

Abstract—The increasing importance of data stream arising in a

wide range of advanced applications has led to the extensive study of
mining frequent patterns. Mining data streams poses many new
challenges amongst which are the one-scan nature, the unbounded
memory requirement and the high arrival rate of data streams. In this
paper, we propose a new approach for mining itemsets on data
stream. Our approach SFIDS has been developed based on FIDS
algorithm. The main attempts were to keep some advantages of the
previous approach and resolve some of its drawbacks, and
consequently to improve run time and memory consumption. Our
approach has the following advantages: using a data structure similar
to lattice for keeping frequent itemsets, separating regions from each
other with deleting common nodes that results in a decrease in search
space, memory consumption and run time; and Finally, considering
CPU constraint, with increasing arrival rate of data that result in
overloading system, SFIDS automatically detect this situation and
discard some of unprocessing data. We guarantee that error of results
is bounded to user pre-specified threshold, based on a probability
technique. Final results show that SFIDS algorithm could attain
about 50% run time improvement than FIDS approach.

Keywords—Data stream, frequent itemset, stream mining.

I. INTRODUCTION
HE increasing importance of data stream arising in a wide
range of advanced applications has led to the extensive

study of mining frequent patterns. Mining data streams poses
many new challenges amongst which are the one-scan nature,
the unbounded memory requirement and the high arrival rate
of data streams. Mining frequent sets over data streams
presents interesting new challenges over traditional mining in
static databases. Due to the speed of new arriving data, it is
assumed that the history of the stream cannot be revisited,
unless it is stored. Storing large parts of a stream, however, is
impossible as the amount of data is typically huge. Most
previous work on mining frequently occurring itemsets over
data streams either focuses on (1) the sliding window model
(2) the time-fading model or (3) the landmark model. Each of
these models requires a fixed window length or decay factor,
given by the user. In many applications however choosing
such parameters that are most appropriate for every itemset at
every time point in an evolving stream is almost impossible.

Sara Ansari is with the Islamic Azad University of Nourabad Mamasani

(corresponding author to provide phone: 917-722-0314; fax: 722-423-2311; e-
mail: sansari62@ gmail.com).

Mohammad Hadi Sadreddini is now with the Department of Computer
Science, Shiraz University (e-mail: sadreddin@shirazu.ac.ir).

For example, consider a large retail chain of which sales can
be considered as a stream. Then, in order to find frequent sets
to do market basket analysis, it is very difficult to choose in
which period of the collected data you are interested. For
many products, the amount of them sold depends highly on
the period of the year. In summer time, e.g., sales of ice cream
increase and during the soccer world cup, sales of beer
increase. Such seasonal behavior of a specific item or
combination of items can only be discovered when choosing
the correct window size for that item. This size, however, can
hide a similar behavior of other items in another window. The
approach (SFIDS) has been developed based on FIDS
algorithm. The main attempts were to keep some advantages
of the previous approach and resolve some of its drawbacks,
and consequently to improve run time and memory
consumption. This approach has the following advantages:
using a data structure similar to lattice for keeping frequent
itemsets, separating regions from each other with deleting
common nodes that results in a decrease in search space,
memory consumption and run time; and Finally, considering
CPU constraint, with increasing arrival rate of data that result
in overloading system, SFIDS automatically detect this
situation and discard some of unprocessing data. We
guarantee that error of results is bounded to user pre-specified
threshold, based on a probability technique.

The organization of the paper is as follows. In Section 2,
the related works is defined and the central problem statement
is formally introduced. Section 3 gives preliminaries for main
theorem, on which the SFIDS algorithm in Section 4 is based.
Experimental results in Section 5 show that the memory
requirements and execution time for the algorithm are
extremely small for many real-life data applications and the
relation between our measure and existing related work is
explored, and Section 6 concludes the paper.

II. RELATED WORKS
Frequent-pattern mining has been studied extensively in

data mining, with many algorithms Proposed and implemented
for example, Apriori[17], FP-growth [18], CLOSET [19], and
CHARM [20]. Frequent pattern mining and its associated
methods have been popularly used in association rule mining
[17], sequential pattern mining [21], structured pattern mining
[22], iceberg cube computation [23], cube gradient analysis
[24], associative classification [25], frequent pattern-based
clustering [26], and so on.

An Efficient Approach to Mining Frequent
Itemsets on Data Streams

Sara Ansari, and Mohammad Hadi Sadreddini

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:1, 2009

56International Scholarly and Scientific Research & Innovation 3(1) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

1,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

05
.p

df

Recent emerging applications, such as network traffic
analysis, Web click stream mining, power consumption
measurement, sensor network data analysis, and dynamic
tracing of stock fluctuation, call for study of a new kind of
data, called stream data, where data takes the form of
continuous, potentially infinite data streams, as opposed to
finite, statically stored data sets. Stream data management
systems and continuous stream query processors are under
popular investigation and development. Due to the large
volume of data, data streams can hardly be stored in main
memory for on-line processing. A crucial issue in data
streaming that has recently attracted significant attention is
thus to maintain the most frequent items encountered ([29],
[27]). Furthermore, since data-streams are continuous, high
speed and unbounded, it is impossible to mine frequent
itemsets by using algorithms that require multiple scans. As a
consequence new approaches were proposed to maintain
itemsets rather than items [1], [2], [7], [32]; [28]; [3]; [30];
[31]; [33]).

In our design, we actively maintain frequent patterns under
a tilted-time window framework in order to answer time-
sensitive queries. The frequent patterns are compressed and
stored using a structure similar to lattice [1], and updated
incrementally with incoming transactions. Our time-sensitive
stream mining model, SFIDS, includes two major
components: (1) SFKI (structure for keeping itemset), and (2)
tilted-time window.

III. PRELIMINARIES
Let I = {i1, i2 . . . im} be a set of literals, called items. Let

database DB be a set of transactions, where each transaction T
is a set of items such that T I. Associated with each
transaction is a unique identifier, called its TID. A set X I is
also called an itemset, where items within are kept in
lexicographic order. A k-itemset is represented by (x1, x2 . . .,
xk) where x1 < x2 <... < xn. The support of an itemset X,
denoted support(X) is the number of transactions in which that
itemset occurs as a subset. An itemset is called a frequent
itemset if support(X) ≥ σ × |DB| where σ (0, 1) is a user-
specified minimum support threshold and |DB| stands for the
size of the database. The problem of mining frequent itemsets
is to mine all itemsets whose support is greater or equal than σ
× |DB| in DB. The previous definitions consider that the
database is static. Let us now assume that data arrives
sequentially in the form of continuous rapid streams. Let data
stream DS = , ... be an infinite sequence of
batches, where each batch is associated with a time period [ak,
bk], let be the most recent batch. Each batch
consists of a set of transactions; that is, each batch = [T1,
T2, T3… Tk]. We also assume that batches do not have
necessarily the same size. Hence, the length (L) of the data
stream is defined as

Where stands for the cardinality of the set .The
support of an itemset X at a specific time interval [ai, bi] is
now denoted by the ratio of the number of customers having X
in the current time window to the total number of customers.

Therefore, given a user-defined minimum support, the
problem of mining itemsets on a data stream is thus to find all
frequent itemsets X over an arbitrary time period [ai, bi], i.e.
verifying:

Of the streaming data using as little main memory as possible.

IV. SFIDS ALGORITHM
As we mentioned, SFIDS developed based on FIDS

algorithm [1], FIDS with use of region concept and lattice
data structure, first process transactions of each batch, each
itemset in transaction compare with root of each available
regions and compute common subsets then insert this subset in
both of regions, in following example we illustrate how FIDS
algorithm process each incoming batch, consider Table 1, We
will now focus on how each new batch is processed. From the
batches from Table I our algorithm performs as follows: we
process the first transaction Ta in TableI by first storing Ta into
our lattice (Latticereg). This lattice has the following
characteristics: each path in Latticereg is provided with a
region and itemsets in a path are ordered according to the
inclusion property. By construction, all subsets of an itemset
are in the same region. This lattice is used in order to reduce
the search space when comparing and pruning itemsets. When
the processing of Ta completes, we are provided with a set of
items {1, 2, 3, 4, 5} and Latticereg updated. Items are stored in
ItemTable as illustrated in TableII. The Tilted-T W attribute is
the number of occurrences of the corresponding item in the
batch. The Rootreg attribute stands for the root of the
corresponding region in Latticereg. Of course, for one region
we only have one Rootreg and we also can have several regions
for one item. For itemsets, we store both the size of the
itemset and the associated tilted-time window Table IV.

Let us now process the second transaction Tb of . Since
Tb is not included in Ta, it is inserted in Latticereg in a new
region. Let us now consider the batch merely reduced to
Tc. Since items 1 and 2 already exist in the set of itemsets,
their tilted-time windows must be updated. (Table II, Table
IV)

Furthermore, items 1 and 2 are in the same region: 1 and
the longest itemset for these items is (1 2 3 4 5), i.e. Tc is

TABLE I
INCOMING BATCHES

Batch Transaction Itemset
 (1 2 3 4 5)

(8 9)

(1 2)

(1 2 3)
 (1 2 8 9)

TABLE II
UPDATING ITEMS AFTER PROCESSING ALL BATCHES IN FIDS

Items Tilted-TW {Region,Root}
1

2

3

8

9

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:1, 2009

57International Scholarly and Scientific Research & Innovation 3(1) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

1,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

05
.p

df

included in Ta. We thus have to insert Tc in Latticereg in the
region 1. Nevertheless as Tc is a subset of Ta that means that
when Ta occurs in previous batch it also occurs for Tc. So the
tilted-time windows of Tc must also be updated. The
transaction Td is considered in the same way as Tc. for
transaction Te; items 1 and 2 are in region 1 while items 8 and
9 are in region 2; it means that we are provided with a new
region. Nevertheless, we can notice that the itemset (8 9)
already exist in Latticereg and is a subset of Te. The longest
itemset of Te in the region 1 is {1, 2}. In the same way, the
longest subset of Te for region 2 is {8, 9}. As we are provided
with two different regions and {8, 9} is the root of the region
2, we do not create a new region but we insert Te as a root of
region for 2 and we insert the subset {1, 2} both on lattice for
region 1 and 2. (Fig. 1)

Fig. 1The region lattice after processing all batches (FIDS)

As we seen itemset (1 2) are common in two regions 1 and

2, also in Fig. 2 each item belong to more than one regions i.e.
item 1exist in regions 1 and 2, In SFIDS algorithm we keep
for each item in ITEMS only first region that item insert into it
regardless of other regions it belong to. Let us process
previous example with new algorithm, when the processing of
Ta completes, we are provided with a set of items {1, 2, 3, 4,
5} and SFKI updated. Items are stored illustrated in (Fig. 2).
Let us now process the second transaction Tb of . Since Tb
is not included in Ta, it is inserted in SFKI in a new region.
Sub tree (8 9). Let us now consider the batch merely
reduced to Tc. Since items 1 and 2 already exist in the set of
itemsets, their tilted-time windows must be updated (Table
III). Now we want to process , first transaction Td, since (1
2 3) are subset of root of region 1, insert it in region 1, and
update TTW, for transaction Te, check for each item of it to
see regions of each item, since we consider only one region
for each item, retrieve their regions, for itemset (1 2 8 9) we
compute common subset with (1 2 3 4 5) as root of region 1,
since(1 2) already exist in structure we only update occurrence
of it, then compute common subset with region 2, (8 9) also
exist in region 2 ,we only update occurrence of it, since (1 2 8
9) is superset (8 9) ,we insert it in this region Fig. 2 but don’t
insert(1 2) in this region, since it exist in structure in region 1,
now suppose new batch coming, and include Tf (1 2 3 5 6 8
),we refer to item table and see region 1 for items 1 and 2 and
5,and region 2 for item 8 , since itemsets(1 2 3) now exist in
structure we only update TTW(Table IV), and insert Tf in new
region 3(Fig. 2).

Fig. 2 SKFI after processing all batches

To only store frequent maximal itemsets, let us now discuss
how infrequent itemsets are pruned. While pruning in [3] is
done in two distinct operations, our algorithm prunes
infrequent itemsets in a single operation which is in fact a
dropping of the tail itemsets of tilted-time windows
support ,1+k

k support 2
1

+
+

k
k … support n

n 1− when the following
condition holds:

,, niki ≤≤∀ Support i
i

b
a (X) i

i

b
af Bε≺ (1)

By navigating into Latticereg, and by using the region indexes,
we can directly and rapidly prune irrelevant itemsets without
further computations. This process is repeated after each new
batch in order to use as little main memory as possible. During
the pruning phase, titled-time windows are merged in the
same way as in [3].

A. An Efficient Representation for Itemsets
According to the overview, one crucial problem is to

efficiently compute the inclusion between two itemsets. This
costly operation could easily be performed when considering a
new representation for items in transactions. From now, each
item is represented by a unique prime number. According to
this definition, each transaction could be represented by the
product of the corresponding prime numbers of individual
items into the transaction. As the product of the prime number
is unique we can easily check the inclusion of two itemsets by
performing a modulo division on itemsets (Y MOD X). If the
remainder is 0 then X ⊆Y, otherwise X is not included in Y.

B. Workload Estimation
The second of SFIDS considering CPU constraint[34], with

increasing arrival rate of data that result in overloading
system, SFIDS automatically detect this situation and discard
some of unprocessing data, in [15] with use of Probabilistic
technique could reach to interesting results, this technique is
used in SFIDS to shed load. Since the behavior of data
streams often changes over time, detecting overload situations
is an important step in our algorithm. For the frequent set
mining problem, the system workload may not be simply
estimated by regularly checking the rate of transactions
arriving in one time unit. Rather, it is essentially dependent on
the number of itemsets containing in each transaction whose
frequencies must be updated. Certainly, an accurate method to
evaluate the system workload is to have an exact count of this
number In each transaction. Unfortunately, this task is
generally impossible since the system may not be able to fully
process all incoming transactions under overload situations.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:1, 2009

58International Scholarly and Scientific Research & Innovation 3(1) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

1,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

05
.p

df

Therefore, it is necessary to find a technique that is able to
approximately estimate this number meanwhile it is efficient
to compute. We pro pose such an estimate based on a small set
of maximal

Frequent itemsets(MFIs). The key intuition behind using
MFIs for this task is that the number of MFIs is exponentially
smaller than the number of frequent itemsets. Mean while,
such a compact set completely captures the entire set of
frequent itemsets. To give an explicit formula for this
estimate, let us denote the number of MFIs in a transaction by
m and let Xi be a MFI, 1 ≤ i ≤ m. We assume the following
estimated time (or load coefficient) to process one transaction:

∑∑
=

∩
−

=

=

m

ji

xx
m

i

xL jii

1,

2

1

2 (2)

In this equation, the first summation estimates the number of
frequent itemsets within each MFI. The second one estimates
the number of itemsets overlapping between MFIs.
Apparently, one may suppose that computing L is expensive
and eventually defeats the purpose of quickly detecting CPU
overload. Nevertheless, we do not explicitly compute L by
finding all MFIs and the overlapping subsets among them.
Instead, the set of MFIs is maintained in a prefix tree and the
equation is computed by matching transactions to this
structure to derive the number of distinct frequent sets. As we
shall see from the empirical results in Section 4, this approach
yields very good approximation while the computational time
is negligible. Given this computed statistics for each
transaction, we measure it for n transactions over one time
unit and let r be the current rate of the data stream. The
following inequality imposes a constraint on load shedding
decisions:

C
n

n

i
iL

rP ≤=××

∑
1 (3)

In this inequality, P∈ (0; 1] is a parameter adjusted
adaptively to make the inequality hold. It also expresses the
fraction of transactions that should be discarded. The

expression
n

L

r

n

i
i∑

=× 1 gives the estimated system workload to

process transactions arriving in one time unit. Li is described
in Equation 1; C, as formulated above, is the processing
capacity of the mining system.

C. Probabilistic Technique to Shed Load
As we have analyzed above, when the system is

overloaded, an immediate approach is to drop a fraction of the
stream to reduce workload. Certainly, when all incoming data
is not entirely processed (and dropped transactions are lost
forever), one can expect some errors in the results. Our
algorithm is designed to approximate this error in a precise
manner. In other words, the error is guaranteed within some
specific lue. To achieve this, we approach the problem by
utilizing a technique from probability, the Chernoff bound
[16]. Such a theoretically sound tool allows us to obtain a
more accurate estimate on the mining error. To apply the
Chernoff bound in our frequent set approximation, we clarify

the following concepts. Let P be a value smaller than 1, then
each coming transaction is chosen with probability P. For a
set of N transactions arriving in the stream, n transactions are
chosen randomly. Given an itemset X, we want to approximate
how

Close is its computed frequency in n sampling transactions,
as compared to its actual frequency p in N transactions. Note
that event X appearing in a transaction can be seen as a
Bernoulli trial and thus, we denote random variable Ai = 1 if X
appears in the ith transaction and Ai = 0 otherwise. Obviously,
Pr (Ai = 1) = p and Pr (Ai = 0) = 1- p. Hence, n randomly
drawn transactions are viewed as n independent Bernoulli
trials. Let r be the number of times that Ai = 1 occurs in these
n transactions; r is called a binomial random variable and
thus, its expectation is np. Then, the Chernoff bound states
that given an error bound ε; 0 < ε <1:

}
⎩
⎨
⎧ ≤≥− − 2/2

2Pr εε npenpnpr (4)

Let us call suppE(X) = r/n the estimated support of X
computed from n sampling transactions, then this equation
gives us the probability that the true support suppE (X)
deviates from its estimated support suppE(X) by an amount
±ε. If we want this probability to be no more than δ, then the
required number of sampling transactions is at least by setting

σ= 2/2
2 εnpe−

2
0 /)/2ln(2 εδpn = (5)

TABLE IV
UPDATING ITEMSETS AFTER PROCESSING ALL BATCHES

Itemsets Tilted-TW Size
(1 2 3 4 5) 5
(8 9)

 2

(1 2)

 2

(1 2 3) 3

TABLE III
UPDATING ITEMS AFTER PROCESSING ALL BATCHES IN SFIDS

Items Tilted-TW {region, root}
1 {1,Ta }

2 {1,Ta}

3

 {1,Ta}

5 {3,Tf}

6 {3,Tf}

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:1, 2009

59International Scholarly and Scientific Research & Innovation 3(1) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

1,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

05
.p

df

For example, consider p = 0.002, δ = 0.05 and ε = 0.001, then
n0 ≈15 000. This means that for itemset X, if we sample
15,000 transactions from a partition of the stream, its true
support suppE (X) in this partition is beyond the range of
[suppE(X) - 0.001; suppE(X) + 0.001] with probability 0.05. In
other words, suppT (X) is within ±ε of suppE(X) with a high
confidence of 95%.

D. Details about SFIDS
We describe in more detail the Fids algorithm (c.f.

Algorithm SFIDS). While batches are available, we consider
itemsets embedded into batches in order to update our
structures (Update). Then we prune unfrequent itemsets in
order to maintain our structures in main memory (Prune). In
the following, we consider that we are provided with the three
next structures. Each value of ITEMS is a tuple
(labelitem,{time, occ}, {(regions, rootreg)}) where labelitem
stands for the considered item, {time, occ} is used in order to
store the number of occurrences of the item for different time
of batches and for each region in {regions} we store its
associated itemsets (rootreg) in the Latticereg structure. The
ISETS structure is used to store itemsets. Each value of ISETS
is a tuple (itemset, size(itemset), {time, occ}) where
size(itemset) stands for the number of items embedded in s.
Finally, the Latticereg structure is a lattice where each node is
an itemset stored in ISETS and where vertices correspond to
the associated region (according to the previous overview).
Let us now examine the Update algorithm (c.f. Update
method) which is the main core of our approach. We consider
each transaction embedded in the batch. The system workload
is periodically estimated to identify overloading. If such a
situation occurs, the maximal value of P is computed via
equation 3. Othervise, P is set to 1. If transaction T is chosen
in this phase, first get regions of all its items is compted from
GetRegions method. If items were not already considered we
only have to insert T in a new region. Otherwise, we extract
all different regions associated on items of T (one region for
each item;it’s different from FIDS approach). For each
region, the GetRootreg function returns the corresponding
root of the region, FirstItemset, i.e. the maximal itemset of the
region reg. Since we represent items by prime numbers, we
can then compute the greatest common factor of T in
FirstItemset by applying the GCF function. This usual
function was extended in order to return an empty set both
when there are no maximal itemsets or if itemsets are merely
reduced to one item. If there is only one itemset, i.e.
cardinality of NewIts is 1; we know that the itemset is either a
root of region or T itself. We thus store it into a temporary
array (LatticeMerge) in order to avoid creating a new useless
region. Otherwise we know that we are provided with a subset
and then we insert it into Latticereg (Insert) and propagate the
tilted-time window (UpdateTTW). Itemsets
are also stored into a temporary array (DelayedInsert). If there
exist more than one sub itemset (from GCF), then we insert all
these subsets on the corresponding region. We also store them
with T on DelayedInsert in order to delay their insertion as a
New region. If LatticeMerge is empty we know that it does
not exist any subset of T already included on itemsets of

Latticereg and then we can directly insert T into Latticereg
with a new region. If the cardinality of LatticeMerge is greater
than one, we are provided with an itemset which will be a new
root of region and then we insert it.

Maintaining all the data streams in the main memory
requires too much space. So we have to store only relevant
itemsets and drop itemsets when the tail-dropping condition
holds. When all the tilted-time windows of the itemsets are
dropped the entire itemset is dropped from Latticereg. As the
result of the tail-dropping we no longer have an exact support
over L, rather an approximate support. Now let us denote
supportL(X) the frequency of the itemset X in all batches and
supportL’(X) the approximate frequency. With ε <<σ this
approximation is assured to be less than the actual frequency
according to the following inequalityas in [3]:
SupprtL(X) ≤− Lε SupportL’(X) ≤ SupportL(X) (6)

SFIDS ALGORITHM
Batch

Data: an infinite set of batches B= 1
0B , 2

1B … n
nB 1− ; a user

defined threshold σ; an error rate ε.
Result: A set of frequent items and itemsets
//initialize phase
Latticereg=0; ITEMS=0; ISETS=0;

Repeat

 For each
b
aB ∈B do

 Update (b
aB , Latticereg, ITEMS, ISETS, ,);

 Prune (Latticereg, ITEMS, ISETS,,);

Until no more batch;

SFIDS ALGORITHM UPDATE METHOD

Data: a batch b
aB : a user- defined thresholdσ; an error rate ε ,

three structures and a processing capacity C of the mining
system.

 Result: Latticereg, ITEMS, ISETS updated.
Periodically identify sampling rate P;
For each transaction T∈ b

aB , sampling it with probability of P
and if T is chosen
 LatticeMerge=0; Candidates=0;
 If (candidates==0) then
 Insert (T, New Region);
 Else
 For each region ∈ Candidates do
 FirstItemset= GetRootreg(reg);
 //compute all the longest common subset
 NewIts=GCF (T, FirstItemset);
 If (NewIts==T)|| (NewIts==FirstItemset) then
 LatticeMerge=reg;
 Else
 //A new itemset has to be considerd
 Insert (NewIts, reg);UpdateTTW (NewIts);
If(|LatticeMerge|==0) then
 Insert (T,New Region); UpdateTTW(T);
 Else
 If(| LatticeMerge|==1) then
 Insert (T, LatticeMerge[0]);UpdateTTW(T);
 Else
 Merge (LatticeMerge, T);

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:1, 2009

60International Scholarly and Scientific Research & Innovation 3(1) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

1,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

05
.p

df

V. EXPERIMENTAL RESULT
All experiments were performed on a PC with a CPU

1.8GHz running Windows with 1GB memory. All programs
were implemented in VC++. The stream data was generated
from dataset T10I4D100K is created by IBM synthetic data
generator. The stream was broken into batches of 30s duration
which enables the possibility for different batch sizes
depending on the distribution of the data. The number of items
per batch was nearly 5,000. We have fixed the error threshold
(ε) at 0.1% and we compared our method with FIDS.

A. Comparison with Algorithm FIDS
In this experiment, we examine the execution time and

memory usage between SFIDS and FIDS by dataset
T10I4D100K. In Fig. 3, we can see that the execution time
incurred by SFIDS is quite steady and is shorter than that of
FIDS. The experiment shows that SFIDS performs more
efficiently than FIDS. In Fig. 4, the memory usage of SFIDS
is more stable and smaller than that of FIDS. This is because
SFIDS delete a lot of common nodes between various regions
does not need to search these spaces for some computations
and enumerate all subsets of each incoming transaction. The
amount of all subsets is an enormous exponential number for
long transaction. Hence, it shows that SFIDS is more suitable
for mining frequent itemsets in data streams.

Fig.3 Compare execution time between FIDS and SFIDS

Fig. 4 Compare space consumption between FIDS and SFIDS

VI. CONCLUSION
In this paper, an SFKI structure was designed to

dynamically maintain the up to date contents of an online data
stream by scanning it only once, and a new method SFIDS
was proposed to mine the frequent patterns in a tilted time

window. This method could answer a request with no false
negative. Extensive Experimental results show that SFIDS
decrease required time for processing batches and amount of
memory for storing history of data. We compare our algorithm
with FIDS algorithm and show that SFID perform better than
FIDS in various conditions.

REFERENCES
[1] C.Raissi, P. Poncelet, Teisseire, “Towards a new approach for mining

frequent itemsets on data stream”, J Intell Inf Syst , 2007, vol. 28, pp.
23–36, 2007.

[2] J,.Xu Yu , Z.Chong , H. Lu, Z. Zhang , A. Zhou b,” A false negative
approach to mining frequent itemsets from high speed transactional data
streams”, Information Sciences 176, 1986–2015,2006.

[3] G. Giannella, J. Han, J. Pei, X. Yan, P.Yu,” Mining frequent patterns in
data streams at multiple time granularities”, In Next generation data
mining. New York: MIT, 2003.

[4] H. Li, F. Lee, S.Y., M. Shan,” An efficient algorithm for mining frequent
itemsets over the entire history of data streams”.,In Proceedings of the
1st InternationalWorkshop on Knowledge Discovery in Data
streams,2004.

[5] R. Jin, G. Agrawal,” An Algorithm for In-Core Frequent Itemset Mining
on Streaming Data”

[6] P. Domingos , G. Hulten,” Mining high-speed data streams”,In
Proceedings of the ACM Conference on Knowledge and Data
Discovery (SIGKDD), 2000.

[7] A. Cheng, Y. Ke,W. Ng, “A survey on algorithms for mining frequent
itemsets over data streams”, Knowl Inf Syst, 2007.

[8] M. Charikar, K. Chen, M. Farach,” Finding frequent items in data
streams”. Theor Comput Sci, vol. 312, pp.3–15, 2004.

[9] J.Cheng,Y. Ke,W. Ng,” Maintaining frequent itemsets over high-speed
data streams”, In Proceedings of the 10th Pacific-asia Conference on
knowledge discovery and data mining, Singapore, pp. 462–467, April
2006.

[10] R.Agrawal,T. Imielinski,A. Swami , “Mining association rules between
sets of items in large databases”, In Proceedings of the ACM SIGMOD
international conference on management of data, Washington DC, pp
207–216,1993.

[11] H. Chernoff, A measure of asymptotic efficiency for tests of a
hypothesis based on the sum of observations, The Annals of
Mathematical Statistics 23 (4) 493–507, 1953.

[12] M. Charikar, K. Chen, M. Farach,” Finding frequent items in data
streams”, in Proceedings of the International Colloquium on Automata,
Languages and Programming (ICALP), pp. 693–703,2002.

[13] T. Calders , N. Dexters , B. Goethals ,“Mining Frequent Items in a
Stream Using Flexible Windows”

[14] X. Sun Maria, E. Orlowska , X. Li, “Finding Frequent Itemsets in High-
Speed Data Streams”.

[15] X. Han Dong, W. Ng, K. Wong,V. Lee, “Discovering Frequent Sets
from Data Streams with CPU Constraint”, This paper appeared at the
AusDM 2007, Gold Coast, Australia. Conferences in Research and
Practice in Information Technology (CRPIT), Vol.70

[16] H. Chernoff, “A measure of asymptotic efficiency for thests of a
hypothesis based on the sum of observations”, in Annals of
Mathematical Statistics, pp. 493, 1952.

[17] R. Agrawal, R. Srikant, “ Fast algorithms for mining association rules”,
In Proc. Int. Conf. Very Large Data Bases (VLDB'94), 487.499, 1994

[18] J. Han, J. Pei, Y. Yin,” Mining frequent patterns without candidate
generation”, In Proc. 2000 ACM-SIGMOD Int. Conf. Management of
Data (SIGMOD'00), 1.12, 2000.

[19] J. Pei, J. Han, R. Mao,” CLOSET: An efficient algorithm for mining
frequent closed itemsets”, In Proc. ACM-SIGMOD Int.Workshop Data
Mining and Knowledge Discovery (DMKD'00), 11.20,2000.

[20] M. Zaki, C. Hsiao,” CHARM: An efficient algorithm for closed itemset
mining”, In Proc. SIAM Int. Conf. Data Mining, 457.473, 2002.

[21] R. Agrawal, R. Srikant,” Mining sequential patterns”, In Proc. Int. Conf.
Data Engineering (ICDE'95), 3.14, 1995.

[22] M. Kuramochi, G. Karypis, “Frequent subgraph discovery”, In Proc.Int.
Conf. Data Mining (ICDM'01), 313.320, 2001.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:1, 2009

61International Scholarly and Scientific Research & Innovation 3(1) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

1,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

05
.p

df

[23] K. Beyer, R. Ramakrishnan,” Bottom-up computation of sparse and
iceberg cubes”, In Proc. ACM-SIGMOD Int. Conf.Management of Data
(SIGMOD'99), 359.370,1999.

[24] T. Imielinski, L. Khachiyan,A. Abdulghani,”Cubegrades: Generalizing
association rules”, Data Mining and knowledge Discovery
6:219.258,2002.

[25] B. Liu, W. Hsu, Y. Ma,” Integrating classification and association rule
mining”, In Proc. Int. Conf. Knowledge Discovery and Data Mining
(KDD'98), 80.86,1998.

[26] H. Wang, J. Yang, W. Wang, P. Yu,” Clustering by pattern similarity in
large data sets”, In Proc. ACM-SIGMOD Int. Conf. on Management of
Data (SIGMOD'02), 418.427,2002.

[27] R. Karp, C. Papadimitriou, S. Shenker, “A simple algorithm for finding
frequent elements in streams and bags”, ACM Trans. Database Systems
2003.

[28] Y. Chi, H. Wang, P. Yu, R. Muntz,” Moment: Maintaining closed
frequent itemsets over a stream sliding window”, In Proceedings of
International Conference on Data Missing Conference, pp. 59–66, 2004.

[29] C.Jin, W. Qian, C. Sha, J.Yu, A. Zhou,” Dynamically maintaining
frequent items over a data stream”, In Proceedings of International
Conference on Information and Knowledge Management Conference,
pp. 287–29, Washington, District of Columbia, 2004.

[30] H. Li, S. Lee, M. Shan, “An efficient algorithm for mining frequent
itemsets over the entire history of data streams”, In Proceedings of the
1st International Workshop on Knowledge Discovery in Data streams,
2003.

[31] G. Manku,R. Motwani, “ Approximate frequency counts over data
streams. In Proceedings of very Large Databases Conference, pp. 346–
357, Hong Kong, China, 2002.

[32] Y. Chen, G. Dong, J. Han, B. Wah, J. Wang, ,” Multidimensional
regression analysis of time-series data streams” In VLDB
Conference,2002.

[33] W. Teng, M. Chen, P. Yu, “A regression-based temporal patterns mining
schema for data streams”, In Proceedings of very large Databases
Conference, pp. 93–104, Berlin, 2003.

[34] X. Hong , W. Keong , K. Leong Ong ,v. C S Lee , “Discovering
Frequent Sets from Data Streams with CPU Constraint”, Sixth
Australasian Data Mining Conference, Australia. Conferences in
Research and Practice in Information Technology (CRPIT), Vol. 70,
2007.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:1, 2009

62International Scholarly and Scientific Research & Innovation 3(1) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

1,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

05
.p

df

