and limited computing resources of the sensor nodes present the major challenges in gathering the data. In this paper we propose a framework to study how partially correlated data affect the performance of clustering algorithms. The total energy consumption and network lifetime can be analyzed by combining random geometry techniques and rate distortion theory. We also present the relation between compression distortion and data correlation.

Keywords: Clusters, multi hop, random geometry, rate distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
5452 Indoor Air Quality Analysis for Renovating Building: A Case Study of Student Studio, Department of Landscape, Chiangmai, Thailand

Authors: Warangkana Juangjandee

Abstract:

The rapidly increasing number of population in the limited area creates an effect on the idea of the improvement of the area to suit the environment and the needs of people. Faculty of architecture Chiang Mai University is also expanding in both variety fields of study and quality of education. In 2020, the new department will be introduced in the faculty which is Department of Landscape Architecture. With the limitation of the area in the existing building, the faculty plan to renovate some parts of its school for anticipates the number of students who will join the program in the next two years. As a result, the old wooden workshop area is selected to be renovated as student studio space. With such condition, it is necessary to study the restriction and the distinctive environment of the site prior to the improvement in order to find ways to manage the existing space due to the fact that the primary functions that have been practiced in the site, an old wooden workshop space and the new function, studio space, are too different. 72.9% of the annual times in the room are considered to be out of the thermal comfort condition with high relative humidity. This causes non-comfort condition for occupants which could promote mould growth. This study aims to analyze thermal comfort condition in the Landscape Learning Studio Area for finding the solution to improve indoor air quality and respond to local conditions. The research methodology will be in two parts: 1) field gathering data on the case study 2) analysis and finding the solution of improving indoor air quality. The result of the survey indicated that the room needs to solve non-comfort condition problem. This can be divided into two ways which are raising ventilation and indoor temperature, e.g. improving building design and stack driven ventilation, using fan for enhancing more internal ventilation.

Keywords: Relative humidity, renovation, temperature, thermal comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 862
5451 Fresh Vegetable Supply Chain in Nakorn Pathom Province for Exporting

Authors: P. Waiyawuththanapoom, P. Tirastittam

Abstract:

Thailand is the agriculture country as the weather and geography are suitable for agriculture environment. In 2011, the quantity of exported fresh vegetable was 126,069 tons which valued 117.1 million US dollars. Although the fresh vegetable has a high potential in exporting, there also have a lack of knowledge such as chemical usage, land usage, marketing and also the transportation and logistics. Nakorn Pathom province is the area which the farmer and manufacturer of fresh vegetable located. The objectives of this study are to study the basic information of the local fresh vegetable farmers in Nakorn Pathom province, to study the factor which effects the management of the fresh vegetable supply chain in Nakorn Pathom province and to study the problems and obstacle of the fresh vegetable supply chain in Nakorn Pathom province. This study is limited to the flow of the Nakorn Pathom province fresh vegetable from the farmers to the country which import the vegetable from Thailand. The populations of this study are 100 local farmers in Nakorn Pathom province. The result of this study shows that the key process of the fresh vegetable supply chain is in the supply sourcing process and manufacturing process.

Keywords: Exporting, Fresh Vegetable, Nakorn Pathom Province, Supply Chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
5450 Applications of Artificial Neural Network to Building Statistical Models for Qualifying and Indexing Radiation Treatment Plans

Authors: Pei-Ju Chao, Tsair-Fwu Lee, Wei-Luen Huang, Long-Chang Chen, Te-Jen Su, Wen-Ping Chen

Abstract:

The main goal in this paper is to quantify the quality of different techniques for radiation treatment plans, a back-propagation artificial neural network (ANN) combined with biomedicine theory was used to model thirteen dosimetric parameters and to calculate two dosimetric indices. The correlations between dosimetric indices and quality of life were extracted as the features and used in the ANN model to make decisions in the clinic. The simulation results show that a trained multilayer back-propagation neural network model can help a doctor accept or reject a plan efficiently. In addition, the models are flexible and whenever a new treatment technique enters the market, the feature variables simply need to be imported and the model re-trained for it to be ready for use.

Keywords: neural network, dosimetric index, radiation treatment, tumor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
5449 A Digital Twin Approach for Sustainable Territories Planning: A Case Study on District Heating

Authors: A. Amrani, O. Allali, A. Ben Hamida, F. Defrance, S. Morland, E. Pineau, T. Lacroix

Abstract:

The energy planning process is a very complex task that involves several stakeholders and requires the consideration of several local and global factors and constraints. In order to optimize and simplify this process, we propose a tool-based iterative approach applied to district heating planning. We build our tool with the collaboration of a French territory using actual district data and implementing the European incentives. We set up an iterative process including data visualization and analysis, identification and extraction of information related to the area concerned by the operation, design of sustainable planning scenarios leveraging local renewable and recoverable energy sources, and finally, the evaluation of scenarios. The last step is performed by a dynamic digital twin replica of the city. Territory’s energy experts confirm that the tool provides them with valuable support towards sustainable energy planning.

Keywords: Climate change, data management, decision support, digital twin, district heating, energy planning, renewables, smart city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654
5448 A Methodology for Definition of Road Networks in Rural Areas of Nepal

Authors: J. K. Shrestha, A. Benta, R. B. Lopes, N. Lopes

Abstract:

This work provides a practical method for the development of rural road networks in rural areas of developing countries. The proposed methodology enables to determine obligatory points in the rural road network maximizing the number of settlements that have access to basic services within a given maximum distance. The proposed methodology is simple and practical, hence, highly applicable to real-world scenarios, as demonstrated in the definition of the road network for the rural areas of Nepal.

Keywords: Minimum spanning tree, nodal points, rural road network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2880
5447 Hypergraph Models of Metabolism

Authors: Nicole Pearcy, Jonathan J. Crofts, Nadia Chuzhanova

Abstract:

In this paper, we employ a directed hypergraph model to investigate the extent to which environmental variability influences the set of available biochemical reactions within a living cell. Such an approach avoids the limitations of the usual complex network formalism by allowing for the multilateral relationships (i.e. connections involving more than two nodes) that naturally occur within many biological processes. More specifically, we extend the concept of network reciprocity to complex hyper-networks, thus enabling us to characterise a network in terms of the existence of mutual hyper-connections, which may be considered a proxy for metabolic network complexity. To demonstrate these ideas, we study 115 metabolic hyper-networks of bacteria, each of which can be classified into one of 6 increasingly varied habitats. In particular, we found that reciprocity increases significantly with increased environmental variability, supporting the view that organism adaptability leads to increased complexities in the resultant biochemical networks.

Keywords: Complexity, hypergraphs, reciprocity, metabolism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2455
5446 Performance Evaluation of Neural Network Prediction for Data Prefetching in Embedded Applications

Authors: Sofien Chtourou, Mohamed Chtourou, Omar Hammami

Abstract:

Embedded systems need to respect stringent real time constraints. Various hardware components included in such systems such as cache memories exhibit variability and therefore affect execution time. Indeed, a cache memory access from an embedded microprocessor might result in a cache hit where the data is available or a cache miss and the data need to be fetched with an additional delay from an external memory. It is therefore highly desirable to predict future memory accesses during execution in order to appropriately prefetch data without incurring delays. In this paper, we evaluate the potential of several artificial neural networks for the prediction of instruction memory addresses. Neural network have the potential to tackle the nonlinear behavior observed in memory accesses during program execution and their demonstrated numerous hardware implementation emphasize this choice over traditional forecasting techniques for their inclusion in embedded systems. However, embedded applications execute millions of instructions and therefore millions of addresses to be predicted. This very challenging problem of neural network based prediction of large time series is approached in this paper by evaluating various neural network architectures based on the recurrent neural network paradigm with pre-processing based on the Self Organizing Map (SOM) classification technique.

Keywords: Address, data set, memory, prediction, recurrentneural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
5445 Avoiding Pin Ball Routing Problem in Network Mobility Hand-Off Management

Authors: M. Dinakaran, P. Balasubramanie

Abstract:

With the demand of mobility by users, wireless technologies have become the hotspot developing arena. Internet Engineering Task Force (IETF) working group has developed Mobile IP to support node mobility. The concept of node mobility indicates that in spite of the movement of the node, it is still connected to the internet and all the data transactions are preserved. It provides location-independent access to Internet. After the incorporation of host mobility, network mobility has undergone intense research. There are several intricacies faced in the real world implementation of network mobility significantly the problem of nested networks and their consequences. This article is concerned regarding a problem of nested network called pinball route problem and proposes a solution to eliminate the above problem. The proposed mechanism is implemented using NS2 simulation tool and it is found that the proposed mechanism efficiently reduces the overload caused by the pinball route problem.

Keywords: Mobile IP, Pinball routing problem, NEMO

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
5444 A Video Watermarking Algorithm Based on Chaotic and Wavelet Neural Network

Authors: Jiadong Liang

Abstract:

This paper presented a video watermarking algorithm based on wavelet chaotic neural network. First, to enhance binary image’s security, the algorithm encrypted it with double chaotic based on Arnold and Logistic map, Then, the host video was divided into some equal frames and distilled the key frame through chaotic sequence which generated by Logistic. Meanwhile, we distilled the low frequency coefficients of luminance component and self-adaptively embedded the processed image watermark into the low frequency coefficients of the wavelet transformed luminance component with the wavelet neural network. The experimental result suggested that the presented algorithm has better invisibility and robustness against noise, Gaussian filter, rotation, frame loss and other attacks.

Keywords: Video watermark, double chaotic encryption, wavelet neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
5443 Application of the Neural Network to the Synthesis of Vertical Dipole Antenna over Imperfect Ground

Authors: Kais Hafsaoui

Abstract:

In this paper, we propose to study the synthesis of the vertical dipole antenna over imperfect ground. The synthesis implementation-s method for this type of antenna permits to approach the appropriated radiance-s diagram. The used approach is based on neural network. Our main contribution in this paper is the extension of a synthesis model of this vertical dipole antenna over imperfect ground.

Keywords: Vertical dipole antenna, imperfect ground, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
5442 Emerging Wireless Standards - WiFi, ZigBee and WiMAX

Authors: Bhavneet Sidhu, Hardeep Singh, Amit Chhabra

Abstract:

The world of wireless telecommunications is rapidly evolving. Technologies under research and development promise to deliver more services to more users in less time. This paper presents the emerging technologies helping wireless systems grow from where we are today into our visions of the future. This paper will cover the applications and characteristics of emerging wireless technologies: Wireless Local Area Networks (WiFi-802.11n), Wireless Personal Area Networks (ZigBee) and Wireless Metropolitan Area Networks (WiMAX). The purpose of this paper is to explain the impending 802.11n standard and how it will enable WLANs to support emerging media-rich applications. The paper will also detail how 802.11n compares with existing WLAN standards and offer strategies for users considering higher-bandwidth alternatives. The emerging IEEE 802.15.4 (ZigBee) standard aims to provide low data rate wireless communications with high-precision ranging and localization, by employing UWB technologies for a low-power and low cost solution. WiMAX (Worldwide Interoperability for Microwave Access) is a standard for wireless data transmission covering a range similar to cellular phone towers. With high performance in both distance and throughput, WiMAX technology could be a boon to current Internet providers seeking to become the leader of next generation wireless Internet access. This paper also explores how these emerging technologies differ from one another.

Keywords: MIMO technology, WiFi, WiMAX, ZigBee.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4996
5441 Persian Printed Numeral Characters Recognition Using Geometrical Central Moments and Fuzzy Min-Max Neural Network

Authors: Hamid Reza Boveiri

Abstract:

In this paper, a new proposed system for Persian printed numeral characters recognition with emphasis on representation and recognition stages is introduced. For the first time, in Persian optical character recognition, geometrical central moments as character image descriptor and fuzzy min-max neural network for Persian numeral character recognition has been used. Set of different experiments on binary images of regular, translated, rotated and scaled Persian numeral characters has been done and variety of results has been presented. The best result was 99.16% correct recognition demonstrating geometrical central moments and fuzzy min-max neural network are adequate for Persian printed numeral character recognition.

Keywords: Fuzzy min-max neural network, geometrical centralmoments, optical character recognition, Persian digits recognition, Persian printed numeral characters recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
5440 Face Recognition using Radial Basis Function Network based on LDA

Authors: Byung-Joo Oh

Abstract:

This paper describes a method to improve the robustness of a face recognition system based on the combination of two compensating classifiers. The face images are preprocessed by the appearance-based statistical approaches such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). LDA features of the face image are taken as the input of the Radial Basis Function Network (RBFN). The proposed approach has been tested on the ORL database. The experimental results show that the LDA+RBFN algorithm has achieved a recognition rate of 93.5%

Keywords: Face recognition, linear discriminant analysis, radial basis function network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
5439 Internet Bandwidth Network Quality Management: The Case Study of Telecom Organization of Thailand

Authors: Sriaroonnirun Sittha, Rotchanakitumnuai Siriluck

Abstract:

This paper addresses a current problem that occurs among Thai internet service providers with regard to bandwidth network quality management. The IPSTAR department of Telecom Organization of Thailand public company (TOT); the largest internet service provider in Thailand, is the case study to analyze the problem that exists. The Internet bandwidth network quality management (iBWQM) framework is mainly applied to the problem that has been found. Bandwidth management policy (BMP) and quality of service (QoS) are two antecedents of iBWQM. This paper investigates internet user behavior, marketing demand and network operation views in order to determine bandwidth management policy (e.g. quota management, scheduling and malicious management). The congestion of bandwidth is also analyzed to enhance quality of service (QoS). Moreover, the iBWQM framework is able to improve the quality of service and increase bandwidth utilization, minimize complaint rate concerns to slow speed, and provide network planning guidelines through Thai Internet services providers.

Keywords: Internet bandwidth management, Internet serviceprovider, Internet usage behavior, Quality of Service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2651
5438 Unveiling the Mathematical Essence of Machine Learning: A Comprehensive Exploration

Authors: Randhir Singh Baghel

Abstract:

In this study, the fundamental ideas guiding the dynamic area of machine learning—where models thrive and algorithms change over time—are rooted in an innate mathematical link. This study explores the fundamental ideas that drive the development of intelligent systems, providing light on the mutually beneficial link between mathematics and machine learning.

Keywords: Machine Learning, deep learning, Neural Network, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165
5437 Parametric Modeling Approach for Call Holding Times for IP based Public Safety Networks via EM Algorithm

Authors: Badarch Tuyatsetseg

Abstract:

This paper presents parametric probability density models for call holding times (CHTs) into emergency call center based on the actual data collected for over a week in the public Emergency Information Network (EIN) in Mongolia. When the set of chosen candidates of Gamma distribution family is fitted to the call holding time data, it is observed that the whole area in the CHT empirical histogram is underestimated due to spikes of higher probability and long tails of lower probability in the histogram. Therefore, we provide the Gaussian parametric model of a mixture of lognormal distributions with explicit analytical expressions for the modeling of CHTs of PSNs. Finally, we show that the CHTs for PSNs are fitted reasonably by a mixture of lognormal distributions via the simulation of expectation maximization algorithm. This result is significant as it expresses a useful mathematical tool in an explicit manner of a mixture of lognormal distributions.

Keywords: A mixture of lognormal distributions, modeling call holding times, public safety network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
5436 Massive Lesions Classification using Features based on Morphological Lesion Differences

Authors: U. Bottigli, D.Cascio, F. Fauci, B. Golosio, R. Magro, G.L. Masala, P. Oliva, G. Raso, S.Stumbo

Abstract:

Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based on morphological lesion differences. Some classifiers as a Feed Forward Neural Network, a K-Nearest Neighbours and a Support Vector Machine are used to distinguish the pathological records from the healthy ones. The results obtained in terms of sensitivity (percentage of pathological ROIs correctly classified) and specificity (percentage of non-pathological ROIs correctly classified) will be presented through the Receive Operating Characteristic curve (ROC). In particular the best performances are 88% ± 1 of area under ROC curve obtained with the Feed Forward Neural Network.

Keywords: Neural Networks, K-Nearest Neighbours, SupportVector Machine, Computer Aided Diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
5435 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability

Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader

Abstract:

The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.

Keywords: Condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2969
5434 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System

Authors: Qian Liu, Steve Furber

Abstract:

To explore how the brain may recognise objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor (DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network (SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modelled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study’s largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognise the postures with an accuracy of around 86.4% - only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much improved cost to performance trade-off in its approach.

Keywords: Spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053