Search results for: Forensic anthropology population data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8137

Search results for: Forensic anthropology population data

7537 Zero Truncated Strict Arcsine Model

Authors: Y. N. Phang, E. F. Loh

Abstract:

The zero truncated model is usually used in modeling count data without zero. It is the opposite of zero inflated model. Zero truncated Poisson and zero truncated negative binomial models are discussed and used by some researchers in analyzing the abundance of rare species and hospital stay. Zero truncated models are used as the base in developing hurdle models. In this study, we developed a new model, the zero truncated strict arcsine model, which can be used as an alternative model in modeling count data without zero and with extra variation. Two simulated and one real life data sets are used and fitted into this developed model. The results show that the model provides a good fit to the data. Maximum likelihood estimation method is used in estimating the parameters.

Keywords: Hurdle models, maximum likelihood estimation method, positive count data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
7536 Li-Fi Technology: Data Transmission through Visible Light

Authors: Shahzad Hassan, Kamran Saeed

Abstract:

People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.

Keywords: Communication, LED, Li-Fi, Wi-Fi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
7535 Business Rules for Data Warehouse

Authors: Rajeev Kaula

Abstract:

Business rules and data warehouse are concepts and technologies that impact a wide variety of organizational tasks. In general, each area has evolved independently, impacting application development and decision-making. Generating knowledge from data warehouse is a complex process. This paper outlines an approach to ease import of information and knowledge from a data warehouse star schema through an inference class of business rules. The paper utilizes the Oracle database for illustrating the working of the concepts. The star schema structure and the business rules are stored within a relational database. The approach is explained through a prototype in Oracle-s PL/SQL Server Pages.

Keywords: Business Rules, Data warehouse, PL/SQL ServerPages, Relational model, Web Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2984
7534 Authorization of Commercial Communication Satellite Grounds for Promoting Turkish Data Relay System

Authors: Celal Dudak, Aslı Utku, Burak Yağlioğlu

Abstract:

Uninterrupted and continuous satellite communication through the whole orbit time is becoming more indispensable every day. Data relay systems are developed and built for various high/low data rate information exchanges like TDRSS of USA and EDRSS of Europe. In these missions, a couple of task-dedicated communication satellites exist. In this regard, for Turkey a data relay system is attempted to be defined exchanging low data rate information (i.e. TTC) for Earth-observing LEO satellites appointing commercial GEO communication satellites all over the world. First, justification of this attempt is given, demonstrating duration enhancements in the link. Discussion of preference of RF communication is, also, given instead of laser communication. Then, preferred communication GEOs – including TURKSAT4A already belonging to Turkey- are given, together with the coverage enhancements through STK simulations and the corresponding link budget. Also, a block diagram of the communication system is given on the LEO satellite.

Keywords: Communication, satellite, data relay system, coverage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416
7533 An Efficient Approach to Mining Frequent Itemsets on Data Streams

Authors: Sara Ansari, Mohammad Hadi Sadreddini

Abstract:

The increasing importance of data stream arising in a wide range of advanced applications has led to the extensive study of mining frequent patterns. Mining data streams poses many new challenges amongst which are the one-scan nature, the unbounded memory requirement and the high arrival rate of data streams. In this paper, we propose a new approach for mining itemsets on data stream. Our approach SFIDS has been developed based on FIDS algorithm. The main attempts were to keep some advantages of the previous approach and resolve some of its drawbacks, and consequently to improve run time and memory consumption. Our approach has the following advantages: using a data structure similar to lattice for keeping frequent itemsets, separating regions from each other with deleting common nodes that results in a decrease in search space, memory consumption and run time; and Finally, considering CPU constraint, with increasing arrival rate of data that result in overloading system, SFIDS automatically detect this situation and discard some of unprocessing data. We guarantee that error of results is bounded to user pre-specified threshold, based on a probability technique. Final results show that SFIDS algorithm could attain about 50% run time improvement than FIDS approach.

Keywords: Data stream, frequent itemset, stream mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
7532 Customers 50+ Behavior in the Financial Market in the Czech Republic

Authors: K. Matušínská, H. Starzyczná, M. Stoklasa

Abstract:

The paper deals with behaviour of the segment 50+ in the financial market in the Czech Republic. This segment could be said as the strong market power and it can be a crucial business potential for financial business units. The main defined objective of this paper is analysis of the customers´ behaviour of the segment 50- 60 years in the financial market in the Czech Republic and proposal making of the suitable marketing approach to satisfy their demands in the area of product, price, distribution and marketing communication policy. This paper is based on data from one part of primary marketing research. Paper determinates the basic problem areas as well as definition of financial services marketing, defining the primary research problem, hypothesis and primary research methodology. Finally suitable marketing approach to selected sub segment at age of 50-60 years is proposed according to marketing research findings.

Keywords: Population aging in the Czech Republic, Segment 50-60 years, Financial services marketing, Marketing research, Marketing approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
7531 Knowledge, Attitude and Practice of Pregnant Women toward Antenatal Care at Public Hospitals in Sana'a City-Yemen

Authors: Abdulfatah Al-Jaradi, Marzoq Ali Odhah, Abdulnasser A. Haza’a

Abstract:

Background: Antenatal care can be defined as the care provided by skilled healthcare professionals to pregnant women and adolescent girls to ensure the best health conditions for both mother and baby during pregnancy. The components of Antenatal Care (ANC) include risk identification; prevention and management of pregnancy-related or concurrent diseases; and health education and health promotion. The aim of this study: to assess the knowledge, attitude, and practice of pregnant women regarding ANC. Methodology: A descriptive knowledge, attitude, and practice (KAP) study was conducted in public hospitals in Sana'a City, Yemen. The study population included all pregnant women that intended to the prenatal department and clinical outpatient department; the final sample size was 371 pregnant women. A self-administered questionnaire was used to collect the data, statistical package for social sciences SPSS was used to data analysis. The results: Most (79%) of pregnant women had correct answers in total knowledge regarding ANC, and about two-thirds (67%) of pregnant women had performance practice regarding ANC and two-third (68%) of pregnant women had a positive attitude. Conclusions: More than three quarter of pregnant women had good knowledge level, most of pregnant women had moderate practice level, and more than two-thirds of pregnant women had a positive attitude regarding antenatal care. There was a statistically significant association between overall knowledge and practice level toward ANC and demographic characteristics of pregnant women, at P-value ≤ 0.05. Recommendations: we recommended more education and training courses, lecturers, and education sessions in clinical facilitators focused on ANC, which relies on evidence-based interventions provided to women during pregnancy by skilled healthcare providers such as midwives, doctors, and nurses.

Keywords: Antenatal care, knowledge, practice, attitude, pregnant women.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701
7530 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: Anomaly detection, autoencoder, data centers, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
7529 The Current Situation of Ang Thong Province’s Court Doll Distribution

Authors: P. Waiyawuththanapoom

Abstract:

This research is objected to study the pattern and channel of distribution of Ang Thong’s court doll OTOP product and try to develop the quality of distribution of the court doll product. The population of this research is 50 court doll manufacturers of Ang Thong’s court doll. The data and information was collected by using the questionnaire and use percentage, mean and standard deviation as an analysis tools. The distribution channel of Ang Thong’s court doll can be separated into 3 channels which are direct distribution from the manufacturer, via the middleman and via the co-operated manufacturing group. In the direct distribution from the manufacturer channel, it was found that the manufacturer is given the highest rate of importance to how they keep the inventory. In the distribution via the middleman channel, it was found that the manufacturer is given the highest rate of importance to the distribution efficiency. But in the distribution via the co-operated manufacturing group, it was found that the manufacturer is given the highest rate of importance to the public relationship.

Keywords: Distribution, Court Doll, Ang Thong Province.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
7528 AnQL: A Query Language for Annotation Documents

Authors: Neerja Bhatnagar, Ben A. Juliano, Renee S. Renner

Abstract:

This paper presents data annotation models at five levels of granularity (database, relation, column, tuple, and cell) of relational data to address the problem of unsuitability of most relational databases to express annotations. These models do not require any structural and schematic changes to the underlying database. These models are also flexible, extensible, customizable, database-neutral, and platform-independent. This paper also presents an SQL-like query language, named Annotation Query Language (AnQL), to query annotation documents. AnQL is simple to understand and exploits the already-existent wide knowledge and skill set of SQL.

Keywords: Annotation query language, data annotations, data annotation models, semantic data annotations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
7527 Factors Militating the Organization of Intramural Sport Programs in Secondary Schools: A Case Study of the Ekiti West Local Government Area of Ekiti State, Nigeria

Authors: Adewole Taiwo Adelabu

Abstract:

The study investigated the factors militating the organization of intramural sports programs in secondary schools in Ekiti State, Nigeria. The purpose of the study was to identify the factors affecting the organization of sports in secondary schools and also to proffer possible solutions to these factors. The study employed the inferential statistics of chi-square (x2). Five research hypotheses were formulated. The population for the study was all the students in the government-owned secondary schools in Ekiti West Local Government of Ekiti State Nigeria. The sample for the study was 60 students in three schools within the local government selected through simple random sampling techniques. The instrument used for the study was a self-developed questionnaire by the researcher for data collection. The instrument was presented to experts and academicians in the field of Human Kinetics and Health Education for construct and content validation. A reliability test was conducted which involves 10 students who are not part of the study. The test-retest coefficient of 0.74 was obtained which attested to the fact that the instrument was reliable enough for the study. The validated questionnaire was administered to the students in their various schools by the researcher with the help of two research assistants; the questionnaires were filled and returned to the researcher immediately. The data collected were analyzed using the descriptive statistics of frequency count, percentage and mean to analyze demographic data in section A of the questionnaire, while inferential statistics of chi-square was used to test the hypotheses at 0.05 alpha level. The results of the study revealed that personnel, fund, schedule (time) were significant factors that affect the organization of intramural sport programs among students in secondary schools in Ekiti West Local Government Area of the State. The study also revealed that organization of intramural sports programs among students of secondary schools will improve and motivate students’ participation in sports beyond the local level. However, facilities and equipment is not a significant factor affecting the organization of intramural sports among secondary school students in Ekiti West Local Government Area.

Keywords: Challenge, militating, intramural sport, programs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
7526 Machine Learning-Enabled Classification of Climbing Using Small Data

Authors: Nicholas Milburn, Yu Liang, Dalei Wu

Abstract:

Athlete performance scoring within the climbing domain presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.

Keywords: Classification, climbing, data imbalance, data scarcity, machine learning, time sequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 567
7525 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule

Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.

Keywords: Instance selection, data reduction, MapReduce, kNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017
7524 Optimization of Real Time Measured Data Transmission, Given the Amount of Data Transmitted

Authors: Michal Kopcek, Tomas Skulavik, Michal Kebisek, Gabriela Krizanova

Abstract:

The operation of nuclear power plants involves continuous monitoring of the environment in their area. This monitoring is performed using a complex data acquisition system, which collects status information about the system itself and values of many important physical variables e.g. temperature, humidity, dose rate etc. This paper describes a proposal and optimization of communication that takes place in teledosimetric system between the central control server responsible for the data processing and storing and the decentralized measuring stations, which are measuring the physical variables. Analyzes of ongoing communication were performed and consequently the optimization of the system architecture and communication was done.

Keywords: Communication protocol, transmission optimization, data acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
7523 Influence of Apo E Polymorphism on Coronary Artery Disease

Authors: S. Fallah, M. Seifi, M. Firoozrai, T. Godarzi, M. Jafarzadeh, L. H. Ghohari

Abstract:

The ε4 allele of the ε2, ε3 and ε4 protein isoform polymorphism in the gene encoding apolipoprotein E (Apo E) has previously been associated with increased cardiac artery disease (CAD); therefore to investigate the significance of this polymorphism in pathogenesis of CAD in Iranian patients with stenosis and control subjects. To investigate the association between  Apo E polymorphism and coronary artery disease we performed a comparative case control study of the frequency of Apo E  polymorphism in One hundred CAD patients with stenosis who underwent coronary angiography (>50% stenosis) and 100 control subjects (<10% stenosis). The Apo E alleles and genotypes were determined by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). We observed an association between the Apo E polymorphism and CAD in this study. These data suggest that the Apo ε4 and ε2 alleles increase the risk for CAD in Iranian population (χ2 =4.26, p= 0.05, OR=2 and χ2 =0.38, p=0.53, OR=1.2). These results suggest that ε4 and ε2 alleles are risk factors for stenosis.

Keywords: Arterial blood vessels, atherosclerosis, cholesterol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
7522 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data

Authors: Hyun-Woo Cho

Abstract:

Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.

Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
7521 The Impact of Brand Loyalty on Product Performance

Authors: Tanzeel bin Abdul Rauf Patker, Saba Mateen

Abstract:

This research investigates the impact of Brand Loyalty on the product performance and the factors those are considered more important in brand reputation. Variables selected for this research are Brand quality, Brand Equity, Brand Reputation to explore the impact of these variables on Product performance. For this purpose, primary research has been conducted. The questionnaire survey for this research study was administered among the population mainly at the shopping malls. For this research study, a sample size of 250 respondents has been taken into consideration. Customers from the shopping malls and university students constitute the sample for this research study using random sampling (non-probabilistic) used as a sampling technique for conducting the research survey. According to the results obtained from the collected data, it is interpreted that product performance shares a direct relationship with brand quality, brand quality, and brand reputation. Result also showed that brand quality and brand equity has a significant effect on product performance, whereas brand reputation has an insignificant effect on product performance.

Keywords: Product performance, brand quality, brand equity and brand reputation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
7520 Urban Sprawl and the Loss of Peri-Urban Land in Kumasi, Ghana

Authors: Patrick B. Cobbinah, Clifford Amoako

Abstract:

Kumasi is Ghana’s second largest and fastest growing city with an annual population growth rate of 5.4 percent. A major result of this phenomenon is a growing sprawl at the fringes of the city. This paper assesses the nature, extent and impact of sprawl on Kumasi and examines urban planning efforts at addressing this phenomenon. Both secondary and empirical data were collected from decentralized government departments of the Kumasi Metropolitan Assembly and residents of some sprawling communities. The study reveals that sprawl in the metropolis is rapidly consuming fringe rural communities. This situation has weakened effective management of the metropolis causing problems such as congestion and conversion of peri-urban land into residential use without ancillary infrastructure and social services. The paper recommends effective and timely planning and provision of services as well as an overall economic development and spatial integration through regional planning as a way of achieving a long term solution to sprawl.

Keywords: Kumasi, peri-urban, urban planning, urban sprawl.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4978
7519 A Comparison of Image Data Representations for Local Stereo Matching

Authors: André Smith, Amr Abdel-Dayem

Abstract:

The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.

Keywords: Colour data, local stereo matching, stereo correspondence, disparity map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916
7518 Economics of Open and Distance Education in the University of Ibadan, Nigeria

Authors: Babatunde Kasim Oladele

Abstract:

One of the major objectives of the Nigeria national policy on education is the provision of equal educational opportunities to all citizens at different levels of education. With regards to higher education, an aspect of the policy encourages distance learning to be organized and delivered by tertiary institutions in Nigeria. This study therefore, determines how much of the Government resources are committed, how the resources are utilized and what alternative sources of funding are available for this system of education. This study investigated the trends in recurrent costs between 2004/2005 and 2013/2014 at University of Ibadan Distance Learning Centre (DLC). A descriptive survey research design was employed for the study. Questionnaire was the research instrument used for the collection of data. The population of the study was 280 current distance learning education students, 70 academic staff and 50 administrative staff. Only 354 questionnaires were correctly filled and returned. Data collected were analyzed and coded using the frequencies, ratio, average and percentages were used to answer all the research questions. The study revealed that staff salaries and allowances of academic and non-academic staff represent the most important variable that influences the cost of education. About 55% of resources were allocated to this sector alone. The study also indicates that costs rise every year with increase in enrolment representing a situation of diseconomies of scale. This study recommends that Universities who operates distance learning program should strive to explore other internally generated revenue option to boost their revenue. University of Ibadan, being the premier university in Nigeria, should be given foreign aid and home support, both financially and materially, to enable the institute to run a formidable distance education program that would measure up in planning and implementation with those of developed nation.

Keywords: Open education, distance education, University of Ibadan, cost of education, Nigeria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
7517 Flexible, Adaptable and Scaleable Business Rules Management System for Data Validation

Authors: Kashif Kamran, Farooque Azam

Abstract:

The policies governing the business of any organization are well reflected in her business rules. The business rules are implemented by data validation techniques, coded during the software development process. Any change in business policies results in change in the code written for data validation used to enforce the business policies. Implementing the change in business rules without changing the code is the objective of this paper. The proposed approach enables users to create rule sets at run time once the software has been developed. The newly defined rule sets by end users are associated with the data variables for which the validation is required. The proposed approach facilitates the users to define business rules using all the comparison operators and Boolean operators. Multithreading is used to validate the data entered by end user against the business rules applied. The evaluation of the data is performed by a newly created thread using an enhanced form of the RPN (Reverse Polish Notation) algorithm.

Keywords: Business Rules, data validation, multithreading, Reverse Polish Notation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271
7516 Tidal Data Analysis using ANN

Authors: Ritu Vijay, Rekha Govil

Abstract:

The design of a complete expansion that allows for compact representation of certain relevant classes of signals is a central problem in signal processing applications. Achieving such a representation means knowing the signal features for the purpose of denoising, classification, interpolation and forecasting. Multilayer Neural Networks are relatively a new class of techniques that are mathematically proven to approximate any continuous function arbitrarily well. Radial Basis Function Networks, which make use of Gaussian activation function, are also shown to be a universal approximator. In this age of ever-increasing digitization in the storage, processing, analysis and communication of information, there are numerous examples of applications where one needs to construct a continuously defined function or numerical algorithm to approximate, represent and reconstruct the given discrete data of a signal. Many a times one wishes to manipulate the data in a way that requires information not included explicitly in the data, which is done through interpolation and/or extrapolation. Tidal data are a very perfect example of time series and many statistical techniques have been applied for tidal data analysis and representation. ANN is recent addition to such techniques. In the present paper we describe the time series representation capabilities of a special type of ANN- Radial Basis Function networks and present the results of tidal data representation using RBF. Tidal data analysis & representation is one of the important requirements in marine science for forecasting.

Keywords: ANN, RBF, Tidal Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
7515 Spatial Data Mining by Decision Trees

Authors: S. Oujdi, H. Belbachir

Abstract:

Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.

Keywords: C4.5 Algorithm, Decision trees, S-CART, Spatial data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2986
7514 Affine Projection Algorithm with Variable Data-Reuse Factor

Authors: ChangWoo Lee, Young Kow Lee, Sung Jun Ban, SungHoo Choi, Sang Woo Kim

Abstract:

This paper suggests a new Affine Projection (AP) algorithm with variable data-reuse factor using the condition number as a decision factor. To reduce computational burden, we adopt a recently reported technique which estimates the condition number of an input data matrix. Several simulations show that the new algorithm has better performance than that of the conventional AP algorithm.

Keywords: Affine projection algorithm, variable data-reuse factor, condition number, convergence rate, misalignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
7513 Attribute Analysis of Quick Response Code Payment Users Using Discriminant Non-negative Matrix Factorization

Authors: Hironori Karachi, Haruka Yamashita

Abstract:

Recently, the system of quick response (QR) code is getting popular. Many companies introduce new QR code payment services and the services are competing with each other to increase the number of users. For increasing the number of users, we should grasp the difference of feature of the demographic information, usage information, and value of users between services. In this study, we conduct an analysis of real-world data provided by Nomura Research Institute including the demographic data of users and information of users’ usages of two services; LINE Pay, and PayPay. For analyzing such data and interpret the feature of them, Nonnegative Matrix Factorization (NMF) is widely used; however, in case of the target data, there is a problem of the missing data. EM-algorithm NMF (EMNMF) to complete unknown values for understanding the feature of the given data presented by matrix shape. Moreover, for comparing the result of the NMF analysis of two matrices, there is Discriminant NMF (DNMF) shows the difference of users features between two matrices. In this study, we combine EMNMF and DNMF and also analyze the target data. As the interpretation, we show the difference of the features of users between LINE Pay and Paypay.

Keywords: Data science, non-negative matrix factorization, missing data, quality of services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 453
7512 Using Data Mining for Learning and Clustering FCM

Authors: Somayeh Alizadeh, Mehdi Ghazanfari, Mohammad Fathian

Abstract:

Fuzzy Cognitive Maps (FCMs) have successfully been applied in numerous domains to show relations between essential components. In some FCM, there are more nodes, which related to each other and more nodes means more complex in system behaviors and analysis. In this paper, a novel learning method used to construct FCMs based on historical data and by using data mining and DEMATEL method, a new method defined to reduce nodes number. This method cluster nodes in FCM based on their cause and effect behaviors.

Keywords: Clustering, Data Mining, Fuzzy Cognitive Map(FCM), Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
7511 The Use of Substances and Sports Performance among Youth: Implications for Lagos State Sports

Authors: Osifeko Olalekan Remigious, Adesanya Adebisi Joseph, Omolade Akinmade Olatunde

Abstract:

The focus of this study was to determine the factors associated with the use of substances for sport performance of youth in Lagos state sport. Questionnaire was the instrument used for the study. Descriptive research method was used. The estimated population for the study was 2000 sport men and women. The sample size was 200 respondents for purposive sampling techniques were used. The instrument was validated in it content and constructs value. The instrument was administered with the assistance of the coaches. Same 200 copies administered were returned. The data obtained was analysed using simple percentage and chi-square (x2) for stated hypothesis at 0.05 level of significance. The finding reveal that sport injuries exercise induced and anaphylaxis and asthma and feeling of loss of efficacy associated with alcohol used on sport performance among the users of substances. Alcohol users are recommended to partake in sport like swimming, basketball and volleyball because they have space of time for resting while at play. Government should be fully in charge of the health of sport men and women.

Keywords: Implications, Lagos state, substances, sports performance, youths.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
7510 Modeling Low Voltage Power Line as a Data Communication Channel

Authors: Eklas Hossain, Sheroz Khan, Ahad Ali

Abstract:

Power line communications may be used as a data communication channel in public and indoor distribution networks so that it does not require the installing of new cables. Industrial low voltage distribution network may be utilized for data transfer required by the on-line condition monitoring of electric motors. This paper presents a pilot distribution network for modeling low voltage power line as data transfer channel. The signal attenuation in communication channels in the pilot environment is presented and the analysis is done by varying the corresponding parameters for the signal attenuation.

Keywords: Data communication, indoor distribution networks, low voltage, power line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3282
7509 Generating Concept Trees from Dynamic Self-organizing Map

Authors: Norashikin Ahmad, Damminda Alahakoon

Abstract:

Self-organizing map (SOM) provides both clustering and visualization capabilities in mining data. Dynamic self-organizing maps such as Growing Self-organizing Map (GSOM) has been developed to overcome the problem of fixed structure in SOM to enable better representation of the discovered patterns. However, in mining large datasets or historical data the hierarchical structure of the data is also useful to view the cluster formation at different levels of abstraction. In this paper, we present a technique to generate concept trees from the GSOM. The formation of tree from different spread factor values of GSOM is also investigated and the quality of the trees analyzed. The results show that concept trees can be generated from GSOM, thus, eliminating the need for re-clustering of the data from scratch to obtain a hierarchical view of the data under study.

Keywords: dynamic self-organizing map, concept formation, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
7508 Optical Fiber Data Throughput in a Quantum Communication System

Authors: Arash Kosari, Ali Araghi

Abstract:

A mathematical model for an optical-fiber communication channel is developed which results in an expression that calculates the throughput and loss of the corresponding link. The data are assumed to be transmitted by using of separate photons with different polarizations. The derived model also shows the dependency of data throughput with length of the channel and depolarization factor. It is observed that absorption of photons affects the throughput in a more intensive way in comparison with that of depolarization. Apart from that, the probability of depolarization and the absorption of radiated photons are obtained.

Keywords: Absorption, data throughput, depolarization, optical fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684