Search results for: deep learning algorithms
2976 Cloud Computing Support for Diagnosing Researches
Authors: A. Amirov, O. Gerget, V. Kochegurov
Abstract:
One of the main biomedical problem lies in detecting dependencies in semi structured data. Solution includes biomedical portal and algorithms (integral rating health criteria, multidimensional data visualization methods). Biomedical portal allows to process diagnostic and research data in parallel mode using Microsoft System Center 2012, Windows HPC Server cloud technologies. Service does not allow user to see internal calculations instead it provides practical interface. When data is sent for processing user may track status of task and will achieve results as soon as computation is completed. Service includes own algorithms and allows diagnosing and predicating medical cases. Approved methods are based on complex system entropy methods, algorithms for determining the energy patterns of development and trajectory models of biological systems and logical–probabilistic approach with the blurring of images.
Keywords: Biomedical portal, cloud computing, diagnostic and prognostic research, mathematical data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16442975 The Motivating and Demotivating Factors at the Learning of English Center in Thailand
Authors: Bella Llego
Abstract:
This study aims to investigate the motivating and de-motivating factors that affect the learning ability of students attending the English Learning Center in Thailand. The subjects of this research were 20 students from the Hana Semiconductor Co., Limited. The data were collected by using questionnaire and analyzed using the SPSS program for the percentage, mean and standard deviation. The research results show that the main motivating factor in learning English at Hana Semiconductor Co., Ltd. is that it would help the employees to communicate with foreign customers and managers. Other reasons include the need to read and write e-mails, and reports in English, as well as to increase overall general knowledge. The main de-motivating factor is that there is a lot of vocabulary to remember when learning English. Another de-motivating factor is that when homework is given, the students have no time to complete the tasks required of them at the end of the working day.
Keywords: Motivating, demotivating, English learning center, student communicate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12212974 Analysis of Blind Decision Feedback Equalizer Convergence: Interest of a Soft Decision
Authors: S. Cherif, S. Marcos, M. Jaidane
Abstract:
In this paper the behavior of the decision feedback equalizers (DFEs) adapted by the decision-directed or the constant modulus blind algorithms is presented. An analysis of the error surface of the corresponding criterion cost functions is first developed. With the intention of avoiding the ill-convergence of the algorithm, the paper proposes to modify the shape of the cost function error surface by using a soft decision instead of the hard one. This was shown to reduce the influence of false decisions and to smooth the undesirable minima. Modified algorithms using the soft decision during a pseudo-training phase with an automatic switch to the properly tracking phase are then derived. Computer simulations show that these modified algorithms present better ability to avoid local minima than conventional ones.Keywords: Blind DFEs, decision-directed algorithm, constant modulus algorithm, cost function analysis, convergence analysis, soft decision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18822973 A Survey of Various Algorithms for Vlsi Physical Design
Authors: Rajine Swetha R, B. Shekar Babu, Sumithra Devi K.A
Abstract:
Electronic Systems are the core of everyday lives. They form an integral part in financial networks, mass transit, telephone systems, power plants and personal computers. Electronic systems are increasingly based on complex VLSI (Very Large Scale Integration) integrated circuits. Initial electronic design automation is concerned with the design and production of VLSI systems. The next important step in creating a VLSI circuit is Physical Design. The input to the physical design is a logical representation of the system under design. The output of this step is the layout of a physical package that optimally or near optimally realizes the logical representation. Physical design problems are combinatorial in nature and of large problem sizes. Darwin observed that, as variations are introduced into a population with each new generation, the less-fit individuals tend to extinct in the competition of basic necessities. This survival of fittest principle leads to evolution in species. The objective of the Genetic Algorithms (GA) is to find an optimal solution to a problem .Since GA-s are heuristic procedures that can function as optimizers, they are not guaranteed to find the optimum, but are able to find acceptable solutions for a wide range of problems. This survey paper aims at a study on Efficient Algorithms for VLSI Physical design and observes the common traits of the superior contributions.Keywords: Genetic Algorithms, Physical Design, VLSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17402972 The Riemann Barycenter Computation and Means of Several Matrices
Authors: Miklos Palfia
Abstract:
An iterative definition of any n variable mean function is given in this article, which iteratively uses the two-variable form of the corresponding two-variable mean function. This extension method omits recursivity which is an important improvement compared with certain recursive formulas given before by Ando-Li-Mathias, Petz- Temesi. Furthermore it is conjectured here that this iterative algorithm coincides with the solution of the Riemann centroid minimization problem. Certain simulations are given here to compare the convergence rate of the different algorithms given in the literature. These algorithms will be the gradient and the Newton mehod for the Riemann centroid computation.
Keywords: Means, matrix means, operator means, geometric mean, Riemannian center of mass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17882971 Using Genetic Algorithm to Improve Information Retrieval Systems
Authors: Ahmed A. A. Radwan, Bahgat A. Abdel Latef, Abdel Mgeid A. Ali, Osman A. Sadek
Abstract:
This study investigates the use of genetic algorithms in information retrieval. The method is shown to be applicable to three well-known documents collections, where more relevant documents are presented to users in the genetic modification. In this paper we present a new fitness function for approximate information retrieval which is very fast and very flexible, than cosine similarity fitness function.Keywords: Cosine similarity, Fitness function, Genetic Algorithm, Information Retrieval, Query learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27562970 Using Facebook as an Alternative Learning Tool in Malaysian Higher Learning Institutions: A Structural Equation Modeling Approach
Authors: Ahasanul Haque, Abdullah Sarwar, Khaliq Ahmad
Abstract:
Networking is important among students to achieve better understanding. Social networking plays an important role in the education. Realizing its huge potential, various organizations, including institutions of higher learning have moved to the area of social networks to interact with their students especially through Facebook. Therefore, measuring the effectiveness of Facebook as a learning tool has become an area of interest to academicians and researchers. Therefore, this study tried to integrate and propose new theoretical and empirical evidences by linking the western idea of adopting Facebook as an alternative learning platform from a Malaysian perspective. This study, thus, aimed to fill a gap by being among the pioneering research that tries to study the effectiveness of adopting Facebook as a learning platform across other cultural settings, namely Malaysia. Structural equation modeling was employed for data analysis and hypothesis testing. This study finding has provided some insights that would likely affect students’ awareness towards using Facebook as an alternative learning platform in the Malaysian higher learning institutions. At the end, future direction is proposed.Keywords: Learning Management Tool, Social Networking, Education, Malaysia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24252969 Investigation on Novel Based Naturally-Inspired Swarm Intelligence Algorithms for Optimization Problems in Mobile Ad Hoc Networks
Authors: C. Rajan, K. Geetha, C. Rasi Priya, S. Geetha
Abstract:
Nature is the immense gifted source for solving complex problems. It always helps to find the optimal solution to solve the problem. Mobile Ad Hoc NETwork (MANET) is a wide research area of networks which has set of independent nodes. The characteristics involved in MANET’s are Dynamic, does not depend on any fixed infrastructure or centralized networks, High mobility. The Bio-Inspired algorithms are mimics the nature for solving optimization problems opening a new era in MANET. The typical Swarm Intelligence (SI) algorithms are Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), Modified Termite Algorithm, Bat Algorithm (BA), Wolf Search Algorithm (WSA) and so on. This work mainly concentrated on nature of MANET and behavior of nodes. Also it analyses various performance metrics such as throughput, QoS and End-to-End delay etc.
Keywords: Ant Colony Algorithm, Artificial Bee Colony algorithm, Bio-Inspired algorithm, Modified Termite Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24712968 Effective Features for Disambiguation of Turkish Verbs
Authors: Zeynep Orhan, Zeynep Altan
Abstract:
This paper summarizes the results of some experiments for finding the effective features for disambiguation of Turkish verbs. Word sense disambiguation is a current area of investigation in which verbs have the dominant role. Generally verbs have more senses than the other types of words in the average and detecting these features for verbs may lead to some improvements for other word types. In this paper we have considered only the syntactical features that can be obtained from the corpus and tested by using some famous machine learning algorithms.
Keywords: Word sense disambiguation, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17472967 The Wheel Garden: Project-Based Learning for Cross Curriculum Education
Authors: Sherry S. Herron, Douglas Magomo, Paula Gossard
Abstract:
In this article, we discuss project-based learning in the context of a wheel garden as an instructional tool in science and mathematics education. A wheel garden provides multiple opportunities to teach across the curriculum, to integrate disciplines, and to promote community involvement. Grounded in the theoretical framework of constructivism, the wheel garden provides a multidisciplined educational tool that provides a hands-on, non-traditional arena for learning. We will examine some of the cultural, art, science, and mathematics connections made with this project.
Keywords: Art education, cross-curriculum instruction, multicultural education, project-based learning, school gardens, task based learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28362966 An Experience Report on Course Teaching in Information Systems
Authors: Carlos Oliveira
Abstract:
This paper is a criticism of the traditional model of teaching and presents alternative teaching methods, different from the traditional lecture. These methods are accompanied by reports of experience of their application in a class. It was concluded that in the lecture, the student has a low learning rate and that other methods should be used to make the most engaging learning environment for the student, contributing (or facilitating) his learning process. However, the teacher should not use a single method, but rather a range of different methods to ensure the learning experience does not become repetitive and fatiguing for the student.
Keywords: Educational practices, experience report, IT in education, teaching methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11142965 An Exploratory Study of the Student’s Learning Experience by Applying Different Tools for e-Learning and e-Teaching
Authors: Angel Daniel Muñoz Guzmán
Abstract:
E-learning is becoming more and more common every day. For online, hybrid or traditional face-to-face programs, there are some e-teaching platforms like Google classroom, Blackboard, Moodle and Canvas, and there are platforms for full e-learning like Coursera, edX or Udemy. These tools are changing the way students acquire knowledge at schools; however, in today’s changing world that is not enough. As students’ needs and skills change and become more complex, new tools will need to be added to keep them engaged and potentialize their learning. This is especially important in the current global situation that is changing everything: the Covid-19 pandemic. Due to Covid-19, education had to make an unexpected switch from face-to-face courses to digital courses. In this study, the students’ learning experience is analyzed by applying different e-tools and following the Tec21 Model and a flexible and digital model, both developed by the Tecnologico de Monterrey University. The evaluation of the students’ learning experience has been made by the quantitative PrEmo method of emotions. Findings suggest that the quantity of e-tools used during a course does not affect the students’ learning experience as much as how a teacher links every available tool and makes them work as one in order to keep the student engaged and motivated.Keywords: Student, experience, e-learning, e-teaching, e-tools, technology, education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7562964 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction
Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota
Abstract:
Understanding the causes of a road accident and predicting their occurrence is key to prevent deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.
Keywords: Accident risks estimation, artificial neural network, deep learning, K-mean, road safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9752963 Web Application for Evaluating Tests in Distance Learning Systems
Authors: Bogdan Walek, Vladimir Bradac, Radim Farana
Abstract:
Distance learning systems offer useful methods of learning and usually contain a final course test or another form of test. The paper proposes a web application for evaluating tests using an expert system in distance learning systems. The proposed web application is appropriate for didactic tests or tests with results for subsequent studying follow-up courses. The web application works with test questions and uses an expert system and LFLC tool for test evaluation. After test evaluation, the results are visualized and shown to the student.Keywords: Distance learning, test, uncertainty, fuzzy, expert system, student.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15472962 Organisational Blogging: Reviewing Its Effectiveness as an Organisational Learning Tool
Authors: Gavin J. Baxter, Mark H. Stansfield
Abstract:
This paper reviews the internal use of blogs and their potential effectiveness as organisational learning tools. Since the emergence of the concept of ‘Enterprise 2.0’ there remains a lack of empirical evidence associated with how organisations are applying social media tools and whether they are effective towards supporting organisational learning. Surprisingly, blogs, one of the more traditional social media tools, still remains under-researched in the context of ‘Enterprise 2.0’ and organisational learning. The aim of this paper is to identify the theoretical linkage between blogs and organisational learning in addition to reviewing prior research on organisational blogging exploring why this area remains underresearched. Through a literature review, one of the principal findings of this paper is that organisational blogs have a mutual compatibility with the interpretivist aspect of organisational learning. This paper further advocates that further empirical work in this subject area is required to substantiate this theoretical assumption.
Keywords: Blogs, Enterprise 2.0, Organisational Learning, Social Media Tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21222961 Word Stemming Algorithms and Retrieval Effectiveness in Malay and Arabic Documents Retrieval Systems
Authors: Tengku Mohd T. Sembok
Abstract:
Documents retrieval in Information Retrieval Systems (IRS) is generally about understanding of information in the documents concern. The more the system able to understand the contents of documents the more effective will be the retrieval outcomes. But understanding of the contents is a very complex task. Conventional IRS apply algorithms that can only approximate the meaning of document contents through keywords approach using vector space model. Keywords may be unstemmed or stemmed. When keywords are stemmed and conflated in retrieving process, we are a step forwards in applying semantic technology in IRS. Word stemming is a process in morphological analysis under natural language processing, before syntactic and semantic analysis. We have developed algorithms for Malay and Arabic and incorporated stemming in our experimental systems in order to measure retrieval effectiveness. The results have shown that the retrieval effectiveness has increased when stemming is used in the systems.Keywords: Information Retrieval, Natural Language Processing, Artificial Intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22582960 The Effect of e-learning on the Promotion of Optoelectronics Technology and Daily Livings Literacy among Students in Universities of Technology
Authors: Chin-Pin Chen, David W.S. Tai, Wen-Jong Chen, Hui-Min Lai
Abstract:
This study aims to analyze the effect of e-learning on photonics technology and daily livings among college students. The course contents of photonics technology and daily livings are first drafted based on research discussions and expert interviews. Having expert questionnaires with Delphi Technique for three times, the knowledge units and items for the course of photonics technology and daily livings are established. The e-learning materials and the drafts of instructional strategies, academic achievement, and learning attitude scales are then developed. With expert inspection, reliability and validity test, and experimental instructions, the scales and the material are further revised. Finally, the formal instructions are implemented to test the effect of different instructional methods on the academic achievement of photonics technology and daily livings among students in universities of technology. The research results show that e-learning could effectively promote academic achievement and learning attitude, and the students with e-learning obviously outperform the ones with trandition instructions.Keywords: E-learning, Photonics Technology and Daily Livings, Academic Achievement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17142959 Efficient Boosting-Based Active Learning for Specific Object Detection Problems
Authors: Thuy Thi Nguyen, Nguyen Dang Binh, Horst Bischof
Abstract:
In this work, we present a novel active learning approach for learning a visual object detection system. Our system is composed of an active learning mechanism as wrapper around a sub-algorithm which implement an online boosting-based learning object detector. In the core is a combination of a bootstrap procedure and a semi automatic learning process based on the online boosting procedure. The idea is to exploit the availability of classifier during learning to automatically label training samples and increasingly improves the classifier. This addresses the issue of reducing labeling effort meanwhile obtain better performance. In addition, we propose a verification process for further improvement of the classifier. The idea is to allow re-update on seen data during learning for stabilizing the detector. The main contribution of this empirical study is a demonstration that active learning based on an online boosting approach trained in this manner can achieve results comparable or even outperform a framework trained in conventional manner using much more labeling effort. Empirical experiments on challenging data set for specific object deteciton problems show the effectiveness of our approach.Keywords: Computer vision, object detection, online boosting, active learning, labeling complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17842958 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Loay E. George, Azizah Suliman, Abdul Rahim Ahmad, Karim Al-Jashamy
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.
Keywords: Red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31992957 A Developmental Survey of Local Stereo Matching Algorithms
Authors: André Smith, Amr Abdel-Dayem
Abstract:
This paper presents an overview of the history and development of stereo matching algorithms. Details from its inception, up to relatively recent techniques are described, noting challenges that have been surmounted across these past decades. Different components of these are explored, though focus is directed towards the local matching techniques. While global approaches have existed for some time, and demonstrated greater accuracy than their counterparts, they are generally quite slow. Many strides have been made more recently, allowing local methods to catch up in terms of accuracy, without sacrificing the overall performance.Keywords: Developmental survey, local stereo matching, stereo correspondence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14672956 3D Dense Correspondence for 3D Dense Morphable Face Shape Model
Authors: Tae in Seol, Sun-Tae Chung, Seongwon Cho
Abstract:
Realistic 3D face model is desired in various applications such as face recognition, games, avatars, animations, and etc. Construction of 3D face model is composed of 1) building a face shape model and 2) rendering the face shape model. Thus, building a realistic 3D face shape model is an essential step for realistic 3D face model. Recently, 3D morphable model is successfully introduced to deal with the various human face shapes. 3D dense correspondence problem should be precedently resolved for constructing a realistic 3D dense morphable face shape model. Several approaches to 3D dense correspondence problem in 3D face modeling have been proposed previously, and among them optical flow based algorithms and TPS (Thin Plate Spline) based algorithms are representative. Optical flow based algorithms require texture information of faces, which is sensitive to variation of illumination. In TPS based algorithms proposed so far, TPS process is performed on the 2D projection representation in cylindrical coordinates of the 3D face data, not directly on the 3D face data and thus errors due to distortion in data during 2D TPS process may be inevitable. In this paper, we propose a new 3D dense correspondence algorithm for 3D dense morphable face shape modeling. The proposed algorithm does not need texture information and applies TPS directly on 3D face data. Through construction procedures, it is observed that the proposed algorithm constructs realistic 3D face morphable model reliably and fast.Keywords: 3D Dense Correspondence, 3D Morphable Face Shape Model, 3D Face Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21872955 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.
Keywords: Information Gain (IG), Intrusion Detection System (IDS), K-means Clustering, Weka.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27762954 Spread Spectrum Code Estimation by Genetic Algorithm
Authors: V. R. Asghari, M. Ardebilipour
Abstract:
In the context of spectrum surveillance, a method to recover the code of spread spectrum signal is presented, whereas the receiver has no knowledge of the transmitter-s spreading sequence. The approach is based on a genetic algorithm (GA), which is forced to model the received signal. Genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems. Experimental results show that the method provides a good estimation, even when the signal power is below the noise power.Keywords: Code estimation, genetic algorithms, spread spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15712953 Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines
Authors: Watcharapan Sukkerd, Teeradej Wuttipornpun
Abstract:
This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm.
Keywords: Capacitated MRP, non-population search algorithms, linear programming, assembly flow shop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9582952 International Service Learning 3.0: Using Technology to Improve Outcomes and Sustainability
Authors: Anthony Vandarakis
Abstract:
Today’s International Service Learning practices require an update: modern technologies, fresh educational frameworks, and a new operating system to accountably prosper. This paper describes a model of International Service Learning (ISL), which combines current technological hardware, electronic platforms, and asynchronous communications that are grounded in inclusive pedagogy. This model builds on the work around collaborative field trip learning, extending the reach to international partnerships across continents. Mobile technology, 21st century skills and summit-basecamp modeling intersect to support novel forms of learning that tread lightly on fragile natural ecosystems, affirm local reciprocal partnership in projects, and protect traveling participants from common yet avoidable cultural pitfalls.Keywords: International Service Learning, ISL, field experiences, mobile technology, ‘out there in here’, summit basecamp pedagogy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5622951 Block Sorting: A New Characterization and a New Heuristic
Authors: Swapnoneel Roy, Ashok Kumar Thakur, Minhazur Rahman
Abstract:
The Block Sorting problem is to sort a given permutation moving blocks. A block is defined as a substring of the given permutation, which is also a substring of the identity permutation. Block Sorting has been proved to be NP-Hard. Until now two different 2-Approximation algorithms have been presented for block sorting. These are the best known algorithms for Block Sorting till date. In this work we present a different characterization of Block Sorting in terms of a transposition cycle graph. Then we suggest a heuristic, which we show to exhibit a 2-approximation performance guarantee for most permutations.Keywords: Block Sorting, Optical Character Recognition, Genome Rearrangements, Sorting Primitives, ApproximationAlgorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21392950 Analysis of Student Motivation Behavior on e-Learning Based on Association Rule Mining
Authors: Kunyanuth Kularbphettong, Phanu Waraporn, Cholticha Tongsiri
Abstract:
This research aims to create a model for analysis of student motivation behavior on e-Learning based on association rule mining techniques in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The model was created under association rules, one of the data mining techniques with minimum confidence. The results showed that the student motivation behavior model by using association rule technique can indicate the important variables that influence the student motivation behavior on e-Learning.
Keywords: Motivation behavior, e-learning, moodle log, association rule mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18862949 Predictors of Academic Achievement of Student ICT Teachers with Different Learning Styles
Authors: Deniz Deryakulu, Şener Büyüköztürk Hüseyin Özçınar
Abstract:
The main purpose of this study was to determine the predictors of academic achievement of student Information and Communications Technologies (ICT) teachers with different learning styles. Participants were 148 student ICT teachers from Ankara University. Participants were asked to fill out a personal information sheet, the Turkish version of Kolb-s Learning Style Inventory, Weinstein-s Learning and Study Strategies Inventory, Schommer's Epistemological Beliefs Questionnaire, and Eysenck-s Personality Questionnaire. Stepwise regression analyses showed that the statistically significant predictors of the academic achievement of the accommodators were attitudes and high school GPAs; of the divergers was anxiety; of the convergers were gender, epistemological beliefs, and motivation; and of the assimilators were gender, personality, and test strategies. Implications for ICT teaching-learning processes and teacher education are discussed.
Keywords: Academic achievement, student ICT teachers, Kolb learning styles, experiential learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26082948 A Framework for SQL Learning: Linking Learning Taxonomy, Cognitive Model and Cross Cutting Factors
Authors: Huda Al Shuaily, Karen Renaud
Abstract:
Databases comprise the foundation of most software systems. System developers inevitably write code to query these databases. The de facto language for querying is SQL and this, consequently, is the default language taught by higher education institutions. There is evidence that learners find it hard to master SQL, harder than mastering other programming languages such as Java. Educators do not agree about explanations for this seeming anomaly. Further investigation may well reveal the reasons. In this paper, we report on our investigations into how novices learn SQL, the actual problems they experience when writing SQL, as well as the differences between expert and novice SQL query writers. We conclude by presenting a model of SQL learning that should inform the instructional material design process better to support the SQL learning process.
Keywords: Pattern, SQL, learning, model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13422947 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055