
 

 

  
Abstract—The increasing importance of data stream arising in a 

wide range of advanced applications has led to the extensive study of 
mining frequent patterns. Mining data streams poses many new 
challenges amongst which are the one-scan nature, the unbounded 
memory requirement and the high arrival rate of data streams. In this 
paper, we propose a new approach for mining itemsets on data 
stream. Our approach SFIDS has been developed based on FIDS 
algorithm. The main attempts were to keep some advantages of the 
previous approach and resolve some of its drawbacks, and 
consequently to improve run time and memory consumption. Our 
approach has the following advantages: using a data structure similar 
to lattice for keeping frequent itemsets, separating regions from each 
other with deleting common nodes that results in a decrease in search 
space, memory consumption and run time; and Finally, considering 
CPU constraint, with increasing arrival rate of data that result in 
overloading system, SFIDS automatically detect this situation and 
discard some of unprocessing data. We guarantee that error of results 
is bounded to user pre-specified threshold, based on a probability 
technique.  Final results show that SFIDS algorithm could attain 
about 50% run time improvement than FIDS approach.                             
 

Keywords—Data stream, frequent itemset, stream mining.  

I. INTRODUCTION 
HE increasing importance of data stream arising in a wide 
range of advanced applications has led to the extensive 

study of mining frequent patterns. Mining data streams poses 
many new challenges amongst which are the one-scan nature, 
the unbounded memory requirement and the high arrival rate 
of data streams. Mining frequent sets over data streams 
presents interesting new challenges over traditional mining in 
static databases. Due to the speed of new arriving data, it is 
assumed that the history of the stream cannot be revisited, 
unless it is stored. Storing large parts of a stream, however, is 
impossible as the amount of data is typically huge. Most 
previous work on mining frequently occurring itemsets over 
data streams either focuses on (1) the sliding window model 
(2) the time-fading model or (3) the landmark model. Each of 
these models requires a fixed window length or decay factor, 
given by the user. In many applications however choosing 
such parameters that are most appropriate for every itemset at 
every time point in an evolving stream is almost impossible. 
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For example, consider a large retail chain of which sales can 
be considered as a stream. Then, in order to find frequent sets 
to do market basket analysis, it is very difficult to choose in 
which period of the collected data you are interested. For 
many products, the amount of them sold depends highly on 
the period of the year. In summer time, e.g., sales of ice cream 
increase and during the soccer world cup, sales of beer 
increase. Such seasonal behavior of a specific item or 
combination of items can only be discovered when choosing 
the correct window size for that item. This size, however, can 
hide a similar behavior of other items in another window. The 
approach (SFIDS) has been developed based on FIDS 
algorithm. The main attempts were to keep some advantages 
of the previous approach and resolve some of its drawbacks, 
and consequently to improve run time and memory 
consumption. This approach has the following advantages: 
using a data structure similar to lattice for keeping frequent 
itemsets, separating regions from each other with deleting 
common nodes that results in a decrease in search space, 
memory consumption and run time; and Finally, considering 
CPU constraint, with increasing arrival rate of data that result 
in overloading system, SFIDS automatically detect this 
situation and discard some of unprocessing data. We 
guarantee that error of results is bounded to user pre-specified 
threshold, based on a probability technique.   

The organization of the paper is as follows. In Section 2, 
the related works is defined and the central problem statement 
is formally introduced. Section 3 gives preliminaries for main 
theorem, on which the SFIDS algorithm in Section 4 is based.  
Experimental results in Section 5 show that the memory 
requirements and execution time for the algorithm are 
extremely small for many real-life data applications and the 
relation between our measure and existing related work is 
explored, and Section 6 concludes the paper. 

II. RELATED WORKS 
Frequent-pattern mining has been studied extensively in 

data mining, with many algorithms Proposed and implemented 
for example, Apriori[17], FP-growth [18], CLOSET [19], and 
CHARM [20]. Frequent pattern mining and its associated 
methods have been popularly used in association rule mining 
[17], sequential pattern mining [21], structured pattern mining 
[22], iceberg cube computation [23], cube gradient analysis 
[24], associative classification [25], frequent pattern-based 
clustering [26], and so on. 
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Recent emerging applications, such as network traffic 
analysis, Web click stream mining, power consumption 
measurement, sensor network data analysis, and dynamic 
tracing of stock fluctuation, call for study of a new kind of 
data, called stream data, where data takes the form of 
continuous, potentially infinite data streams, as opposed to 
finite, statically stored data sets. Stream data management 
systems and continuous stream query processors are under 
popular investigation and development. Due to the large 
volume of data, data streams can hardly be stored in main 
memory for on-line processing. A crucial issue in data 
streaming that has recently attracted significant attention is 
thus to maintain the most frequent items encountered ([29], 
[27]). Furthermore, since data-streams are continuous, high 
speed and unbounded, it is impossible to mine frequent 
itemsets by using algorithms that require multiple scans. As a 
consequence new approaches were proposed to maintain 
itemsets rather than items [1], [2], [7], [32]; [28]; [3]; [30]; 
[31]; [33]). 

In our design, we actively maintain frequent patterns under 
a tilted-time window framework in order to answer time-
sensitive queries. The frequent patterns are compressed and 
stored using a structure similar to lattice [1], and updated 
incrementally with incoming transactions. Our time-sensitive 
stream mining model, SFIDS, includes two major 
components: (1) SFKI (structure for keeping itemset), and (2) 
tilted-time window. 

III. PRELIMINARIES 
Let I = {i1, i2 . . . im} be a set of literals, called items. Let 

database DB be a set of transactions, where each transaction T 
is a set of items such that T  I. Associated with each 
transaction is a unique identifier, called its TID. A set X  I is 
also called an itemset, where items within are kept in 
lexicographic order. A k-itemset is represented by (x1, x2 . . ., 
xk) where x1 < x2 <...  < xn. The support of an itemset X, 
denoted support(X) is the number of transactions in which that 
itemset occurs as a subset. An itemset is called a frequent 
itemset if support(X) ≥ σ × |DB| where σ  (0, 1) is a user-
specified minimum support threshold and |DB| stands for the 
size of the database. The problem of mining frequent itemsets 
is to mine all itemsets whose support is greater or equal than σ 
× |DB| in DB. The previous definitions consider that the 
database is static. Let us now assume that data arrives 
sequentially in the form of continuous rapid streams. Let data 
stream DS = ,  ...   be an infinite sequence of 
batches, where each batch is associated with a time period [ak, 
bk], let  be the most recent batch. Each batch  
consists of a set of transactions; that is, each batch  = [T1, 
T2, T3… Tk]. We also assume that batches do not have 
necessarily the same size. Hence, the length (L) of the data 
stream is defined as  

Where  stands for the cardinality of the set  .The 
support of an itemset X at a specific time interval [ai, bi] is 
now denoted by the ratio of the number of customers having X 
in the current time window to the total number of customers. 

Therefore, given a user-defined minimum support, the 
problem of mining itemsets on a data stream is thus to find all 
frequent itemsets X over an arbitrary time period [ai, bi], i.e. 
verifying: 

                                        
Of the streaming data using as little main memory as possible. 

IV. SFIDS ALGORITHM 
As we mentioned, SFIDS developed based on FIDS 

algorithm [1], FIDS with use of region concept and lattice 
data structure, first process transactions of each batch, each 
itemset in transaction compare with root of each available 
regions and compute common subsets then insert this subset in 
both of regions, in following example we illustrate how FIDS 
algorithm process each incoming batch, consider Table 1, We 
will now focus on how each new batch is processed. From the 
batches from Table I our algorithm performs as follows: we 
process the first transaction Ta in TableI by first storing Ta into 
our lattice (Latticereg). This lattice has the following 
characteristics: each path in Latticereg is provided with a 
region and itemsets in a path are ordered according to the 
inclusion property. By construction, all subsets of an itemset 
are in the same region. This lattice is used in order to reduce 
the search space when comparing and pruning itemsets. When 
the processing of Ta completes, we are provided with a set of 
items {1, 2, 3, 4, 5} and Latticereg updated. Items are stored in 
ItemTable as illustrated in TableII. The Tilted-T W attribute is 
the number of occurrences of the corresponding item in the 
batch. The Rootreg attribute stands for the root of the 
corresponding region in Latticereg. Of course, for one region 
we only have one Rootreg and we also can have several regions 
for one item. For itemsets, we store both the size of the 
itemset and the associated tilted-time window Table IV. 

Let us now process the second transaction Tb of . Since 
Tb is not included in Ta, it is inserted in Latticereg in a new 
region. Let us now consider the batch  merely reduced to 
Tc. Since items 1 and 2 already exist in the set of itemsets, 
their tilted-time windows must be updated. (Table II, Table 
IV) 

Furthermore, items 1 and 2 are in the same region: 1 and 
the longest itemset for these items is (1 2 3 4 5), i.e. Tc is 

TABLE I 
INCOMING BATCHES 

Batch Transaction Itemset 
 (1 2 3 4 5) 

   
   

(8 9) 

(1 2 ) 
  

(1 2 3) 
 (1 2 8 9) 
   

 

TABLE II 
UPDATING ITEMS AFTER PROCESSING ALL BATCHES IN FIDS 

Items     Tilted-TW {Region,Root} 
1 

 
    

2       
 

                           

3 
 

            

8                            

9                             
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included in Ta. We thus have to insert Tc in Latticereg in the 
region 1. Nevertheless as Tc is a subset of Ta that means that 
when Ta occurs in previous batch it also occurs for Tc. So the 
tilted-time windows of Tc must also be updated. The 
transaction Td is considered in the same way as Tc. for 
transaction Te; items 1 and 2 are in region 1 while items 8 and 
9 are in region 2; it means that we are provided with a new 
region. Nevertheless, we can notice that the itemset (8 9) 
already exist in Latticereg and is a subset of Te. The longest 
itemset of Te in the region 1 is {1, 2}. In the same way, the 
longest subset of Te for region 2 is {8, 9}. As we are provided 
with two different regions and {8, 9} is the root of the region 
2, we do not create a new region but we insert Te as a root of 
region for 2 and we insert the subset {1, 2} both on lattice for 
region 1 and 2. (Fig. 1) 

 
Fig. 1The region lattice after processing all batches (FIDS) 

  
As we seen  itemset (1 2) are common in two regions 1 and 

2, also in Fig. 2 each item belong to more than one regions i.e. 
item 1exist in regions 1 and 2, In SFIDS algorithm we keep 
for each item in ITEMS only first region that item insert into it 
regardless of other regions it belong to. Let us process 
previous example with new algorithm, when the processing of 
Ta completes, we are provided with a set of items {1, 2, 3, 4, 
5} and SFKI updated. Items are stored illustrated in (Fig. 2). 
Let us now process the second transaction Tb of . Since Tb 
is not included in Ta, it is inserted in SFKI in a new region. 
Sub tree (8 9). Let us now consider the batch  merely 
reduced to Tc. Since items 1 and 2 already exist in the set of  
itemsets, their tilted-time windows must be updated (Table 
III). Now we want to process , first transaction Td, since (1 
2 3) are subset of root of region 1, insert it in region 1, and 
update TTW, for transaction Te, check for each item of it to 
see regions of each item, since we consider only one region 
for each item, retrieve their regions, for itemset (1 2 8 9) we 
compute common subset with (1 2 3 4 5) as root of region 1,  
since(1 2) already exist in structure we only update occurrence 
of it, then compute common subset with region 2, (8 9) also 
exist in region 2 ,we only update occurrence of it, since (1 2 8 
9) is superset (8 9) ,we insert it in this region Fig. 2 but don’t 
insert(1 2) in this region, since it exist in structure in region 1, 
now suppose  new batch coming, and include Tf  (1 2 3 5 6 8 
),we refer to item table and see region 1 for items 1 and 2 and 
5,and region 2 for item 8  , since itemsets(1 2 3) now exist in 
structure we only update TTW(Table IV), and insert Tf in new 
region 3(Fig. 2). 

 
Fig. 2 SKFI after processing all batches 

 
To only store frequent maximal itemsets, let us now discuss 
how infrequent   itemsets are pruned. While pruning in [3] is 
done in two distinct operations, our algorithm prunes 
infrequent itemsets in a single operation which is in fact a 
dropping of the tail itemsets of tilted-time windows 
support ,1+k

k support 2
1

+
+

k
k … support n

n 1−  when the following 
condition holds: 

,, niki ≤≤∀ Support i
i

b
a (X) i

i

b
af Bε≺                 (1) 

By navigating into Latticereg, and by using the region indexes, 
we can directly and rapidly prune irrelevant itemsets without 
further computations. This process is repeated after each new 
batch in order to use as little main memory as possible. During 
the pruning phase, titled-time windows are merged in the 
same way as in [3]. 

A. An Efficient Representation for Itemsets 
According to the overview, one crucial problem is to 

efficiently compute the inclusion between two itemsets. This 
costly operation could easily be performed when considering a 
new representation for items in transactions. From now, each 
item is represented by a unique prime number. According to 
this definition, each transaction could be represented by the 
product of the corresponding prime numbers of individual 
items into the transaction. As the product of the prime number 
is unique we can easily check the inclusion of two itemsets by 
performing a modulo division on itemsets (Y MOD X). If the 
remainder is 0 then X ⊆Y, otherwise X is not included in Y.  

B. Workload Estimation 
The second of SFIDS considering CPU constraint[34], with 

increasing arrival rate of data that result in overloading 
system, SFIDS automatically detect this situation and discard 
some of unprocessing data, in [15] with use of Probabilistic 
technique could reach to interesting results, this technique is 
used in SFIDS to shed load. Since the behavior of data 
streams often changes over time, detecting overload situations 
is an important step in our algorithm. For the frequent set 
mining problem, the system workload may not be simply 
estimated by regularly checking the rate of transactions 
arriving in one time unit. Rather, it is essentially dependent on 
the number of itemsets containing in each transaction whose 
frequencies must be updated. Certainly, an accurate method to 
evaluate the system workload is to have an exact count of this 
number In each transaction. Unfortunately, this task is 
generally impossible since the system may not be able to fully 
process all incoming transactions under overload situations. 
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Therefore, it is necessary to find a technique that is able to 
approximately estimate this number meanwhile it is efficient 
to compute. We pro pose such an estimate based on a small set 
of maximal  

Frequent itemsets(MFIs). The key intuition behind using 
MFIs for this task is that the number of MFIs is exponentially 
smaller than the number of frequent itemsets. Mean while, 
such a compact set completely captures the entire set of 
frequent itemsets. To give an explicit formula for this 
estimate, let us denote the number of MFIs in a transaction by 
m and let Xi be a MFI, 1 ≤ i ≤ m. We assume the following 
estimated time (or load coefficient) to process one transaction: 

∑∑
=

∩
−

=

=

m

ji

xx
m

i

xL jii

1,

2

1

2                                                         (2) 

In this equation, the first summation estimates the number of 
frequent itemsets within each MFI. The second one estimates 
the number of itemsets overlapping between MFIs. 
Apparently, one may suppose that computing L is expensive 
and eventually defeats the purpose of quickly detecting CPU 
overload. Nevertheless, we do not explicitly compute L by 
finding all MFIs and the overlapping subsets among them. 
Instead, the set of MFIs is maintained in a prefix tree and the 
equation is computed by matching transactions to this 
structure to derive the number of distinct frequent sets. As we 
shall see from the empirical results in Section 4, this approach 
yields very good approximation while the computational time 
is negligible. Given this computed statistics for each 
transaction, we measure it for n transactions over one time 
unit and let r be the current rate of the data stream. The 
following inequality imposes a constraint on load shedding 
decisions: 

C
n

n

i
iL

rP ≤=××

∑
1                                                                     (3) 

In this inequality, P∈  (0; 1] is a parameter adjusted 
adaptively to make the inequality hold. It also expresses the 
fraction of transactions that should be discarded. The 

expression 
n

L

r

n

i
i∑

=× 1  gives the estimated system workload to 

process transactions arriving in one time unit. Li is described 
in Equation 1; C, as formulated above, is the processing 
capacity of the mining system. 

C. Probabilistic Technique to Shed Load 
As we have analyzed above, when the system is 

overloaded, an immediate approach is to drop a fraction of the 
stream to reduce workload. Certainly, when all incoming data 
is not entirely processed (and dropped transactions are lost 
forever), one can expect some errors in the results. Our 
algorithm is designed to approximate this error in a precise 
manner. In other words, the error is guaranteed within some 
specific lue. To achieve this, we approach the problem by 
utilizing a technique from probability, the Chernoff bound 
[16]. Such a theoretically sound tool allows us to obtain a 
more accurate estimate on the mining error. To apply the 
Chernoff bound in our frequent set approximation, we clarify 

the following concepts. Let P be a value smaller than 1, then 
each coming transaction is chosen with probability P. For a 
set of N transactions arriving in the stream, n transactions are 
chosen randomly. Given an itemset X, we want to approximate 
how  

Close is its computed frequency in n sampling transactions, 
as compared to its actual frequency p in N transactions. Note 
that event X appearing in a transaction can be seen as a 
Bernoulli trial and thus, we denote random variable Ai = 1 if X 
appears in the ith transaction and Ai = 0 otherwise. Obviously, 
Pr (Ai = 1) = p and Pr (Ai = 0) = 1- p. Hence, n randomly 
drawn transactions are viewed as n independent Bernoulli 
trials. Let r be the number of times that Ai = 1 occurs in these 
n transactions; r is called a binomial random variable and 
thus, its expectation is np. Then, the Chernoff bound states 
that given an error bound ε;  0 < ε <1: 

}
⎩
⎨
⎧ ≤≥− − 2/2

2Pr εε npenpnpr                                           (4) 

Let us call suppE(X) = r/n the estimated support of X 
computed from n sampling transactions, then this equation 
gives us the probability that the true support suppE (X) 
deviates from its estimated support suppE(X)  by an amount 
±ε. If we want this probability to be no more than   δ, then the 
required number of sampling transactions is at least by setting 

σ= 2/2
2 εnpe−  

2
0 /)/2ln(2 εδpn =                                                                                      (5) 

TABLE IV 
UPDATING ITEMSETS AFTER PROCESSING ALL BATCHES 

Itemsets             Tilted-TW                    Size 
(1 2 3 4 5)                       5 
(8 9)       

 
                      2 

(1 2)         
 

              2 

(1 2 3)                       3 
   
   

 

TABLE III 
UPDATING ITEMS AFTER PROCESSING ALL BATCHES IN SFIDS 

Items       Tilted-TW {region, root} 
1    {1,Ta } 

2     {1,Ta} 

3 

 

    {1,Ta} 

5                    {3,Tf} 

6                   {3,Tf} 
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For example, consider p = 0.002, δ = 0.05 and ε = 0.001, then 
n0 ≈15 000. This means that for itemset X, if we sample 
15,000 transactions from a partition of the stream, its true 
support suppE (X) in this partition is beyond the range of 
[suppE(X) - 0.001; suppE(X) + 0.001] with probability 0.05. In 
other words, suppT (X) is within ±ε of suppE(X) with a high 
confidence of 95%. 

D. Details about SFIDS 
We describe in more detail the Fids algorithm (c.f. 

Algorithm SFIDS). While batches are available, we consider 
itemsets embedded into batches in order to update our 
structures (Update). Then we prune unfrequent itemsets in 
order to maintain our structures in main memory (Prune). In 
the following, we consider that we are provided with the three 
next structures. Each value of ITEMS is a tuple 
(labelitem,{time, occ}, {(regions, rootreg)}) where labelitem 
stands for the considered item, {time, occ} is used in order to 
store the number of occurrences of the item for different time 
of batches and for each region in {regions} we store its 
associated itemsets (rootreg) in the Latticereg structure. The 
ISETS structure is used to store itemsets. Each value of ISETS 
is a tuple (itemset, size(itemset), {time, occ}) where 
size(itemset) stands for the number of items embedded in s. 
Finally, the Latticereg structure is a lattice where each node is 
an itemset stored in ISETS and where vertices correspond to 
the associated region (according to the previous overview). 
Let us now examine the Update algorithm (c.f. Update 
method) which is the main core of our approach. We consider 
each transaction embedded in the batch. The system workload 
is periodically estimated to identify overloading. If such a 
situation occurs, the maximal value of P is computed via 
equation 3. Othervise, P is set to 1. If transaction T is chosen 
in this phase, first get regions of all its items is compted from 
GetRegions method. If items were not already considered we 
only have to insert T in a new region. Otherwise, we extract 
all different regions associated on items of T (one region for 
each item;it’s different from FIDS approach ). For each 
region, the GetRootreg function returns the corresponding 
root of the region, FirstItemset, i.e. the maximal itemset of the 
region reg. Since we represent items by prime numbers, we 
can then compute the greatest common factor of T in 
FirstItemset by applying the GCF function. This usual 
function was extended in order to return an empty set both 
when there are no maximal itemsets or if itemsets are merely 
reduced to one item. If there is only one itemset, i.e. 
cardinality of NewIts is 1; we know that the itemset is either a 
root of region or T itself. We thus store it into a temporary 
array (LatticeMerge) in order to avoid creating a new useless 
region. Otherwise we know that we are provided with a subset 
and then we insert it into Latticereg (Insert) and propagate the 
tilted-time window (UpdateTTW). Itemsets 
are also stored into a temporary array (DelayedInsert). If there 
exist more than one sub itemset (from GCF), then we insert all 
these subsets on the corresponding region. We also store them 
with T on DelayedInsert in order to delay their insertion as a 
New region. If LatticeMerge is empty we know that it does 
not exist any subset of T already included on itemsets of 

Latticereg and then we can directly insert T into Latticereg 
with a new region. If the cardinality of LatticeMerge is greater 
than one, we are provided with an itemset which will be a new 
root of region and then we insert it.  

Maintaining all the data streams in the main memory 
requires too much space. So we have to store only relevant 
itemsets and drop itemsets when the tail-dropping condition 
holds. When all the tilted-time windows of the itemsets are 
dropped the entire itemset is dropped from Latticereg. As the 
result of the tail-dropping we no longer have an exact support 
over L, rather an approximate support. Now let us denote 
supportL(X) the frequency of the itemset X in all batches and 
supportL’(X) the approximate frequency. With ε <<σ this 
approximation is assured to be less than the actual frequency 
according to the following inequalityas in [3]: 
SupprtL(X) ≤− Lε SupportL’(X) ≤ SupportL(X)                   (6) 

SFIDS ALGORITHM 
Batch 

Data: an infinite set of batches B= 1
0B , 2

1B … n
nB 1− ; a  user 

defined threshold σ; an error rate ε. 
Result: A set of frequent items and itemsets 
//initialize phase 
Latticereg=0; ITEMS=0; ISETS=0; 

Repeat 

       For each  
b
aB  ∈B do 

       Update ( b
aB , Latticereg, ITEMS, ISETS,  , ); 

       Prune ( Latticereg, ITEMS, ISETS,,); 

Until no more batch; 
 

SFIDS ALGORITHM UPDATE METHOD 
 

Data: a batch b
aB : a user- defined thresholdσ; an error rate  ε , 

three structures and a processing capacity C of the mining 
system. 

      Result: Latticereg, ITEMS, ISETS updated. 
Periodically identify sampling rate P; 
For each transaction T∈ b

aB , sampling it with probability of P 
and if T is chosen 
 LatticeMerge=0; Candidates=0; 
 If (candidates==0) then 
       Insert (T, New Region); 
     Else 
        For each region ∈ Candidates do  
       FirstItemset= GetRootreg(reg); 
       //compute all   the longest common subset 
         NewIts=GCF (T, FirstItemset); 
        If (NewIts==T)|| (NewIts==FirstItemset) then 
             LatticeMerge=reg; 
     Else 
              //A new itemset has to be considerd 
     Insert (NewIts, reg);UpdateTTW  (NewIts); 
If( |LatticeMerge|==0)   then 
      Insert (T,New Region); UpdateTTW(T); 
      Else 
   If(| LatticeMerge|==1 )   then 
         Insert (T, LatticeMerge[0]);UpdateTTW(T); 
          Else 
       Merge (LatticeMerge, T); 
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V. EXPERIMENTAL RESULT 
All experiments were performed on a PC with a CPU 

1.8GHz running Windows with 1GB memory. All programs 
were implemented in VC++. The stream data was generated 
from dataset T10I4D100K is created by IBM synthetic data 
generator. The stream was broken into batches of 30s duration 
which enables the possibility for different batch sizes 
depending on the distribution of the data. The number of items 
per batch was nearly 5,000. We have fixed the error threshold 
(ε) at 0.1% and we compared our method with FIDS. 

 

A. Comparison with Algorithm FIDS 
In this experiment, we examine the execution time and 

memory usage between SFIDS and FIDS by dataset 
T10I4D100K. In Fig. 3, we can see that the execution time 
incurred by SFIDS is quite steady and is shorter than that of 
FIDS. The experiment shows that SFIDS performs more 
efficiently than FIDS. In Fig. 4, the memory usage of SFIDS 
is more stable and smaller than that of FIDS. This is because 
SFIDS delete a lot of common nodes between various regions 
does not need to search these spaces for some computations 
and enumerate all subsets of each incoming transaction. The 
amount of all subsets is an enormous exponential number for 
long transaction. Hence, it shows that SFIDS is more suitable 
for mining frequent itemsets in data streams. 
  

 
Fig.3 Compare execution time between FIDS and SFIDS 

 
Fig. 4 Compare space consumption between FIDS and SFIDS 

VI. CONCLUSION 
In this paper, an SFKI structure was designed to 

dynamically maintain the up to date contents of an online data 
stream by scanning it only once, and a new method SFIDS 
was proposed to mine the frequent patterns in a tilted time 

window. This method could answer a request with no false 
negative. Extensive Experimental results show that SFIDS 
decrease required time for processing batches and amount of 
memory for storing history of data. We compare our algorithm 
with FIDS algorithm and show that SFID perform better than 
FIDS in various conditions. 
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