Search results for: Online flood prediction system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9716

Search results for: Online flood prediction system

9116 Emergentist Metaphorical Creativity: Towards a Model of Analysing Metaphorical Creativity in Interactive Talk

Authors: Afef Badri

Abstract:

Metaphorical creativity does not constitute a static property of discourse. It is an interactive dynamic process created online. There has been a lack of research concerning online produced metaphorical creativity. This paper intends to account for metaphorical creativity in online talk-in-interaction as a dynamic process that emerges as discourse unfolds. It brings together insights from the emergentist approach to the study of metaphor in verbal interactions and insights from conceptual blending approach as a model for analysing online metaphorical constructions to propose a model for studying metaphorical creativity in interactive talk. The model is based on three focal points. First, metaphorical creativity is a dynamic emergent and open-to-change process that evolves in real time as interlocutors constantly blend and re-blend previous metaphorical contributions. Second, it is not a product of isolated individual minds but a joint achievement that is co-constructed and co-elaborated by interlocutors. The third and most important point is that the emergent process of metaphorical creativity is tightly shaped by contextual variables surrounding talk-in-interaction. It is grounded in the framework of interpretation of interlocutors. It is constrained by preceding contributions in a way that creates textual cohesion of the verbal exchange and it is also a goal-oriented process predefined by the communicative intention of each participant in a way that reveals the ideological coherence/incoherence of the entire conversation.

Keywords: Communicative intention, conceptual blending, contextual variables, the emergentist approach, ideological coherence, metaphorical creativity, textual cohesion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048
9115 Adaptive Educational Hypermedia System for High School Students Based on Learning Styles

Authors: Stephen Akuma, Timothy Ndera

Abstract:

Information seekers get “lost in hyperspace” due to the voluminous documents updated daily on the internet. Adaptive Hypermedia Systems (AHS) are used to direct learners to their target goals. One of the most common AHS designed to help information seekers to overcome the problem of information overload is the Adaptive Education Hypermedia System (AEHS). However, this paper focuses on AEHS that adopts the learning preference of high school students and deliver learning content according to this preference throughout their learning experience. The research developed a prototype system for predicting students’ learning preference from the Visual, Aural, Read-Write and Kinesthetic (VARK) learning style model and adopting the learning content suitable to their preference. The predicting strength of several classifiers was compared and we found Support Vector Machine (SVM) to be more accurate in predicting learning style based on users’ preferences.

Keywords: Hypermedia, adaptive education, learning style, lesson content, user profile, prediction, feedback, adaptive hypermedia, learning style.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847
9114 A Hybrid Recommender System based on Collaborative Filtering and Cloud Model

Authors: Chein-Shung Hwang, Ruei-Siang Fong

Abstract:

User-based Collaborative filtering (CF), one of the most prevailing and efficient recommendation techniques, provides personalized recommendations to users based on the opinions of other users. Although the CF technique has been successfully applied in various applications, it suffers from serious sparsity problems. The cloud-model approach addresses the sparsity problems by constructing the user-s global preference represented by a cloud eigenvector. The user-based CF approach works well with dense datasets while the cloud-model CF approach has a greater performance when the dataset is sparse. In this paper, we present a hybrid approach that integrates the predictions from both the user-based CF and the cloud-model CF approaches. The experimental results show that the proposed hybrid approach can ameliorate the sparsity problem and provide an improved prediction quality.

Keywords: Cloud model, Collaborative filtering, Hybridrecommender system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
9113 Applying the Regression Technique for Prediction of the Acute Heart Attack

Authors: Paria Soleimani, Arezoo Neshati

Abstract:

Myocardial infarction is one of the leading causes of death in the world. Some of these deaths occur even before the patient reaches the hospital. Myocardial infarction occurs as a result of impaired blood supply. Because the most of these deaths are due to coronary artery disease, hence the awareness of the warning signs of a heart attack is essential. Some heart attacks are sudden and intense, but most of them start slowly, with mild pain or discomfort, then early detection and successful treatment of these symptoms is vital to save them. Therefore, importance and usefulness of a system designing to assist physicians in early diagnosis of the acute heart attacks is obvious. The main purpose of this study would be to enable patients to become better informed about their condition and to encourage them to seek professional care at an earlier stage in the appropriate situations. For this purpose, the data were collected on 711 heart patients in Iran hospitals. 28 attributes of clinical factors can be reported by patients; were studied. Three logistic regression models were made on the basis of the 28 features to predict the risk of heart attacks. The best logistic regression model in terms of performance had a C-index of 0.955 and with an accuracy of 94.9%. The variables, severe chest pain, back pain, cold sweats, shortness of breath, nausea and vomiting, were selected as the main features.

Keywords: Coronary heart disease, acute heart attacks, prediction, logistic regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
9112 Haptics Enabled of ine AFM Image Analysis

Authors: Bhatti A., Nahavandi S., Hossny M.

Abstract:

Current advancements in nanotechnology are dependent on the capabilities that can enable nano-scientists to extend their eyes and hands into the nano-world. For this purpose, a haptics (devices capable of recreating tactile or force sensations) based system for AFM (Atomic Force Microscope) is proposed. The system enables the nano-scientists to touch and feel the sample surfaces, viewed through AFM, in order to provide them with better understanding of the physical properties of the surface, such as roughness, stiffness and shape of molecular architecture. At this stage, the proposed work uses of ine images produced using AFM and perform image analysis to create virtual surfaces suitable for haptics force analysis. The research work is in the process of extension from of ine to online process where interaction will be done directly on the material surface for realistic analysis.

Keywords: Haptics, AFM, force feedback, image analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
9111 Removing Ocular Artifacts from EEG Signals using Adaptive Filtering and ARMAX Modeling

Authors: Parisa Shooshtari, Gelareh Mohamadi, Behnam Molaee Ardekani, Mohammad Bagher Shamsollahi

Abstract:

EEG signal is one of the oldest measures of brain activity that has been used vastly for clinical diagnoses and biomedical researches. However, EEG signals are highly contaminated with various artifacts, both from the subject and from equipment interferences. Among these various kinds of artifacts, ocular noise is the most important one. Since many applications such as BCI require online and real-time processing of EEG signal, it is ideal if the removal of artifacts is performed in an online fashion. Recently, some methods for online ocular artifact removing have been proposed. One of these methods is ARMAX modeling of EEG signal. This method assumes that the recorded EEG signal is a combination of EOG artifacts and the background EEG. Then the background EEG is estimated via estimation of ARMAX parameters. The other recently proposed method is based on adaptive filtering. This method uses EOG signal as the reference input and subtracts EOG artifacts from recorded EEG signals. In this paper we investigate the efficiency of each method for removing of EOG artifacts. A comparison is made between these two methods. Our undertaken conclusion from this comparison is that adaptive filtering method has better results compared with the results achieved by ARMAX modeling.

Keywords: Ocular Artifacts, EEG, Adaptive Filtering, ARMAX

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
9110 A Study on Multi-Agent Behavior in a Soccer Game Domain

Authors: S. R. Mohd Shukri, M. K. Mohd Shaukhi

Abstract:

There have been many games developing simulation of soccer games. Many of these games have been designed with highly realistic features to attract more users. Many have also incorporated better artificial intelligent (AI) similar to that in a real soccer game. One of the challenging issues in a soccer game is the cooperation, coordination and negotiation among distributed agents in a multi-agent system. This paper focuses on the incorporation of multi-agent technique in a soccer game domain. The better the cooperation of a multi-agent team, the more intelligent the game will be. Thus, past studies were done on the robotic soccer game because of the better multi-agent system implementation. From this study, a better approach and technique of multi-agent behavior could be select to improve the author-s 2D online soccer game.

Keywords: Multi-Agent, Robotic Intelligent, Role Assignment, Formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
9109 Optimizing Dialogue Strategy Learning Using Learning Automata

Authors: G. Kumaravelan, R. Sivakumar

Abstract:

Modeling the behavior of the dialogue management in the design of a spoken dialogue system using statistical methodologies is currently a growing research area. This paper presents a work on developing an adaptive learning approach to optimize dialogue strategy. At the core of our system is a method formalizing dialogue management as a sequential decision making under uncertainty whose underlying probabilistic structure has a Markov Chain. Researchers have mostly focused on model-free algorithms for automating the design of dialogue management using machine learning techniques such as reinforcement learning. But in model-free algorithms there exist a dilemma in engaging the type of exploration versus exploitation. Hence we present a model-based online policy learning algorithm using interconnected learning automata for optimizing dialogue strategy. The proposed algorithm is capable of deriving an optimal policy that prescribes what action should be taken in various states of conversation so as to maximize the expected total reward to attain the goal and incorporates good exploration and exploitation in its updates to improve the naturalness of humancomputer interaction. We test the proposed approach using the most sophisticated evaluation framework PARADISE for accessing to the railway information system.

Keywords: Dialogue management, Learning automata, Reinforcement learning, Spoken dialogue system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
9108 Mixtures of Monotone Networks for Prediction

Authors: Marina Velikova, Hennie Daniels, Ad Feelders

Abstract:

In many data mining applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. In this paper we consider partially monotone prediction problems, where the target variable depends monotonically on some of the input variables but not on all. We propose a novel method to construct prediction models, where monotone dependences with respect to some of the input variables are preserved by virtue of construction. Our method belongs to the class of mixture models. The basic idea is to convolute monotone neural networks with weight (kernel) functions to make predictions. By using simulation and real case studies, we demonstrate the application of our method. To obtain sound assessment for the performance of our approach, we use standard neural networks with weight decay and partially monotone linear models as benchmark methods for comparison. The results show that our approach outperforms partially monotone linear models in terms of accuracy. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.

Keywords: mixture models, monotone neural networks, partially monotone models, partially monotone problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
9107 Performance Assessment of Computational Gridon Weather Indices from HOAPS Data

Authors: Madhuri Bhavsar, Anupam K Singh, Shrikant Pradhan

Abstract:

Long term rainfall analysis and prediction is a challenging task especially in the modern world where the impact of global warming is creating complications in environmental issues. These factors which are data intensive require high performance computational modeling for accurate prediction. This research paper describes a prototype which is designed and developed on grid environment using a number of coupled software infrastructural building blocks. This grid enabled system provides the demanding computational power, efficiency, resources, user-friendly interface, secured job submission and high throughput. The results obtained using sequential execution and grid enabled execution shows that computational performance has enhanced among 36% to 75%, for decade of climate parameters. Large variation in performance can be attributed to varying degree of computational resources available for job execution. Grid Computing enables the dynamic runtime selection, sharing and aggregation of distributed and autonomous resources which plays an important role not only in business, but also in scientific implications and social surroundings. This research paper attempts to explore the grid enabled computing capabilities on weather indices from HOAPS data for climate impact modeling and change detection.

Keywords: Climate model, Computational Grid, GridApplication, Heterogeneous Grid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
9106 A Learning-Community Recommendation Approach for Web-Based Cooperative Learning

Authors: Jian-Wei Li, Yao-Tien Wang, Yi-Chun Chang

Abstract:

Cooperative learning has been defined as learners working together as a team to solve a problem to complete a task or to accomplish a common goal, which emphasizes the importance of interactions among members to promote the whole learning performance. With the popularity of society networks, cooperative learning is no longer limited to traditional classroom teaching activities. Since society networks facilitate to organize online learners, to establish common shared visions, and to advance learning interaction, the online community and online learning community have triggered the establishment of web-based societies. Numerous research literatures have indicated that the collaborative learning community is a critical issue to enhance learning performance. Hence, this paper proposes a learning community recommendation approach to facilitate that a learner joins the appropriate learning communities, which is based on k-nearest neighbor (kNN) classification. To demonstrate the viability of the proposed approach, the proposed approach is implemented for 117 students to recommend learning communities. The experimental results indicate that the proposed approach can effectively recommend appropriate learning communities for learners.

Keywords: k-nearest neighbor classification, learning community, Cooperative/Collaborative Learning and Environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
9105 Prediction of Basic Wind Speed for Ayeyarwady

Authors: Chaw Su Mon

Abstract:

Abstract— The paper presents a preliminary study on modeling and estimation of basic wind speed ( extreme wind gusts ) for the consideration of vulnerability and design of building in Ayeyarwady Region. The establishment of appropriate design wind speeds is a critical step towards the calculation of design wind loads for structures. In this paper the extreme value analysis of this prediction work is based on the anemometer data (1970-2009) maintained by the department of meteorology and hydrology of Pathein. Statistical and probabilistic approaches are used to derive formulas for estimating 3-second gusts from recorded data (10-minute sustained mean wind speeds).

Keywords: Basic Wind Speed, Building, Gusts, Statistical and probabilistic approaches

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
9104 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions

Authors: Mustafa Bayram Gücen, Coşkun Yakar

Abstract:

In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.

Keywords: Fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127
9103 Online Brands: A Comparative Study of World Top Ranked Universities with Science and Technology Programs

Authors: Zullina H. Shaari, Amzairi Amar, Abdul Mutalib Embong, Hezlina Hashim

Abstract:

University websites are considered as one of the brand primary touch points for multiple stakeholders, but most of them did not have great designs to create favorable impressions. Some of the elements that web designers should carefully consider are the appearance, the content, the functionality, usability and search engine optimization. However, priority should be placed on website simplicity and negative space. In terms of content, previous research suggests that universities should include reputation, learning environment, graduate career prospects, image destination, cultural integration, and virtual tour on their websites. The study examines how top 200 world ranking science and technology-based universities present their brands online and whether the websites capture the content dimensions. Content analysis of the websites revealed that the top ranking universities captured these dimensions at varying degree. Besides, the UK-based university had better priority on website simplicity and negative space compared to the Malaysian-based university.

Keywords: Science and technology programs, top-ranked universities, online brands, university websites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
9102 Haptics Enabled Offline AFM Image Analysis

Authors: Bhatti A., Nahavandi S., Hossny M.

Abstract:

Current advancements in nanotechnology are dependent on the capabilities that can enable nano-scientists to extend their eyes and hands into the nano-world. For this purpose, a haptics (devices capable of recreating tactile or force sensations) based system for AFM (Atomic Force Microscope) is proposed. The system enables the nano-scientists to touch and feel the sample surfaces, viewed through AFM, in order to provide them with better understanding of the physical properties of the surface, such as roughness, stiffness and shape of molecular architecture. At this stage, the proposed work uses of ine images produced using AFM and perform image analysis to create virtual surfaces suitable for haptics force analysis. The research work is in the process of extension from of ine to online process where interaction will be done directly on the material surface for realistic analysis.

Keywords: Haptics, AFM, force feedback, image analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
9101 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: Crime prediction, machine learning, public safety, smart city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
9100 Introducing Sequence-Order Constraint into Prediction of Protein Binding Sites with Automatically Extracted Templates

Authors: Yi-Zhong Weng, Chien-Kang Huang, Yu-Feng Huang, Chi-Yuan Yu, Darby Tien-Hao Chang

Abstract:

Search for a tertiary substructure that geometrically matches the 3D pattern of the binding site of a well-studied protein provides a solution to predict protein functions. In our previous work, a web server has been built to predict protein-ligand binding sites based on automatically extracted templates. However, a drawback of such templates is that the web server was prone to resulting in many false positive matches. In this study, we present a sequence-order constraint to reduce the false positive matches of using automatically extracted templates to predict protein-ligand binding sites. The binding site predictor comprises i) an automatically constructed template library and ii) a local structure alignment algorithm for querying the library. The sequence-order constraint is employed to identify the inconsistency between the local regions of the query protein and the templates. Experimental results reveal that the sequence-order constraint can largely reduce the false positive matches and is effective for template-based binding site prediction.

Keywords: Protein structure, binding site, functional prediction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
9099 Hybrid Authentication Scheme for Graphical Password Using QR Code and Integrated Sound Signature

Authors: Salim Istyaq, Mohammad Sarosh Umar

Abstract:

Today, the mankind is in the stage of development, every day comes with new proposal of technology, in order to secure these types of technology, we also prepare high yielding security modules to conserve these resources. The capacity of human brain to recognize anything is far more than any species; this is all due to our developing cycle of curiosity. In this paper, we proposed a scheme based on graphical password using QR Code which provides more security to the recent online system. It also contains a supportive sound signature. In this system, authentication is done using sequence of images in QR code form. Users select one click-point per image with the help of QR scanner or recognizer. The encoded phrase in a QR code emphasizes the minimum probability of attacking via shoulder surfing or other attacks.

Keywords: Graphical password, QR code, sound signature, image authentication, cued click point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
9098 Robust Parameter and Scale Factor Estimation in Nonstationary and Impulsive Noise Environment

Authors: Zoran D. Banjac, Branko D. Kovacevic

Abstract:

The problem of FIR system parameter estimation has been considered in the paper. A new robust recursive algorithm for simultaneously estimation of parameters and scale factor of prediction residuals in non-stationary environment corrupted by impulsive noise has been proposed. The performance of derived algorithm has been tested by simulations.

Keywords: Adaptive filtering, Non-Gaussian filtering, Robustestimation, Scale factor estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
9097 Offline Handwritten Signature Recognition

Authors: Gulzar A. Khuwaja, Mohammad S. Laghari

Abstract:

Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capability to reliably distinguish between an authorized person and an imposter. Signature verification systems can be categorized as offline (static) and online (dynamic). This paper presents a neural network based recognition of offline handwritten signatures system that is trained with low-resolution scanned signature images.

Keywords: Pattern Recognition, Computer Vision, AdaptiveClassification, Handwritten Signature Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2903
9096 Prediction of Post Underwater Shock Properties of Polymer - Clay/Silica Hybrid Nanocomposites through Regression Models

Authors: D. Lingaraju, K. Ramji, M. Pramiladevi, U. Rajyalakshmi

Abstract:

Exploding concentrated underwater charges to damage underwater structures such as ship hulls is a part of naval warfare strategies. Adding small amounts of foreign particles (like clay or silica) of nanosize significantly improves the engineering properties of the polymers. In the present work the clay in terms 1, 2 and 3 percent by weight was surface treated with a suitable silane agent. The hybrid nanocomposite was prepared by the hand lay-up technique. Mathematical regression models have been employed for theoretical prediction. This will result in considerable savings in terms of project time, effort and cost.

Keywords: ANOVA, clay, halloysite, nanocomposites, underwater shock, regression, silica.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
9095 Enhancing the Quality of Learning by Using an Innovative Approach for Teaching Energy in Secondary Schools

Authors: Adriana Alexandru, Ovidiu Bica, Eleonora Tudora, Cristina Simona Alecu, Cristina-Adriana Alexandru, Ioan Covalcic

Abstract:

This paper presents the results of the authors in designing, experimenting, assessing and transferring an innovative approach to energy education in secondary schools, aimed to enhance the quality of learning in terms of didactic curricula and pedagogic methods. The training is online delivered to youngsters via e-Books and portals specially designed for this purpose or by learning by doing via interactive games. An online educational methodology is available teachers.

Keywords: Education, eLearning, Energy Efficiency, InternetMethodology, Renewable Energy Sources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
9094 Evaluation of Coastal Erosion in the Jurisdiction of the Municipalities of Puerto Colombia and Tubará, Atlántico, Colombia in Google Earth Engine with Landsat and Sentinel 2 Images

Authors: Francisco Javier Reyes Salazar, Héctor Mauricio Ramírez

Abstract:

The coastal zones are home to mangrove swamps, coral reefs, and seagrass ecosystems, which are the most biodiverse and fragile on the planet. These areas support a great diversity of marine life; they are also extraordinarily important for humans in the provision of food, water, wood, and other associated goods and services; they also contribute to climate regulation. The lack of an automated model that generates information on the dynamics of changes in coastlines and coastal erosion is identified as a central problem. In this paper, coastlines were determined from 1984 to 2020 on the Google Earth Engine platform from Landsat and Sentinel images. Then, we determined the Modified Normalized Difference Water Index (MNDWI) and used Digital Shoreline Analysis System (DSAS) v5.0. Starting from the 2020 coastline; the 10-year prediction (Year 2031) was determined with the erosion of 238.32 hectares and an accretion of 181.96 hectares. For the 20-year prediction (Year 2041) will be presented an erosion of 544.04 hectares and an accretion of 133.94 hectares. The erosion and accretion of Playa Muelle in the municipality of Puerto Colombia were established, which will register the highest value of erosion. The coverage that presented the greatest change was that of artificialized territories.

Keywords: Coastline, coastal erosion, MNDWI, Google Earth Engine, Colombia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197
9093 Recent Developments in Speed Control System of Pipeline PIGs for Deepwater Pipeline Applications

Authors: Mohamad Azmi Haniffa, Fakhruldin Mohd Hashim

Abstract:

Pipeline infrastructures normally represent high cost of investment and the pipeline must be free from risks that could cause environmental hazard and potential threats to personnel safety. Pipeline integrity such monitoring and management become very crucial to provide unimpeded transportation and avoiding unnecessary production deferment. Thus proper cleaning and inspection is the key to safe and reliable pipeline operation and plays an important role in pipeline integrity management program and has become a standard industry procedure. In view of this, understanding the motion (dynamic behavior), prediction and control of the PIG speed is important in executing pigging operation as it offers significant benefits, such as estimating PIG arrival time at receiving station, planning for suitable pigging operation, and improves efficiency of pigging tasks. The objective of this paper is to review recent developments in speed control system of pipeline PIGs. The review carried out would serve as an industrial application in a form of quick reference of recent developments in pipeline PIG speed control system, and further initiate others to add-in/update the list in the future leading to knowledge based data, and would attract active interest of others to share their view points.

Keywords: Pipeline Inspection Gauge (PIG), In Line Inspection Tools (ILI), PIG motion, PIG speed control system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3330
9092 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features

Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli

Abstract:

Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.

Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312
9091 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features

Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli

Abstract:

Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.

Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
9090 A Two-Stage Multi-Agent System to Predict the Unsmoothed Monthly Sunspot Numbers

Authors: Mak Kaboudan

Abstract:

A multi-agent system is developed here to predict monthly details of the upcoming peak of the 24th solar magnetic cycle. While studies typically predict the timing and magnitude of cycle peaks using annual data, this one utilizes the unsmoothed monthly sunspot number instead. Monthly numbers display more pronounced fluctuations during periods of strong solar magnetic activity than the annual sunspot numbers. Because strong magnetic activities may cause significant economic damages, predicting monthly variations should provide different and perhaps helpful information for decision-making purposes. The multi-agent system developed here operates in two stages. In the first, it produces twelve predictions of the monthly numbers. In the second, it uses those predictions to deliver a final forecast. Acting as expert agents, genetic programming and neural networks produce the twelve fits and forecasts as well as the final forecast. According to the results obtained, the next peak is predicted to be 156 and is expected to occur in October 2011- with an average of 136 for that year.

Keywords: Computational techniques, discrete wavelet transformations, solar cycle prediction, sunspot numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
9089 Chinese Entrepreneurship in the Internet Age: Lessons from Alibaba.com

Authors: Linda Sau-ling LAI

Abstract:

The story of Alibaba demonstrates a credible example of how a small start-up company can eventually make it big in the global economy through the Internet. This case study does not attempt to present Alibaba as a perfect formula; rather, it discusses the strategies carried out by the firm and, in the process, culls out the important lessons that can guide start-ups and aspiring entrepreneurs in the complex world of online trading. Similar to the interesting and exotic Asian cuisine that continuously evolves from the diversity of Asia-s people and their unique culture and personality, Alibaba has successfully transformed itself over the years, adapting to the changes in and demands of online businessto- business (B2B) commerce.

Keywords: Entrepreneurship, electronic commerce, leadership, business model, small and medium enterprises.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7178
9088 Urban Growth, Sewerage Network and Flooding Risk: Flooding of November 10, 2001 in Algiers

Authors: Boualem El Kechebour, Djilali Benouar

Abstract:

The objective of this work is to present a expertise on flooding hazard analysis and how to reduce the risk. The analysis concerns the disaster induced by the flood on November 10/11, 2001 in the Bab El Oued district of the city of Algiers.The study begins by an expertise of damages in related with the urban environment and the history of the urban growth of the site. After this phase, the work is focalized on the identification of the existing correlations between the development of the town and its vulnerability. The final step consists to elaborate the interpretations on the interactions between the urban growth, the sewerage network and the vulnerability of the urban system.In conclusion, several recommendations are formulated permitting the mitigation of the risk in the future. The principal recommendations concern the new urban operations and the existing urbanized sites.

Keywords: urban growth, sewerage network, vulnerability of town, flooding risk, mitigation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
9087 Fault Detection of Pipeline in Water Distribution Network System

Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee

Abstract:

Water pipe network is installed underground and once equipped, it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using MATLAB. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.

Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342