Search results for: Material and Information Flow Chart
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7786

Search results for: Material and Information Flow Chart

7156 Electromagnetic Flow Meter Efficiency

Authors: Andrey D. Andreev, Ilona I. Iatcheva, Dimitar N. Karastoyanov, Rumena D. Stancheva

Abstract:

A study of electromagnetic flow meter is presented in the paper. Comparison has been made between the analytical and the numerical results by the use of FEM numerical analysis (Quick Field 5.6) for determining polarization voltage through the circle cross section of the polarization transducer. Exciting and geometrical parameters increasing its effectiveness has been examined. The aim is to obtain maximal output signal. The investigations include different variants of the magnetic flux density distribution around the tube: homogeneous field of magnitude Bm, linear distribution with maximal value Bm and trapezium distribution conserving the same exciting magnetic energy as the homogeneous field.

Keywords: Effectiveness, electromagnetic flow meter, finite element method, polarization voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
7155 Information Modelling for Adaptive Composition in Collaborative Work Environment

Authors: Sang Keun Rhee, Hyojeong Jin, Jihye Lee, Misoo Kwon, Myon-Woong Park, Sungdo Ha

Abstract:

Extensive information is required within a R&D environment, and a considerable amount of time and efforts are being spent on finding the necessary information. An adaptive information providing system would be beneficial to the environment, and a conceptual model of the resources, people and context is mandatory for developing such applications. In this paper, an information model on various contexts and resources is proposed which provides the possibility of effective applications for use in adaptive information systems within a R&D project and meeting environment.

Keywords: Adaptive Hypermedia, Adaptive System, ContextAwareness, Information Model, Information System, Personalisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
7154 Surface Roughness and MRR Effect on Manual Plasma Arc Cutting Machining

Authors: R. Bhuvenesh, M.H. Norizaman, M.S. Abdul Manan

Abstract:

Industrial surveys shows that manufacturing companies define the qualities of thermal removing process based on the dimension and physical appearance of the cutting material surface. Therefore, the roughness of the surface area of the material cut by the plasma arc cutting process and the rate of the removed material by the manual plasma arc cutting machine was importantly considered. Plasma arc cutter Selco Genesis 90 was used to cut Standard AISI 1017 Steel of 200 mm x100 mm x 6 mm manually based on the selected parameters setting. The material removal rate (MRR) was measured by determining the weight of the specimens before and after the cutting process. The surface roughness (SR) analysis was conducted using Mitutoyo CS-3100 to determine the average roughness value (Ra). Taguchi method was utilized to achieve optimum condition for both outputs studied. The microstructure analysis in the region of the cutting surface is performed using SEM. The results reveal that the SR values are inversely proportional to the MRR values. The quality of the surface roughness depends on the dross peak that occurred after the cutting process.

Keywords: Material removal rate, plasma arc cutting, surface roughness, Taguchi method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5677
7153 The Analysis of Duct Model Through Structural and Dynamic Schemes

Authors: S. H. Yahaya, J. M. Ali, M. R. Arham

Abstract:

This paper presents the analysis of duct design using static and dynamic approaches. The static approach is used to find out applicability between the design and material applied. The material used in this paper is Thermoplastic Olefins (TPO). For the dynamic approach, the focusing is only on the CFD simulations. The fatigue life in this design and material applied also covered.

Keywords: CFD, structural analysis, fluid analysis, duct design, fatigue life

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298
7152 Teaching Material, Books, Publications versus the Practice: Myths and Truths about Installation and Use of Downhole Safety Valve

Authors: Robson da Cunha Santos, Caio Cezar R. Bonifacio, Diego Mureb Quesada, Gerson Gomes Cunha

Abstract:

The paper is related to the safety of oil wells and environmental preservation on the planet, because they require great attention and commitment from oil companies and people who work with these equipments. This must occur from drilling the well until it is abandoned in order to safeguard the environment and prevent possible damage. The project had as main objective the constitution resulting from comparatives made among books, articles and publications with information gathered in technical visits to operational bases of Petrobras. After the visits, the information from methods of utilization and present managements, which were not available before, became available to the general audience. As a result, it is observed a huge flux of incorrect and out-of-date information that comprehends not only bibliographic archives, but also academic resources and materials. During the gathering of more in-depth information on the manufacturing, assembling, and use aspects of DHSVs, several issues that were previously known as correct, customary issues were discovered to be uncertain and outdated. Information of great importance resulted in affirmations about subjects as the depth of the valve installation that was before installed to 30 meters from the seabed (mud line). Despite this, the installation should vary in conformity to the ideal depth to escape from area with the biggest tendency to hydrates formation according to the temperature and pressure. Regarding to valves with nitrogen chamber, in accordance with books, they have their utilization linked to water line ≥ 700 meters, but in Brazilian exploratory fields, their use occurs from 600 meters of water line. The valves used in Brazilian fields are able to be inserted to the production column and self-equalizing, but the use of screwed valve in the column of production and equalizing is predominant. Although these valves are more expensive to acquire, they are more reliable, efficient, with a bigger shelf life and they do not cause restriction to the fluid flux. It follows that based on researches and theoretical information confronted to usual forms used in fields, the present project is important and relevant. This project will be used as source of actualization and information equalization that connects academic environment and real situations in exploratory situations and also taking into consideration the enrichment of precise and easy to understand information to future researches and academic upgrading.

Keywords: Downhole, Teaching Material, Books, Practice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350
7151 The Effect of Information vs. Reasoning Gap Tasks on the Frequency of Conversational Strategies and Accuracy in Speaking among Iranian Intermediate EFL Learners

Authors: Hooriya Sadr Dadras, Shiva Seyed Erfani

Abstract:

Speaking skills merit meticulous attention both on the side of the learners and the teachers. In particular, accuracy is a critical component to guarantee the messages to be conveyed through conversation because a wrongful change may adversely alter the content and purpose of the talk. Different types of tasks have served teachers to meet numerous educational objectives. Besides, negotiation of meaning and the use of different strategies have been areas of concern in socio-cultural theories of SLA. Negotiation of meaning is among the conversational processes which have a crucial role in facilitating the understanding and expression of meaning in a given second language. Conversational strategies are used during interaction when there is a breakdown in communication that leads to the interlocutor attempting to remedy the gap through talk. Therefore, this study was an attempt to investigate if there was any significant difference between the effect of reasoning gap tasks and information gap tasks on the frequency of conversational strategies used in negotiation of meaning in classrooms on one hand, and on the accuracy in speaking of Iranian intermediate EFL learners on the other. After a pilot study to check the practicality of the treatments, at the outset of the main study, the Preliminary English Test was administered to ensure the homogeneity of 87 out of 107 participants who attended the intact classes of a 15 session term in one control and two experimental groups. Also, speaking sections of PET were used as pretest and posttest to examine their speaking accuracy. The tests were recorded and transcribed to estimate the percentage of the number of the clauses with no grammatical errors in the total produced clauses to measure the speaking accuracy. In all groups, the grammatical points of accuracy were instructed and the use of conversational strategies was practiced. Then, different kinds of reasoning gap tasks (matchmaking, deciding on the course of action, and working out a time table) and information gap tasks (restoring an incomplete chart, spot the differences, arranging sentences into stories, and guessing game) were manipulated in experimental groups during treatment sessions, and the students were required to practice conversational strategies when doing speaking tasks. The conversations throughout the terms were recorded and transcribed to count the frequency of the conversational strategies used in all groups. The results of statistical analysis demonstrated that applying both the reasoning gap tasks and information gap tasks significantly affected the frequency of conversational strategies through negotiation. In the face of the improvements, the reasoning gap tasks had a more significant impact on encouraging the negotiation of meaning and increasing the number of conversational frequencies every session. The findings also indicated both task types could help learners significantly improve their speaking accuracy. Here, applying the reasoning gap tasks was more effective than the information gap tasks in improving the level of learners’ speaking accuracy.

Keywords: Accuracy in speaking, conversational strategies, information gap tasks, reasoning gap tasks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1170
7150 A Finite Volume Procedure on Unstructured Meshes for Fluid-Structure Interaction Problems

Authors: P I Jagad, B P Puranik, A W Date

Abstract:

Flow through micro and mini channels requires relatively high driving pressure due to the large fluid pressure drop through these channels. Consequently the forces acting on the walls of the channel due to the fluid pressure are also large. Due to these forces there are displacement fields set up in the solid substrate containing the channels. If the movement of the substrate is constrained at some points, then stress fields are established in the substrate. On the other hand, if the deformation of the channel shape is sufficiently large then its effect on the fluid flow is important to be calculated. Such coupled fluid-solid systems form a class of problems known as fluidstructure interactions. In the present work a co-located finite volume discretization procedure on unstructured meshes is described for solving fluid-structure interaction type of problems. A linear elastic solid is assumed for which the effect of the channel deformation on the flow is neglected. Thus the governing equations for the fluid and the solid are decoupled and are solved separately. The procedure is validated by solving two benchmark problems, one from fluid mechanics and another from solid mechanics. A fluid-structure interaction problem of flow through a U-shaped channel embedded in a plate is solved.

Keywords: Finite volume method, flow induced stresses, fluidstructureinteraction, unstructured meshes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
7149 Effect of Swirl on Gas-Fired Combustion Behavior in a 3-D Rectangular Combustion Chamber

Authors: Man Young Kim

Abstract:

The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on the effect of inlet swirl flow through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal and flow characteristics in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate and temperature were shifted to forward direction compared with the case of no swirl.

Keywords: Gaseous Fuel, Inlet Swirl, Thermal Radiation, Turbulent Combustion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
7148 Numerical Analysis of Roughness Effect on Mini and Microchannels: Hydrodynamics and Heat Transfer

Authors: El-Ghalia Filali, Cherif Gadouche, Mohamed Tahar

Abstract:

A three-dimensional numerical simulation of flow through mini and microchannels with designed roughness is conducted here. The effect of the roughness height (surface roughness), geometry, Reynolds number on the friction factor, and Nusselt number is investigated. The study is carried out by employing CFD software, CFX. Our work focuses on a water flow inside a circular mini-channel of 1 mm and microchannels of 500 and 100 m in diameter. The speed entry varies from 0.1 m/s to 20 m/s. The general trend can be observed that bigger sizes of roughness element lead to higher flow resistance. It is found that the friction factor increases in a nonlinear fashion with the increase in obstruction height. Particularly, the effect of roughness can no longer be ignored at relative roughness height higher than 3%. A significant increase in Poiseuille number is detected for all configurations considered. The same observation can be done for Nusselt number. The transition zone between laminar and turbulent flow depends on the channel diameter.

Keywords: Heat transfer, hydrodynamics, micro-channel, roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
7147 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model

Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu

Abstract:

The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.

Keywords: CFD, mechanistic model, subcooled boiling flow, two-fluid model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
7146 The Role of Velocity Map Quality in Estimation of Intravascular Pressure Distribution

Authors: Ali Pashaee, Parisa Shooshtari, Gholamreza Atae, Nasser Fatouraee

Abstract:

Phase-Contrast MR imaging methods are widely used for measurement of blood flow velocity components. Also there are some other tools such as CT and Ultrasound for velocity map detection in intravascular studies. These data are used in deriving flow characteristics. Some clinical applications are investigated which use pressure distribution in diagnosis of intravascular disorders such as vascular stenosis. In this paper an approach to the problem of measurement of intravascular pressure field by using velocity field obtained from flow images is proposed. The method presented in this paper uses an algorithm to calculate nonlinear equations of Navier- Stokes, assuming blood as an incompressible and Newtonian fluid. Flow images usually suffer the lack of spatial resolution. Our attempt is to consider the effect of spatial resolution on the pressure distribution estimated from this method. In order to achieve this aim, velocity map of a numerical phantom is derived at six different spatial resolutions. To determine the effects of vascular stenoses on pressure distribution, a stenotic phantom geometry is considered. A comparison between the pressure distribution obtained from the phantom and the pressure resulted from the algorithm is presented. In this regard we also compared the effects of collocated and staggered computational grids on the pressure distribution resulted from this algorithm.

Keywords: Flow imaging, pressure distribution estimation, phantom, resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
7145 Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels

Authors: Foad Hassaninejadafarahani, Scott Ormiston

Abstract:

Reflux condensation occurs in vertical channels and tubes when there is an upward core flow of vapour (or gas-vapour mixture) and a downward flow of the liquid film. The understanding of this condensation configuration is crucial in the design of reflux condensers, distillation columns, and in loss-of-coolant safety analyses in nuclear power plant steam generators. The unique feature of this flow is the upward flow of the vapour-gas mixture (or pure vapour) that retards the liquid flow via shear at the liquid-mixture interface. The present model solves the full, elliptic governing equations in both the film and the gas-vapour core flow. The computational mesh is non-orthogonal and adapts dynamically the phase interface, thus produces a sharp and accurate interface. Shear forces and heat and mass transfer at the interface are accounted for fundamentally. This modeling is a big step ahead of current capabilities by removing the limitations of previous reflux condensation models which inherently cannot account for the detailed local balances of shear, mass, and heat transfer at the interface. Discretisation has been done based on finite volume method and co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar reflux condensation from steam-air mixtures flowing in vertical parallel plate channels. The results include velocity and gas mass fraction profiles, as well as axial variations of film thickness.

Keywords: Reflux Condensation, Heat Transfer, Channel, Laminar Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
7144 Useful Lifetime Prediction of Chevron Rubber Spring for Railway Vehicle

Authors: Chang Su Woo, Hyun Sung Park

Abstract:

Useful lifetime evaluation of chevron rubber spring was very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of chevron rubber spring. In this study, we performed characteristic analysis and useful lifetime prediction of chevron rubber spring. Rubber material coefficient was obtained by curve fittings of uniaxial tension equibiaxial tension and pure shear test. Computer simulation was executed to predict and evaluate the load capacity and stiffness for chevron rubber spring. In order to useful lifetime prediction of rubber material, we carried out the compression set with heat aging test in an oven at the temperature ranging from 50°C to 100°C during a period 180 days. By using the Arrhenius plot, several useful lifetime prediction equations for rubber material was proposed.

Keywords: Chevron rubber spring, material coefficient, finite element analysis, useful lifetime prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2828
7143 Dual Solutions in Mixed Convection Boundary Layer Flow: A Stability Analysis

Authors: Anuar Ishak

Abstract:

The mixed convection stagnation point flow toward a vertical plate is investigated. The external flow impinges normal to the heated plate and the surface temperature is assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the mixed convection parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.

Keywords: Dual solutions, heat transfer, mixed convection, stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482
7142 Durability of LDPE Geomembrane within Sealing System of MSW (Landfill)

Authors: L. Menaa, A. Cherifi, K. Tigouirat, M. Choura

Abstract:

Analyse of locally manufactured Low Density Polyethylene (LDPE) durability, used within lining systems at bottom of Municipal Solid Waste (landfill), is done in the present work. For this end, short and middle time creep behavior under tension of the analyzed material is carried out. The locally manufactured material is tested and compared to the European one (LDPE-CE). Both materials was tested in 03 various mediums: ambient and two aggressive (salty water and foam water), using three specimens in each case. A testing campaign is carried out using an especially designed and achieved testing bench. Moreover, characterisation tests were carried out to evaluate the medium effect on the mechanical properties of the tested material (LDPE). Furthermore, experimental results have been used to establish a law regression which can be used to predict creep behaviour of the analyzed material. As a result, the analyzed LDPE material has showed a good stability in different ambient and aggressive mediums; as well, locally manufactured LDPE seems more flexible, compared with the European one. This makes it more useful to the desired application.

Keywords: LDPE membrane, solid waste, aggressive mediums, durability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
7141 Blood Cell Dynamics in a Simple Shear Flow using an Implicit Fluid-Structure Interaction Method Based on the ALE Approach

Authors: Choeng-Ryul Choi, Chang-Nyung Kim, Tae-Hyub Hong

Abstract:

A numerical method is developed for simulating the motion of particles with arbitrary shapes in an effectively infinite or bounded viscous flow. The particle translational and angular motions are numerically investigated using a fluid-structure interaction (FSI) method based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (smoothing and remeshing) in FLUENT ( ANSYS Inc., USA). Also, the effects of arbitrary shapes on the dynamics are studied using the FSI method which could be applied to the motions and deformations of a single blood cell and multiple blood cells, and the primary thrombogenesis caused by platelet aggregation. It is expected that, combined with a sophisticated large-scale computational technique, the simulation method will be useful for understanding the overall properties of blood flow from blood cellular level (microscopic) to the resulting rheological properties of blood as a mass (macroscopic).

Keywords: Blood Flow, Fluid-Structure Interaction (FSI), Micro-Channels, Arbitrary Shapes, Red Blood Cells (RBCs)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
7140 Optimal Water Conservation in a Mechanical Cooling Tower Operations

Authors: M. Boumaza, Y. Bakhabkhi

Abstract:

Water recycling represents an important challenge for many countries, in particular in countries where this natural resource is rare. On the other hand, in many operations, water is used as a cooling medium, as a high proportion of water consumed in industry is used for cooling purposes. Generally this water is rejected directly to the nature. This reject will cause serious environment damages as well as an important waste of this precious element.. On way to solve these problems is to reuse and recycle this warm water, through the use of natural cooling medium, such as air in a heat exchanger unit, known as a cooling tower. A poor performance, design or reliability of cooling towers will result in lower flow rate of cooling water an increase in the evaporation of water, an hence losses of water and energy. This paper which presents an experimental investigate of thermal and hydraulic performances of a mechanical cooling tower, enables to show that the water evaporation rate, Mev, increases with an increase in the air and water flow rates, as well as inlet water temperature and for fixed air flow rates, the pressure drop (ΔPw/Z) increases with increasing , L, due to the hydrodynamic behavior of the air/water flow.

Keywords: water, recycle, performance, cooling tower

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2817
7139 A Numerical Study on Rear-spoiler of Passenger Vehicle

Authors: Xu-xia Hu, Eric T. T. Wong

Abstract:

The simulation of external aerodynamics is one of the most challenging and important automotive CFD applications. With the rapid developments of digital computers, CFD is used as a practical tool in modern fluid dynamics research. It integrates fluid mechanics disciplines, mathematics and computer science. In this study, two different types of simulations were made, one for the flow around a simplified high speed passenger car with a rear-spoiler and the other for the flow without a rear-spoiler. The standard k-ε model is selected to numerically simulate the external flow field of the simplified Camry model with or without a rear-spoiler. Through an analysis of the simulation results, a new rear spoiler is designed and it shows a mild reduction of the vehicle aerodynamics drag. This leads to less vehicle fuel consumption on the road.

Keywords: CFD, vehicle rear-spoiler design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4898
7138 Dynamic Stall Vortex Formation of OA-209 Airfoil at Low Reynolds Number

Authors: Aung Myo Thu, Sang Eon Jeon, Yung Hwan Byun, Soo Hyung Park

Abstract:

The unsteady flow field around oscillating OA-209 airfoil at a Reynolds number of 3.5×105 were investigated. Three different reduced frequencies were tested in order to see how it affects the hysteresis loop of an airfoil. At a reduced frequency of 0.05 the deep dynamic stall phenomenon was observed. Lift overshooting was observed as a result of dynamic stall vortex (DSV) shedding. Further investigation was carried out to find out the cause of DSV formation and shedding over airfoil. Particle image velocimetry (PIV) and CFD tools were used and it was found out that dynamic stall separation (DSS), which is separated from leading edge separation (LES) and trailing edge separation (TES), triggered the dynamic stall vortex (DSV).

Keywords: Airfoil Flow, CFD, PIV, Dynamic Stall, Flow Separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3173
7137 SPH Method used for Flow Predictions at a Turgo Impulse Turbine: Comparison with Fluent

Authors: Phoevos K. Koukouvinis, John S. Anagnostopoulos, Dimitris E. Papantonis

Abstract:

This work is an attempt to use the standard Smoothed Particle Hydrodynamics methodology for the simulation of the complex unsteady, free-surface flow in a rotating Turgo impulse water turbine. A comparison of two different geometries was conducted. The SPH method due to its mesh-less nature is capable of capturing the flow features appearing in the turbine, without diffusion at the water/air interface. Furthermore results are compared with a commercial CFD package (Fluent®) and the SPH algorithm proves to be capable of providing similar results, in much less time than the mesh based CFD program. A parametric study was also performed regarding the turbine inlet angle.

Keywords: Smoothed Particle Hydrodynamics, Mesh-lessmethods, Impulse turbines, Turgo turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641
7136 Flexible Manufacturing System

Authors: Peter Kostal, Karol Velisek

Abstract:

Flexible manufacturing system is a system that is able to respond to changed conditions. In general, this flexibility is divided into two key categories and several subcategories. The first category is the so called machine flexibility which enables to make various products by the given machinery. The second category is routing flexibility enabling to execute the same operation by various machines. Flexible manufacturing systems usually consist of three main parts: CNC machine tools, transport system and control system. A higher level of flexible manufacturing systems is represented by the so called intelligent manufacturing systems.

Keywords: drawing-free manufacturing, flexible manufacturing system, industrial robot, material flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4959
7135 Transient Solution of an Incompressible Viscous Flow in a Channel with Sudden Expansion/Contraction

Authors: Durga C. Dalal, Swapan K. Pandit

Abstract:

In this paper, a numerical study has been made to analyze the transient 2-D flows of a viscous incompressible fluid through channels with forward or backward constriction. Problems addressed include flow through sudden contraction and sudden expansion channel geometries with rounded and increasingly sharp reentrant corner. In both the cases, numerical results are presented for the separation and reattachment points, streamlines, vorticity and flow patterns. A fourth order accurate compact scheme has been employed to efficiently capture steady state solutions of the governing equations. It appears from our study that sharpness of the throat in the channel is one of the important parameters to control the strength and size of the separation zone without modifying the general flow patterns. The comparison between the two cases shows that the upstream geometry plays a significant role on vortex growth dynamics.

Keywords: Forward and backward constriction, HOC scheme, Incompressible viscous flows, Separation and reattachment points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
7134 Optimizing Network Latency with Fast Path Assignment for Incoming Flows

Authors: Qing Lyu, Hang Zhu

Abstract:

Various flows in the network require to go through different types of middlebox. The improper placement of network middlebox and path assignment for flows could greatly increase the network latency and also decrease the performance of network. Minimizing the total end to end latency of all the ows requires to assign path for the incoming flows. In this paper, the flow path assignment problem in regard to the placement of various kinds of middlebox is studied. The flow path assignment problem is formulated to a linear programming problem, which is very time consuming. On the other hand, a naive greedy algorithm is studied. Which is very fast but causes much more latency than the linear programming algorithm. At last, the paper presents a heuristic algorithm named FPA, which takes bottleneck link information and estimated bandwidth occupancy into consideration, and achieves near optimal latency in much less time. Evaluation results validate the effectiveness of the proposed algorithm.

Keywords: Latency, Fast path assignment, Bottleneck link.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
7133 Effects of Paste Content on Flow Characteristics of SCC Containing Local Natural Pozzolan

Authors: Muhammad Nouman Haral, Abdulaziz I. Al-Negheimesh, Galal Fares, Mohammad Iqbal Khan, Abdulrahman M. Alhozaimy

Abstract:

Natural pozzolan (NP) is one of the potential prehistoric alternative binders in the construction industry. It has been investigated as cement replacement in ordinary concrete by several researchers for many purposes. Various supplementary cementitious materials (SCMs) such as fly ash, limestone dust and silica fume are widely used in the production of SCC; however, limited studies to address the effect of NP on the properties of SCC are documented. The current research is composed of different SCC paste and concrete mixtures containing different replacement levels of local NP as an alternative SCM. The effect of volume of paste containing different amounts of local NP related to W/B ratio and cement content on SCC fresh properties was assessed. The variations in the fresh properties of SCC paste and concrete represented by slump flow (flowability) and the flow rate were determined and discussed. The results indicated that the flow properties of SCC paste and concrete mixtures, at their optimized superplasticizer dosages, were affected by the binder content of local NP and the total volume fraction of SCC paste.

Keywords: Binder, fresh properties, natural pozzolan, paste, SCC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2785
7132 Experimental and Numerical Investigation of Flow Control Using a Novel Active Slat

Authors: Basman Elhadidi, Islam Elqatary, Osama Mohamady, Hesham Othman

Abstract:

An active slat is developed to increase the lift and delay the separation for a DU96-W180 airfoil. The active slat is a fixed slat that can be closed, fully opened or intermittently opened by a rotating vane depending on the need. Experimental results show that the active slat has reduced the mean pressure and increased the mean velocity on the suction side of the airfoil for all positive angles of attack, indicating an increase of lift. The experimental data and numerical simulations also show that the direction of actuator vane rotation can influence the mixing of the flow streams on the suction side and hence influence the aerodynamic performance.

Keywords: Active slat, flow control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2778
7131 Numerical Study of Developing Laminar Forced Convection Flow of Water/CuO Nanofluid in a Circular Tube with a 180 Degrees Curve

Authors: Hamed K. Arzani, Hamid K. Arzani, S.N. Kazi, A. Badarudin

Abstract:

Numerical investigation into convective heat transfer of CuO-Water based nanofluid in a pipe with return bend under laminar flow conditions has been done. The impacts of Reynolds number and the volume concentration of nanoparticles on the flow and the convective heat transfer behaviour are investigated. The results indicate that the increase in Reynolds number leads to the enhancement of average Nusselt number, and the increase in specific heat in the presence of the nanofluid results in improvement in heat transfer. Also, the presence of the secondary flow in the curve plays a key role in increasing the average Nusselt number and it appears higher than the inlet and outlet tubes. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles concentration.

Keywords: Laminar forced convection, nanofluid, curve, return bend, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
7130 Combination of Information Security Standards to Cover National Requirements

Authors: Sh. Ladan, A. Yari, H. Khodabandeh

Abstract:

The need for Information Security in organizations, regardless of their type and size, is being addressed by emerging standards and recommended best practices. The various standards and practices which evolved in recent years and are still being developed and constantly revised, address the issue of Information Security from different angles. This paper attempts to provide an overview of Information Security Standards and Practices by briefly discussing some of the most popular ones. Through a comparative study of their similarities and differences, some insight can be obtained on how their combination may lead to an increased level of Information Security.

Keywords: Information security management, information security standard, BS7799, ISO 17799, COBIT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
7129 Design, Development and Analysis of Automated Storage and Retrieval System with Single and Dual Command Dispatching using MATLAB

Authors: M. Aslam, Farrukh, A. R. Gardezi, Nasir Hayat

Abstract:

Automated material handling is given prime importance in the semi automated and automated facilities since it provides solution to the gigantic problems related to inventory and also support the latest philosophies like just in time production JIT and lean production. Automated storage and retrieval system is an antidote (if designed properly) to the facility sufferings like getting the right material , materials getting perished, long cycle times or many other similar kind of problems. A working model of automated storage and retrieval system (AS/RS) is designed and developed under the design parameters specified by Material Handling Industry of America (MHIA). Later on analysis was carried out to calculate the throughput and size of the machine. The possible implementation of this technology in local scenario is also discussed in this paper.

Keywords: Automated storage and retrieval system (AS/RS), Material handling, Computer integrated manufacturing (CIM), Lightdependent resistor (LDR)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3430
7128 Numerical Investigation of the Thermal Separation in a Vortex Tube

Authors: N.Pourmahmoud, S.Akhesmeh

Abstract:

This work has been carried out in order to provide an understanding of the physical behaviors of the flow variation of pressure and temperature in a vortex tube. A computational fluid dynamics model is used to predict the flow fields and the associated temperature separation within a Ranque–Hilsch vortex tube. The CFD model is a steady axisymmetric model (with swirl) that utilizes the standard k-ε turbulence model. The second–order numerical schemes, was used to carry out all the computations. Vortex tube with a circumferential inlet stream and an axial (cold) outlet stream and a circumferential (hot) outlet stream was considered. Performance curves (temperature separation versus cold outlet mass fraction) were obtained for a specific vortex tube with a given inlet mass flow rate. Simulations have been carried out for varying amounts of cold outlet mass flow rates. The model results have a good agreement with experimental data.

Keywords: Ranque–Hilsch vortex tube, Temperature separation, k–ε model, cold mass fraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426
7127 Soil-Structure Interaction Models for the Reinforced Foundation System: A State-of-the-Art Review

Authors: Ashwini V. Chavan, Sukhanand S. Bhosale

Abstract:

Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of it over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation, respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model’. The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. A flow-chart showing procedure for compution of deformation and mobilized tension is also incorporated in the paper. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models. 

Keywords: geosynthetics, mathematical modeling, reinforced foundation, soil-structure interaction, ground improvement, soft soil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652