Search results for: data grid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7804

Search results for: data grid

7204 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption

Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Moses Noel Dogonyaro

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.

Keywords: Data Analytics, Security, Privacy, Bootstrapping, and Fully Homomorphic Encryption Scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3458
7203 2 – Block 3 - Point Modified Numerov Block Methods for Solving Ordinary Differential Equations

Authors: Abdu Masanawa Sagir

Abstract:

In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations of the form y′′ = f(x,y), a < = x < = b with associated initial or boundary conditions. The continuaous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different three discrete schemes, each of order (4,4,4)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on linear and non-linear ordinary differential equations whose solutions are oscillatory or nearly periodic in nature, and the results obtained compared favourably with the exact solution.

Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
7202 Iterative Clustering Algorithm for Analyzing Temporal Patterns of Gene Expression

Authors: Seo Young Kim, Jae Won Lee, Jong Sung Bae

Abstract:

Microarray experiments are information rich; however, extensive data mining is required to identify the patterns that characterize the underlying mechanisms of action. For biologists, a key aim when analyzing microarray data is to group genes based on the temporal patterns of their expression levels. In this paper, we used an iterative clustering method to find temporal patterns of gene expression. We evaluated the performance of this method by applying it to real sporulation data and simulated data. The patterns obtained using the iterative clustering were found to be superior to those obtained using existing clustering algorithms.

Keywords: Clustering, microarray experiment, temporal pattern of gene expression data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
7201 Effective Software-Based Solution for Processing Mass Downstream Data in Interactive Push VOD System

Authors: Ni Hong, Wu Guobin, Wu Gang, Pan Liang

Abstract:

Interactive push VOD system is a new kind of system that incorporates push technology and interactive technique. It can push movies to users at high speeds at off-peak hours for optimal network usage so as to save bandwidth. This paper presents effective software-based solution for processing mass downstream data at terminals of interactive push VOD system, where the service can download movie according to a viewer-s selection. The downstream data is divided into two catalogs: (1) the carousel data delivered according to DSM-CC protocol; (2) IP data delivered according to Euro-DOCSIS protocol. In order to accelerate download speed and reduce data loss rate at terminals, this software strategy introduces caching, multi-thread and resuming mechanisms. The experiments demonstrate advantages of the software-based solution.

Keywords: DSM-CC, data carousel, Euro-DOCSIS, push VOD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
7200 Approaches and Schemes for Storing DTD-Independent XML Data in Relational Databases

Authors: Mehdi Emadi, Masoud Rahgozar, Adel Ardalan, Alireza Kazerani, Mohammad Mahdi Ariyan

Abstract:

The volume of XML data exchange is explosively increasing, and the need for efficient mechanisms of XML data management is vital. Many XML storage models have been proposed for storing XML DTD-independent documents in relational database systems. Benchmarking is the best way to highlight pros and cons of different approaches. In this study, we use a common benchmarking scheme, known as XMark to compare the most cited and newly proposed DTD-independent methods in terms of logical reads, physical I/O, CPU time and duration. We show the effect of Label Path, extracting values and storing in another table and type of join needed for each method's query answering.

Keywords: XML Data Management, XPath, DTD-IndependentXML Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
7199 Approaches and Schemes for Storing DTDIndependent XML Data in Relational Databases

Authors: Mehdi Emadi, Masoud Rahgozar, Adel Ardalan, Alireza Kazerani, Mohammad Mahdi Ariyan

Abstract:

The volume of XML data exchange is explosively increasing, and the need for efficient mechanisms of XML data management is vital. Many XML storage models have been proposed for storing XML DTD-independent documents in relational database systems. Benchmarking is the best way to highlight pros and cons of different approaches. In this study, we use a common benchmarking scheme, known as XMark to compare the most cited and newly proposed DTD-independent methods in terms of logical reads, physical I/O, CPU time and duration. We show the effect of Label Path, extracting values and storing in another table and type of join needed for each method-s query answering.

Keywords: XML Data Management, XPath, DTD-Independent XML Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
7198 GridNtru: High Performance PKCS

Authors: Narasimham Challa, Jayaram Pradhan

Abstract:

Cryptographic algorithms play a crucial role in the information society by providing protection from unauthorized access to sensitive data. It is clear that information technology will become increasingly pervasive, Hence we can expect the emergence of ubiquitous or pervasive computing, ambient intelligence. These new environments and applications will present new security challenges, and there is no doubt that cryptographic algorithms and protocols will form a part of the solution. The efficiency of a public key cryptosystem is mainly measured in computational overheads, key size and bandwidth. In particular the RSA algorithm is used in many applications for providing the security. Although the security of RSA is beyond doubt, the evolution in computing power has caused a growth in the necessary key length. The fact that most chips on smart cards can-t process key extending 1024 bit shows that there is need for alternative. NTRU is such an alternative and it is a collection of mathematical algorithm based on manipulating lists of very small integers and polynomials. This allows NTRU to high speeds with the use of minimal computing power. NTRU (Nth degree Truncated Polynomial Ring Unit) is the first secure public key cryptosystem not based on factorization or discrete logarithm problem. This means that given sufficient computational resources and time, an adversary, should not be able to break the key. The multi-party communication and requirement of optimal resource utilization necessitated the need for the present day demand of applications that need security enforcement technique .and can be enhanced with high-end computing. This has promoted us to develop high-performance NTRU schemes using approaches such as the use of high-end computing hardware. Peer-to-peer (P2P) or enterprise grids are proven as one of the approaches for developing high-end computing systems. By utilizing them one can improve the performance of NTRU through parallel execution. In this paper we propose and develop an application for NTRU using enterprise grid middleware called Alchemi. An analysis and comparison of its performance for various text files is presented.

Keywords: Alchemi, GridNtru, Ntru, PKCS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
7197 Analysis of Urban Population Using Twitter Distribution Data: Case Study of Makassar City, Indonesia

Authors: Yuyun Wabula, B. J. Dewancker

Abstract:

In the past decade, the social networking app has been growing very rapidly. Geolocation data is one of the important features of social media that can attach the user's location coordinate in the real world. This paper proposes the use of geolocation data from the Twitter social media application to gain knowledge about urban dynamics, especially on human mobility behavior. This paper aims to explore the relation between geolocation Twitter with the existence of people in the urban area. Firstly, the study will analyze the spread of people in the particular area, within the city using Twitter social media data. Secondly, we then match and categorize the existing place based on the same individuals visiting. Then, we combine the Twitter data from the tracking result and the questionnaire data to catch the Twitter user profile. To do that, we used the distribution frequency analysis to learn the visitors’ percentage. To validate the hypothesis, we compare it with the local population statistic data and land use mapping released by the city planning department of Makassar local government. The results show that there is the correlation between Twitter geolocation and questionnaire data. Thus, integration the Twitter data and survey data can reveal the profile of the social media users.

Keywords: Geolocation, Twitter, distribution analysis, human mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
7196 Database Compression for Intelligent On-board Vehicle Controllers

Authors: Ágoston Winkler, Sándor Juhász, Zoltán Benedek

Abstract:

The vehicle fleet of public transportation companies is often equipped with intelligent on-board passenger information systems. A frequently used but time and labor-intensive way for keeping the on-board controllers up-to-date is the manual update using different memory cards (e.g. flash cards) or portable computers. This paper describes a compression algorithm that enables data transmission using low bandwidth wireless radio networks (e.g. GPRS) by minimizing the amount of data traffic. In typical cases it reaches a compression rate of an order of magnitude better than that of the general purpose compressors. Compressed data can be easily expanded by the low-performance controllers, too.

Keywords: Data analysis, data compression, differentialencoding, run-length encoding, vehicle control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
7195 EUDIS-An Encryption Scheme for User-Data Security in Public Networks

Authors: S. Balaji, M. Rajaram

Abstract:

The method of introducing the proxy interpretation for sending and receiving requests increase the capability of the server and our approach UDIV (User-Data Identity Security) to solve the data and user authentication without extending size of the data makes better than hybrid IDS (Intrusion Detection System). And at the same time all the security stages we have framed have to pass through less through that minimize the response time of the request. Even though an anomaly detected, before rejecting it the proxy extracts its identity to prevent it to enter into system. In case of false anomalies, the request will be reshaped and transformed into legitimate request for further response. Finally we are holding the normal and abnormal requests in two different queues with own priorities.

Keywords: IDS, Data & User authentication, UDIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
7194 An Analysis of Genetic Algorithm Based Test Data Compression Using Modified PRL Coding

Authors: K. S. Neelukumari, K. B. Jayanthi

Abstract:

In this paper genetic based test data compression is targeted for improving the compression ratio and for reducing the computation time. The genetic algorithm is based on extended pattern run-length coding. The test set contains a large number of X value that can be effectively exploited to improve the test data compression. In this coding method, a reference pattern is set and its compatibility is checked. For this process, a genetic algorithm is proposed to reduce the computation time of encoding algorithm. This coding technique encodes the 2n compatible pattern or the inversely compatible pattern into a single test data segment or multiple test data segment. The experimental result shows that the compression ratio and computation time is reduced.

Keywords: Backtracking, test data compression (TDC), x-filling, x-propagating and genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
7193 Parallel Vector Processing Using Multi Level Orbital DATA

Authors: Nagi Mekhiel

Abstract:

Many applications use vector operations by applying single instruction to multiple data that map to different locations in conventional memory. Transferring data from memory is limited by access latency and bandwidth affecting the performance gain of vector processing. We present a memory system that makes all of its content available to processors in time so that processors need not to access the memory, we force each location to be available to all processors at a specific time. The data move in different orbits to become available to other processors in higher orbits at different time. We use this memory to apply parallel vector operations to data streams at first orbit level. Data processed in the first level move to upper orbit one data element at a time, allowing a processor in that orbit to apply another vector operation to deal with serial code limitations inherited in all parallel applications and interleaved it with lower level vector operations.

Keywords: Memory organization, parallel processors, serial code, vector processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062
7192 An Investigation into the Application of Artificial Neural Networks to the Prediction of Injuries in Sport

Authors: J. McCullagh, T. Whitfort

Abstract:

Artificial Neural Networks (ANNs) have been used successfully in many scientific, industrial and business domains as a method for extracting knowledge from vast amounts of data. However the use of ANN techniques in the sporting domain has been limited. In professional sport, data is stored on many aspects of teams, games, training and players. Sporting organisations have begun to realise that there is a wealth of untapped knowledge contained in the data and there is great interest in techniques to utilise this data. This study will use player data from the elite Australian Football League (AFL) competition to train and test ANNs with the aim to predict the onset of injuries. The results demonstrate that an accuracy of 82.9% was achieved by the ANNs’ predictions across all examples with 94.5% of all injuries correctly predicted. These initial findings suggest that ANNs may have the potential to assist sporting clubs in the prediction of injuries.

Keywords: Artificial Neural Networks, data, injuries, sport

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2891
7191 Analysis of Medical Data using Data Mining and Formal Concept Analysis

Authors: Anamika Gupta, Naveen Kumar, Vasudha Bhatnagar

Abstract:

This paper focuses on analyzing medical diagnostic data using classification rules in data mining and context reduction in formal concept analysis. It helps in finding redundancies among the various medical examination tests used in diagnosis of a disease. Classification rules have been derived from positive and negative association rules using the Concept lattice structure of the Formal Concept Analysis. Context reduction technique given in Formal Concept Analysis along with classification rules has been used to find redundancies among the various medical examination tests. Also it finds out whether expensive medical tests can be replaced by some cheaper tests.

Keywords: Data Mining, Formal Concept Analysis, Medical Data, Negative Classification Rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
7190 Data Transmission Reliability in Short Message Integrated Distributed Monitoring Systems

Authors: Sui Xin, Li Chunsheng, Tian Di

Abstract:

Short message integrated distributed monitoring systems (SM-DMS) are growing rapidly in wireless communication applications in various areas, such as electromagnetic field (EMF) management, wastewater monitoring, and air pollution supervision, etc. However, delay in short messages often makes the data embedded in SM-DMS transmit unreliably. Moreover, there are few regulations dealing with this problem in SMS transmission protocols. In this study, based on the analysis of the command and data requirements in the SM-DMS, we developed a processing model for the control center to solve the delay problem in data transmission. Three components of the model: the data transmission protocol, the receiving buffer pool method, and the timer mechanism were described in detail. Discussions on adjusting the threshold parameter in the timer mechanism were presented for the adaptive performance during the runtime of the SM-DMS. This model optimized the data transmission reliability in SM-DMS, and provided a supplement to the data transmission reliability protocols at the application level.

Keywords: Delay, SMS, reliability, distributed monitoringsystem (DMS), wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
7189 Data-organization Before Learning Multi-Entity Bayesian Networks Structure

Authors: H. Bouhamed, A. Rebai, T. Lecroq, M. Jaoua

Abstract:

The objective of our work is to develop a new approach for discovering knowledge from a large mass of data, the result of applying this approach will be an expert system that will serve as diagnostic tools of a phenomenon related to a huge information system. We first recall the general problem of learning Bayesian network structure from data and suggest a solution for optimizing the complexity by using organizational and optimization methods of data. Afterward we proposed a new heuristic of learning a Multi-Entities Bayesian Networks structures. We have applied our approach to biological facts concerning hereditary complex illnesses where the literatures in biology identify the responsible variables for those diseases. Finally we conclude on the limits arched by this work.

Keywords: Data-organization, data-optimization, automatic knowledge discovery, Multi-Entities Bayesian networks, score merging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
7188 Data Gathering Protocols for Wireless Sensor Networks

Authors: Dhinu Johnson, Gurdip Singh

Abstract:

Sensor network applications are often data centric and involve collecting data from a set of sensor nodes to be delivered to various consumers. Typically, nodes in a sensor network are resource-constrained, and hence the algorithms operating in these networks must be efficient. There may be several algorithms available implementing the same service, and efficient considerations may require a sensor application to choose the best suited algorithm. In this paper, we present a systematic evaluation of a set of algorithms implementing the data gathering service. We propose a modular infrastructure for implementing such algorithms in TOSSIM with separate configurable modules for various tasks such as interest propagation, data propagation, aggregation, and path maintenance. By appropriately configuring these modules, we propose a number of data gathering algorithms, each of which incorporates a different set of heuristics for optimizing performance. We have performed comprehensive experiments to evaluate the effectiveness of these heuristics, and we present results from our experimentation efforts.

Keywords: Data Centric Protocols, Shortest Paths, Sensor networks, Message passing systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
7187 Measured versus Default Interstate Traffic Data in New Mexico, USA

Authors: M. A. Hasan, M. R. Islam, R. A. Tarefder

Abstract:

This study investigates how the site specific traffic data differs from the Mechanistic Empirical Pavement Design Software default values. Two Weigh-in-Motion (WIM) stations were installed in Interstate-40 (I-40) and Interstate-25 (I-25) to developed site specific data. A computer program named WIM Data Analysis Software (WIMDAS) was developed using Microsoft C-Sharp (.Net) for quality checking and processing of raw WIM data. A complete year data from November 2013 to October 2014 was analyzed using the developed WIM Data Analysis Program. After that, the vehicle class distribution, directional distribution, lane distribution, monthly adjustment factor, hourly distribution, axle load spectra, average number of axle per vehicle, axle spacing, lateral wander distribution, and wheelbase distribution were calculated. Then a comparative study was done between measured data and AASHTOWare default values. It was found that the measured general traffic inputs for I-40 and I-25 significantly differ from the default values.

Keywords: AASHTOWare, Traffic, Weigh-in-Motion, Axle load Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
7186 Energy Efficient In-Network Data Processing in Sensor Networks

Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik

Abstract:

The Sensor Network consists of densely deployed sensor nodes. Energy optimization is one of the most important aspects of sensor application design. Data acquisition and aggregation techniques for processing data in-network should be energy efficient. Due to the cross-layer design, resource-limited and noisy nature of Wireless Sensor Networks(WSNs), it is challenging to study the performance of these systems in a realistic setting. In this paper, we propose optimizing queries by aggregation of data and data redundancy to reduce energy consumption without requiring all sensed data and directed diffusion communication paradigm to achieve power savings, robust communication and processing data in-network. To estimate the per-node power consumption POWERTossim mica2 energy model is used, which provides scalable and accurate results. The performance analysis shows that the proposed methods overcomes the existing methods in the aspects of energy consumption in wireless sensor networks.

Keywords: Data Aggregation, Directed Diffusion, Partial Aggregation, Packet Merging, Query Plan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
7185 Preliminary Analysis of Energy Efficiency in Data Center: Case Study

Authors: Xiaoshu Lu, Tao Lu, Matias Remes, Martti Viljanen

Abstract:

As the data-driven economy is growing faster than ever and the demand for energy is being spurred, we are facing unprecedented challenges of improving energy efficiency in data centers. Effectively maximizing energy efficiency or minimising the cooling energy demand is becoming pervasive for data centers. This paper investigates overall energy consumption and the energy efficiency of cooling system for a data center in Finland as a case study. The power, cooling and energy consumption characteristics and operation condition of facilities are examined and analysed. Potential energy and cooling saving opportunities are identified and further suggestions for improving the performance of cooling system are put forward. Results are presented as a comprehensive evaluation of both the energy performance and good practices of energy efficient cooling operations for the data center. Utilization of an energy recovery concept for cooling system is proposed. The conclusion we can draw is that even though the analysed data center demonstrated relatively high energy efficiency, based on its power usage effectiveness value, there is still a significant potential for energy saving from its cooling systems.

Keywords: Data center, case study, cooling system, energyefficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
7184 Multidimensional Visualization Tools for Analysis of Expression Data

Authors: Urska Cvek, Marjan Trutschl, Randolph Stone II, Zanobia Syed, John L. Clifford, Anita L. Sabichi

Abstract:

Expression data analysis is based mostly on the statistical approaches that are indispensable for the study of biological systems. Large amounts of multidimensional data resulting from the high-throughput technologies are not completely served by biostatistical techniques and are usually complemented with visual, knowledge discovery and other computational tools. In many cases, in biological systems we only speculate on the processes that are causing the changes, and it is the visual explorative analysis of data during which a hypothesis is formed. We would like to show the usability of multidimensional visualization tools and promote their use in life sciences. We survey and show some of the multidimensional visualization tools in the process of data exploration, such as parallel coordinates and radviz and we extend them by combining them with the self-organizing map algorithm. We use a time course data set of transitional cell carcinoma of the bladder in our examples. Analysis of data with these tools has the potential to uncover additional relationships and non-trivial structures.

Keywords: microarrays, visualization, parallel coordinates, radviz, self-organizing maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
7183 A Multi-Agent Framework for Data Mining

Authors: Kamal Ali Albashiri, Khaled Ahmed Kadouh

Abstract:

A generic and extendible Multi-Agent Data Mining (MADM) framework, MADMF (the Multi-Agent Data Mining Framework) is described. The central feature of the framework is that it avoids the use of agreed meta-language formats by supporting a framework of wrappers. The advantage offered is that the framework is easily extendible, so that further data agents and mining agents can simply be added to the framework. A demonstration MADMF framework is currently available. The paper includes details of the MADMF architecture and the wrapper principle incorporated into it. A full description and evaluation of the framework-s operation is provided by considering two MADM scenarios.

Keywords: Multi-Agent Data Mining (MADM), Frequent Itemsets, Meta ARM, Association Rule Mining, Classifier generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
7182 BLDC Motor Driven for Solar Photo Voltaic Powered Air Cooling System

Authors: D. Shobha Rani, M. Muralidhar

Abstract:

Solar photovoltaic (SPV) power systems can be employed as electrical power sources to meet the daily residential energy needs of rural areas that have no access to grid systems. In view of this, a standalone SPV powered air cooling system is proposed in this paper, which constitutes a dc-dc boost converter, two voltage source inverters (VSI) connected to two brushless dc (BLDC) motors which are coupled to a centrifugal water pump and a fan blower. A simple and efficient Maximum Power Point Tracking (MPPT) technique based on Silver Mean Method (SMM) is utilized in this paper. The air cooling system is developed and simulated using the MATLAB / Simulink environment considering the dynamic and steady state variation in the solar irradiance.

Keywords: Boost converter, solar photovoltaic array, voltage source inverter, brushless DC motor, solar irradiance, Maximum Power Point Tracking, Silver Mean Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335
7181 The Relevance of Data Warehousing and Data Mining in the Field of Evidence-based Medicine to Support Healthcare Decision Making

Authors: Nevena Stolba, A Min Tjoa

Abstract:

Evidence-based medicine is a new direction in modern healthcare. Its task is to prevent, diagnose and medicate diseases using medical evidence. Medical data about a large patient population is analyzed to perform healthcare management and medical research. In order to obtain the best evidence for a given disease, external clinical expertise as well as internal clinical experience must be available to the healthcare practitioners at right time and in the right manner. External evidence-based knowledge can not be applied directly to the patient without adjusting it to the patient-s health condition. We propose a data warehouse based approach as a suitable solution for the integration of external evidence-based data sources into the existing clinical information system and data mining techniques for finding appropriate therapy for a given patient and a given disease. Through integration of data warehousing, OLAP and data mining techniques in the healthcare area, an easy to use decision support platform, which supports decision making process of care givers and clinical managers, is built. We present three case studies, which show, that a clinical data warehouse that facilitates evidence-based medicine is a reliable, powerful and user-friendly platform for strategic decision making, which has a great relevance for the practice and acceptance of evidence-based medicine.

Keywords: data mining, data warehousing, decision-support systems, evidence-based medicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3811
7180 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics

Authors: Farhad Asadi, Mohammad Javad Mollakazemi

Abstract:

In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.

Keywords: Time series, fluctuation in statistical characteristics, optimal learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
7179 AudioMine: Medical Data Mining in Heterogeneous Audiology Records

Authors: Shaun Cox, Michael Oakes, Stefan Wermter, Maurice Hawthorne

Abstract:

We report on the results of a pilot study in which a data-mining tool was developed for mining audiology records. The records were heterogeneous in that they contained numeric, category and textual data. The tools developed are designed to observe associations between any field in the records and any other field. The techniques employed were the statistical chi-squared test, and the use of self-organizing maps, an unsupervised neural learning approach.

Keywords: Audiology, data mining, chi-squared, self-organizing maps

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
7178 Dynamics of Protest Mobilization and Rapid Demobilization in Post-2001 Afghanistan: Facing Enlightening Movement

Authors: Ali Aqa Mohammad Jawad

Abstract:

Taking a relational approach, this paper analyzes the causal mechanisms associated with successful mobilization and rapid demobilization of the Enlightening Movement in post-2001 Afghanistan. The movement emerged after the state-owned Da Afghan Bereshna Sherkat (DABS) decided to divert the route for the Turkmenistan-Uzbekistan-Tajikistan-Afghanistan-Pakistan (TUTAP) electricity project. The grid was initially planned to go through the Hazara-inhabited province of Bamiyan, according to Afghanistan’s Power Sector Master Plan. The reroute served as an aide-mémoire of historical subordination to other ethno-religious groups for the Hazara community. It was also perceived as deprivation from post-2001 development projects, financed by international aid. This torched the accumulated grievances, which then gave birth to the Enlightening Movement. The movement had a successful mobilization. However, it demobilized after losing much of its mobilizing capabilities through an amalgamation of external and internal relational factors. The successful mobilization yet rapid demobilization constitutes the puzzle of this paper. From the theoretical perspective, this paper is significant as it establishes the applicability of contentious politics theory to protest mobilizations that occurred in Afghanistan, a context-specific, characterized by ethnic politics. Both primary and secondary data are utilized to address the puzzle. As for the primary resources, media coverage, interviews, reports, public media statements of the movement, involved in contentious performances, and data from Social Networking Services (SNS) are used. The covered period is from 2001-2018. As for the secondary resources, published academic articles and books are used to give a historical account of contentious politics. For data analysis, a qualitative comparative historical method is utilized to uncover the causal mechanisms associated with successful mobilization and rapid demobilization of the Movement. In this pursuit, both mobilization and demobilization are considered as larger political processes that could be decomposed to constituent mechanisms. Enlightening Movement’s framing and campaigns are first studied to uncover the associated mechanisms. Then, to avoid introducing some ad hoc mechanisms, the recurrence of mechanisms is checked against another case. Mechanisms qualify as robust if they are “recurrent” in different episodes of contention. Checking the recurrence of causal mechanisms is vital as past contentious events tend to reinforce future events. The findings of this paper suggest that the public sphere in Afghanistan is drastically different from Western democracies known as the birthplace of social movements. In Western democracies, when institutional politics did not respond, movement organizers occupied the public sphere, undermining the legitimacy of the government. In Afghanistan, the public sphere is ethicized. Considering the inter- and intra-relational dynamics of ethnic groups in Afghanistan, the movement reduced to an erosive inter- and intra-ethnic conflict. This undermined the cohesiveness of the movement, which then kicked-off its demobilization process.

Keywords: Enlightening movement, contentious politics, mobilization, demobilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
7177 Phytoremediation of Cd and Pb by Four Tropical Timber Species Grown on an Ex-tin Mine in Peninsular Malaysia

Authors: Lai Hoe Ang, Lai Kuen Tang, Wai Mun Ho, Ting Fui Hui, Gary W. Theseira

Abstract:

Contamination of heavy metals in tin tailings has caused an interest in the scientific approach of their remediation. One of the approaches is through phytoremediation, which is using tree species to extract the heavy metals from the contaminated soils. Tin tailings comprise of slime and sand tailings. This paper reports only on the finding of the four timber species namely Acacia mangium, Hopea odorata, Intsia palembanica and Swietenia macrophylla on the removal of cadmium (Cd) and lead (Pb) from the slime tailings. The methods employed for sampling and soil analysis are established methods. Six trees of each species were randomly selected from a 0.25 ha plot for extraction and determination of their heavy metals. The soil samples were systematically collected according to 5 x 5 m grid from each plot. Results showed that the concentration of heavy metals in soils and trees varied according to species. Higher concentration of heavy metals was found in the stem than the primary roots of all the species. A. Mangium accumulated the highest total amount of Pb per hectare basis.

Keywords: Cd, Pb, Phytoremediation of slimetailings, timber species.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752
7176 Fuzzy Types Clustering for Microarray Data

Authors: Seo Young Kim, Tai Myong Choi

Abstract:

The main goal of microarray experiments is to quantify the expression of every object on a slide as precisely as possible, with a further goal of clustering the objects. Recently, many studies have discussed clustering issues involving similar patterns of gene expression. This paper presents an application of fuzzy-type methods for clustering DNA microarray data that can be applied to typical comparisons. Clustering and analyses were performed on microarray and simulated data. The results show that fuzzy-possibility c-means clustering substantially improves the findings obtained by others.

Keywords: Clustering, microarray data, Fuzzy-type clustering, Validation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
7175 Robust Regression and its Application in Financial Data Analysis

Authors: Mansoor Momeni, Mahmoud Dehghan Nayeri, Ali Faal Ghayoumi, Hoda Ghorbani

Abstract:

This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from the robust regression and the least square regression shows that the former can provide the possibility of a better and more realistic analysis owing to eliminating or reducing the contribution of outliers and influential data. Therefore, robust regression is recommended for getting more precise results in financial data analysis.

Keywords: Financial data analysis, Influential data, Outliers, Robust regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932