Search results for: hyperbolic function models.
3878 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.
Keywords: Deregulated energy market, forecasting, machine learning, system marginal price, energy efficiency and quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13113877 The Effects of Food Deprivation on Hematological Indices and Blood Indicators of Liver Function in Oxyleotris marmorata
Authors: N. Sridee, S. Boonanuntanasarn
Abstract:
Oxyleotris marmorata is considered as undomesticated fish, and its culture occasionally faces a problem of food deprivation. The present study aims to evaluate alteration of hematological indices, blood chemical associated with liver function during 4 weeks of fasting. A non-linear relationships between fasting days and hematological parameters (red blood cell number; y = - 0.002x2 + 0.041x + 1.249; R2=0.915, P<0.05, hemoglobin; y = - 0.002x2 + 0.030x + 3.470; R2=0.460, P>0.05), mean corpuscular volume; y = -0.180x2 + 2.183x + 149.61; R2=0.732, P>0.05, mean corpuscular hemoglobin; y = -0.041x2 + 0.862x + 29.864; R2=0.818, P>0.05 and mean corpuscular hemoglobin concentration; y = - 0.044x2 + 0.711x + 21.580; R2=0.730, P>0.05) were demonstrated. Significant change in hematocrit (Ht) during fasting period was observed. Ht elevated sharply increase at the first weeks of fasting period. Higher Ht also was detected during week 2-4 of fasting time. The significant reduction of hepatosomatic index was observed (y = - 0.007x2 - 0.096x + 1.414; R2=0.968, P<0.05). Moreover, alteration of enzyme associated with liver function was evaluated during 4 weeks of fasting (alkalin phosphatase; y = -0.026x2 - 0.935x + 12.188; R2=0.737, P>0.05, serum glutamic oxaloacetic transaminase; y = 0.005x2 – 0.201x2 + 1.297x + 33.256; R2=1, P<0.01, serum glutamic pyruvic transaminase; y = 0.007x2 – 0.274x2 + 2.277x + 25.257; R2=0.807, P>0.05). Taken together, prolonged fasting has deleterious effects on hematological indices, liver mass and enzyme associated in liver function. The marked adverse effects occurred after the first week of fasting state.Keywords: food deprivation, Oxyleotris marmorata, hematology, alkaline phosphatase, SGOT, SGPT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19723876 A Survey on Quasi-Likelihood Estimation Approaches for Longitudinal Set-ups
Authors: Naushad Mamode Khan
Abstract:
The Com-Poisson (CMP) model is one of the most popular discrete generalized linear models (GLMS) that handles both equi-, over- and under-dispersed data. In longitudinal context, an integer-valued autoregressive (INAR(1)) process that incorporates covariate specification has been developed to model longitudinal CMP counts. However, the joint likelihood CMP function is difficult to specify and thus restricts the likelihood-based estimating methodology. The joint generalized quasi-likelihood approach (GQL-I) was instead considered but is rather computationally intensive and may not even estimate the regression effects due to a complex and frequently ill-conditioned covariance structure. This paper proposes a new GQL approach for estimating the regression parameters (GQL-III) that is based on a single score vector representation. The performance of GQL-III is compared with GQL-I and separate marginal GQLs (GQL-II) through some simulation experiments and is proved to yield equally efficient estimates as GQL-I and is far more computationally stable.
Keywords: Longitudinal, Com-Poisson, Ill-conditioned, INAR(1), GLMS, GQL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17763875 Matching on Bipartite Graphs with Applications to School Course Registration Systems
Authors: Zhihan Li
Abstract:
Nowadays, most universities use the course enrollment system considering students’ registration orders. However, the students’ preference level to certain courses is also one important factor to consider. In this research, the possibility of applying a preference-first system has been discussed and analyzed compared to the order-first system. A bipartite graph is applied to resemble the relationship between students and courses they tend to register. With the graph set up, we apply Ford-Fulkerson (F.F.) Algorithm to maximize parings between two sets of nodes, in our case, students and courses. Two models are proposed in this paper: the one considered students’ order first, and the one considered students’ preference first. By comparing and contrasting the two models, we highlight the usability of models which potentially leads to better designs for school course registration systems.
Keywords: Bipartite graph, Ford-Fulkerson Algorithm, graph theory, maximum matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8043874 Packing Theory for Natural and Crushed Aggregate to Obtain the Best Mix of Aggregate: Research and Development
Authors: Mohammed H. Mohammed, Mats Emborg, Roland Pusch, Sven Knutsson
Abstract:
Concrete performance is strongly affected by the particle packing degree since it determines the distribution of the cementitious component and the interaction of mineral particles. By using packing theory designers will be able to select optimal aggregate materials for preparing concrete with low cement content, which is beneficial from the point of cost. Optimum particle packing implies minimizing porosity and thereby reducing the amount of cement paste needed to fill the voids between the aggregate particles, taking also the rheology of the concrete into consideration. For reaching good fluidity superplasticizers are required. The results from pilot tests at Luleå University of Technology (LTU) show various forms of the proposed theoretical models, and the empirical approach taken in the study seems to provide a safer basis for developing new, improved packing models.Keywords: Aggregate mix, Computer program, Concrete mix design, Models of packing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32923873 Direct Transient Stability Assessment of Stressed Power Systems
Authors: E. Popov, N. Yorino, Y. Zoka, Y. Sasaki, H. Sugihara
Abstract:
This paper discusses the performance of critical trajectory method (CTrj) for power system transient stability analysis under various loading settings and heavy fault condition. The method obtains Controlling Unstable Equilibrium Point (CUEP) which is essential for estimation of power system stability margins. The CUEP is computed by applying the CTrjto the boundary controlling unstable equilibrium point (BCU) method. The Proposed method computes a trajectory on the stability boundary that starts from the exit point and reaches CUEP under certain assumptions. The robustness and effectiveness of the method are demonstrated via six power system models and five loading conditions. As benchmark is used conventional simulation method whereas the performance is compared with and BCU Shadowing method.
Keywords: Power system, Transient stability, Critical trajectory method, Energy function method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21243872 Investigating the Performance of Minimax Search and Aggregate Mahalanobis Distance Function in Evolving an Ayo/Awale Player
Authors: Randle O. A., Olugbara, O. O., Lall M.
Abstract:
In this paper we describe a hybrid technique of Minimax search and aggregate Mahalanobis distance function synthesis to evolve Awale game player. The hybrid technique helps to suggest a move in a short amount of time without looking into endgame database. However, the effectiveness of the technique is heavily dependent on the training dataset of the Awale strategies utilized. The evolved player was tested against Awale shareware program and the result is appealing.
Keywords: Minimax Search, Mahalanobis Distance, Strategic Game, Awale
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16543871 Using Hermite Function for Solving Thomas-Fermi Equation
Authors: F. Bayatbabolghani, K. Parand
Abstract:
In this paper, we propose Hermite collocation method for solving Thomas-Fermi equation that is nonlinear ordinary differential equation on semi-infinite interval. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also present the comparison of this work with solution of other methods that shows the present solution is more accurate and faster convergence in this problem.
Keywords: Collocation method, Hermite function, Semi-infinite, Thomas-Fermi equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21503870 Adaptation of Iterative Methods to Solve Fuzzy Mathematical Programming Problems
Authors: Ricardo C. Silva, Luiza A. P. Cantao, Akebo Yamakami
Abstract:
Based on the fuzzy set theory this work develops two adaptations of iterative methods that solve mathematical programming problems with uncertainties in the objective function and in the set of constraints. The first one uses the approach proposed by Zimmermann to fuzzy linear programming problems as a basis and the second one obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. We outline similarities between the two iterative methods studied. Selected examples from the literature are presented to validate the efficiency of the methods addressed.Keywords: Fuzzy Theory, Nonlinear Optimization, Fuzzy Mathematics Programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16233869 Sparsity-Aware Affine Projection Algorithm for System Identification
Authors: Young-Seok Choi
Abstract:
This work presents a new type of the affine projection (AP) algorithms which incorporate the sparsity condition of a system. To exploit the sparsity of the system, a weighted l1-norm regularization is imposed on the cost function of the AP algorithm. Minimizing the cost function with a subgradient calculus and choosing two distinct weighting for l1-norm, two stochastic gradient based sparsity regularized AP (SR-AP) algorithms are developed. Experimental results exhibit that the SR-AP algorithms outperform the typical AP counterparts for identifying sparse systems.Keywords: System identification, adaptive filter, affine projection, sparsity, sparse system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15553868 Impact of Safety and Quality Considerations of Housing Clients on the Construction Firms’ Intention to Adopt Quality Function Deployment: A Case of Construction Sector
Authors: Saif Ul Haq
Abstract:
The current study intends to examine the safety and quality considerations of clients of housing projects and their impact on the adoption of Quality Function Deployment (QFD) by the construction firm. Mixed method research technique has been used to collect and analyze the data wherein a survey was conducted to collect the data from 220 clients of housing projects in Saudi Arabia. Then, the telephonic and Skype interviews were conducted to collect data of 15 professionals working in the top ten real estate companies of Saudi Arabia. Data were analyzed by using partial least square (PLS) and thematic analysis techniques. Findings reveal that today’s customer prioritizes the safety and quality requirements of their houses and as a result, construction firms adopt QFD to address the needs of customers. The findings are of great importance for the clients of housing projects as well as for the construction firms as they could apply QFD in housing projects to address the safety and quality concerns of their clients.Keywords: Construction industry, quality considerations, quality function deployment, safety considerations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8993867 A Study on Optimal Determination of Partial Transmission Ratios of Helical Gearboxes with Second-Step Double Gear-Sets
Authors: Vu Ngoc Pi
Abstract:
In this paper, a study on the applications of the optimization and regression techniques for optimal calculation of partial ratios of helical gearboxes with second-step double gear-sets for minimal cross section dimension is introduced. From the condition of the moment equilibrium of a mechanic system including three gear units and their regular resistance condition, models for calculation of the partial ratios of helical gearboxes with second-step double gear-sets were given. Especially, by regression analysis, explicit models for calculation of the partial ratios are introduced. These models allow determining the partial ratios accurately and simply.Keywords: Gearbox design, optimal design, helical gearbox, transmission ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16423866 Variational EM Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we propose the variational EM inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multiclass. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.
Keywords: Bayesian rule, Gaussian process classification model with multiclass, Gaussian process prior, human action classification, laplace approximation, variational EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17583865 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural
Authors: Baeza S. Roberto
Abstract:
The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes is included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.Keywords: Neural network, dry relaxation, knitting, linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17603864 Proton and Neutron Magnetic Moments Based On Bag Models
Authors: G. R. Boroun, R. Harami
Abstract:
Using form factors of the proton and the neutron for different of Q2, bag radius of the proton and the neutron can be obtained based on bag models. Then using static bag radius, magnetic moments of the proton and the neutron can be obtained and compared with other results.
Keywords: MIT bag model, proton and neutron, magnetic moment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16113863 Analysis of Mathematical Models and Their Application to Extreme Events
Authors: Avellino I. Mondlane, Karin Hansson, Oliver Popov
Abstract:
This paper discusses the application of extreme events distribution taking the Limpopo River Basin at Xai-Xai station, in Mozambique, as a case analysis. We analyze the extreme value concepts, namely Gumbel, Fréchet, Weibull and Generalized Extreme Value Distributions and then extrapolate the original data to 1000, 5000 and 10000 figures for further simulations and we compare their outcomes based on these three main distributions.
Keywords: Catastrophes, extreme event, disasters, mathematical models, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25213862 Military Attack Helicopter Selection Using Distance Function Measures in Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
This paper aims to select the best military attack helicopter to purchase by the Armed Forces and provide greater reconnaissance and offensive combat capability in military operations. For this purpose, a multiple criteria decision analysis method integrated with the variance weight procedure was applied to the military attack helicopter selection problem. A real military aviation case problem is conducted to support the Armed Forces decision-making process and contributes to the better performance of the Armed Forces. Application of the methodology resulted in ranking lists for ordering and prioritizing attack helicopters, providing transparency and simplicity to the decision-making process. Nine military attack helicopter models were analyzed in the light of strategic, tactical, and operational criteria, considering attack helicopters. The selected military attack helicopter would be used for fire support and reconnaissance activities required by the Armed Forces operation. This study makes a valuable contribution to the problem of military attack helicopter selection, as it represents a state-of-the-art application of the MCDMA method to contribute to the solution of a real problem of the Armed Forces. The methodology presented in this paper can be used to solve real problems of a wide variety, especially strategic, tactical and operational, and is, therefore, a very useful method for decision making.
Keywords: aircraft selection, military attack helicopter selection, attack helicopter fleet planning, MCDMA, multiple criteria analysis, multiple criteria decision making analysis, distance function measure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9203861 The Effects of Software Size on Development Effort and Software Quality
Authors: Zhizhong Jiang, Peter Naudé, Binghua Jiang
Abstract:
Effective evaluation of software development effort is an important issue during project plan. This study provides a model to predict development effort based on the software size estimated with function points. We generalize the average amount of effort spent on each phase of the development, and give the estimates for the effort used in software building, testing, and implementation. Finally, this paper finds a strong correlation between software defects and software size. As the size of software constantly increases, the quality remains to be a matter which requires major concern.
Keywords: Development effort, function points, software quality, software size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22833860 Multiple Criteria Decision Making Analysis for Selecting and Evaluating Fighter Aircraft
Authors: C. Ardil, A. M. Pashaev, R.A. Sadiqov, P. Abdullayev
Abstract:
In this paper, multiple criteria decision making analysis technique, is presented for ranking and selection of a set of determined alternatives - fighter aircraft - which are associated with a set of decision factors. In fighter aircraft design, conflicting decision criteria, disciplines, and technologies are always involved in the design process. Multiple criteria decision making analysis techniques can be helpful to effectively deal with such situations and make wise design decisions. Multiple criteria decision making analysis theory is a systematic mathematical approach for dealing with problems which contain uncertainties in decision making. The feasibility and contributions of applying the multiple criteria decision making analysis technique in fighter aircraft selection analysis is explored. In this study, an integrated framework incorporating multiple criteria decision making analysis technique in fighter aircraft analysis is established using entropy objective weighting method. An improved integrated multiple criteria decision making analysis method is utilized to aggregate the multiple decision criteria into one composite figure of merit, which serves as an objective function in the decision process. Therefore, it is demonstrated that the suitable multiple criteria decision making analysis method with decision solution provides an effective objective function for the decision making analysis. Considering that the inherent uncertainties and the weighting factors have crucial decision impacts on the fighter aircraft evaluation, seven fighter aircraft models for the multiple design criteria in terms of the weighting factors are constructed. The proposed multiple criteria decision making analysis model is based on integrated entropy index procedure, and additive multiple criteria decision making analysis theory. Hence, the applicability of proposed technique for fighter aircraft selection problem is considered. The constructed multiple criteria decision making analysis model can provide efficient decision analysis approach for uncertainty assessment of the decision problem. Consequently, the fighter aircraft alternatives are ranked based their final evaluation scores, and sensitivity analysis is conducted.
Keywords: Fighter Aircraft, Fighter Aircraft Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6263859 Comparing Spontaneous Hydrolysis Rates of Activated Models of DNA and RNA
Authors: Mohamed S. Sasi, Adel M. Mlitan, Abdulfattah M. Alkherraz
Abstract:
This research project aims to investigate difference in relative rates concerning phosphoryl transfer relevant to biological catalysis of DNA and RNA in the pH-independent reactions. Activated Models of DNA and RNA for alkyl-aryl phosphate diesters (with 4-nitrophenyl as a good leaving group) have successfully been prepared to gather kinetic parameters. Eyring plots for the pH– independent hydrolysis of 1 and 2 were established at different temperatures in the range 100–160 °C. These measurements have been used to provide a better estimate for the difference in relative rates between the reactivity of DNA and RNA cleavage. Eyring plot gave an extrapolated rate of kH2O = 1 × 10-10 s -1 for 1 (RNA model) and 2 (DNA model) at 25°C. Comparing the reactivity of RNA model and DNA model shows that the difference in relative rates in the pH-independent reactions is surprisingly very similar at 25°. This allows us to obtain chemical insights into how biological catalysts such as enzymes may have evolved to perform their current functions.
Keywords: DNA & RNA Models, Relative Rates, Reactivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23963858 Analysing of Indoor Radio Wave Propagation on Ad-hoc Network by Using TP-LINK Router
Authors: Khine Phyu, Aung Myint Aye
Abstract:
This paper presents results of measurements campaign carried out at a carrier frequency of 24GHz with the help of TPLINK router in indoor line-of-sight (LOS) scenarios. Firstly, the radio wave propagation strategies are analyzed in some rooms with router of point to point Ad hoc network. Then floor attenuation is defined for 3 floors in experimental region. The free space model and dual slope models are modified by considering the influence of corridor conditions on each floor. Using these models, indoor signal attenuation can be estimated in modeling of indoor radio wave propagation. These results and modified models can also be used in planning the networks of future personal communications services.Keywords: radio wave signal analyzing, LOS radio wavepropagation, indoor radio wave propagation, free space model, tworay model and indoor attenuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20173857 New Efficient Iterative Optimization Algorithm to Design the Two Channel QMF Bank
Authors: Ram Kumar Soni, Alok Jain, Rajiv Saxena
Abstract:
This paper proposes an efficient method for the design of two channel quadrature mirror filter (QMF) bank. To achieve minimum value of reconstruction error near to perfect reconstruction, a linear optimization process has been proposed. Prototype low pass filter has been designed using Kaiser window function. The modified algorithm has been developed to optimize the reconstruction error using linear objective function through iteration method. The result obtained, show that the performance of the proposed algorithm is better than that of the already exists methods.Keywords: Filterbank, near perfect reconstruction, Kaiserwindow, QMF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16763856 Cardiovascular Modeling Software Tools in Medicine
Authors: J. Fernandez, R. Fernandez de Canete, J. Perea-Paizal, J. C. Ramos-Diaz
Abstract:
The high prevalence of cardiovascular diseases has provoked a raising interest in the development of mathematical models in order to evaluate the cardiovascular function both under physiological and pathological conditions. In this paper, a physical model of the cardiovascular system with intrinsic regulation is presented and implemented by using the object-oriented Modelica simulation software tools. For this task, a multi-compartmental system previously validated with physiological data has been built, based on the interconnection of cardiovascular elements such as resistances, capacitances and pumping among others, by following an electrohydraulic analogy. The results obtained under both physiological and pathological scenarios provide an easy interpretative key to analyze the hemodynamic behavior of the patient. The described approach represents a valuable tool in the teaching of physiology for graduate medical and nursing students among others.
Keywords: Cardiovascular system, Modelica simulation software, physical modeling, teaching tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12523855 Task Modeling for User Interface Design: A Layered Approach
Authors: Costin Pribeanu
Abstract:
The model-based approach to user interface design relies on developing separate models that are capturing various aspects about users, tasks, application domain, presentation and dialog representations. This paper presents a task modeling approach for user interface design and aims at exploring the mappings between task, domain and presentation models. The basic idea of our approach is to identify typical configurations in task and domain models and to investigate how they relate each other. A special emphasis is put on application-specific functions and mappings between domain objects and operational task structures. In this respect, we will distinguish between three layers in the task decomposition: a functional layer, a planning layer, and an operational layer.
Keywords: task modeling, user interface design, unit tasks, basic tasks, operational task model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15943854 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius
Authors: M. A. S. Fahim, J. Sužiedelytė Visockienė
Abstract:
With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realization often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.
Keywords: Air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193853 Automatic Text Summarization
Authors: Mohamed Abdel Fattah, Fuji Ren
Abstract:
This work proposes an approach to address automatic text summarization. This approach is a trainable summarizer, which takes into account several features, including sentence position, positive keyword, negative keyword, sentence centrality, sentence resemblance to the title, sentence inclusion of name entity, sentence inclusion of numerical data, sentence relative length, Bushy path of the sentence and aggregated similarity for each sentence to generate summaries. First we investigate the effect of each sentence feature on the summarization task. Then we use all features score function to train genetic algorithm (GA) and mathematical regression (MR) models to obtain a suitable combination of feature weights. The proposed approach performance is measured at several compression rates on a data corpus composed of 100 English religious articles. The results of the proposed approach are promising.Keywords: Automatic Summarization, Genetic Algorithm, Mathematical Regression, Text Features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23363852 Convective Hot Air Drying of Different Varieties of Blanched Sweet Potato Slices
Authors: M. O. Oke, T. S. Workneh
Abstract:
Drying behavior of blanched sweet potato in a cabinet dryer using different five air temperatures (40-80°C) and ten sweet potato varieties sliced to 5mm thickness were investigated. The drying data were fitted to eight models. The Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data obtained during the drying of all the varieties while Newton (Lewis) and Wang and Singh models gave the least fit. The values of Deff obtained for Bophelo variety (1.27 x 10-9 to 1.77 x 10-9 m2/s) was the least while that of S191 (1.93 x 10-9 to 2.47 x 10-9 m2/s) was the highest which indicates that moisture diffusivity in sweet potato is affected by the genetic factor. Activation energy values ranged from 0.27-6.54 kJ/mol. The lower activation energy indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. The drying behavior of blanched sweet potato was investigated in a cabinet dryer. Drying time decreased considerably with increase in hot air temperature. Out of the eight models fitted, the Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data on all the varieties while Newton, Wang and Singh models gave the least. The lower activation energy (0.27 - 6.54 kJ/mol) obtained indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method.
Keywords: Sweet Potato Slice, Drying Models, Moisture Ratio, Moisture Diffusivity, Activation Energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30043851 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: Metaphor detection, deep learning, representation learning, embeddings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5543850 Electromagnetic Field Modeling in Human Tissue
Authors: Iliana Marinova, Valentin Mateev
Abstract:
For investigations of electromagnetic field distributions in biological structures by Finite Element Method (FEM), a method for automatic 3D model building of human anatomical objects is developed. Models are made by meshed structures and specific electromagnetic material properties for each tissue type. Mesh is built according to specific FEM criteria for achieving good solution accuracy. Several FEM models of anatomical objects are built. Formulation using magnetic vector potential and scalar electric potential (A-V, A) is used for modeling of electromagnetic fields in human tissue objects. The developed models are suitable for investigations of electromagnetic field distributions in human tissues exposed in external fields during magnetic stimulation, defibrillation, impedance tomography etc.Keywords: electromagnetic field, finite element method, humantissue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52953849 Coefficients of Some Double Trigonometric Cosine and Sine Series
Authors: Jatinderdeep Kaur
Abstract:
In this paper, the results of Kano from one dimensional cosine and sine series are extended to two dimensional cosine and sine series. To extend these results, some classes of coefficient sequences such as class of semi convexity and class R are extended from one dimension to two dimensions. Further, the function f(x, y) is two dimensional Fourier Cosine and Sine series or equivalently it represents an integrable function or not, has been studied. Moreover, some results are obtained which are generalization of Moricz’s results.Keywords: Conjugate Dirichlet kernel, conjugate Fejer kernel, Fourier series, Semi-convexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147