Search results for: Сlassification accuracy
1139 Neural Networks Approaches for Computing the Forward Kinematics of a Redundant Parallel Manipulator
Authors: H. Sadjadian , H.D. Taghirad Member, A. Fatehi
Abstract:
In this paper, different approaches to solve the forward kinematics of a three DOF actuator redundant hydraulic parallel manipulator are presented. On the contrary to series manipulators, the forward kinematic map of parallel manipulators involves highly coupled nonlinear equations, which are almost impossible to solve analytically. The proposed methods are using neural networks identification with different structures to solve the problem. The accuracy of the results of each method is analyzed in detail and the advantages and the disadvantages of them in computing the forward kinematic map of the given mechanism is discussed in detail. It is concluded that ANFIS presents the best performance compared to MLP, RBF and PNN networks in this particular application.Keywords: Forward Kinematics, Neural Networks, Numerical Solution, Parallel Manipulators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19291138 Density Estimation using Generalized Linear Model and a Linear Combination of Gaussians
Authors: Aly Farag, Ayman El-Baz, Refaat Mohamed
Abstract:
In this paper we present a novel approach for density estimation. The proposed approach is based on using the logistic regression model to get initial density estimation for the given empirical density. The empirical data does not exactly follow the logistic regression model, so, there will be a deviation between the empirical density and the density estimated using logistic regression model. This deviation may be positive and/or negative. In this paper we use a linear combination of Gaussian (LCG) with positive and negative components as a model for this deviation. Also, we will use the expectation maximization (EM) algorithm to estimate the parameters of LCG. Experiments on real images demonstrate the accuracy of our approach.
Keywords: Logistic regression model, Expectationmaximization, Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17331137 Rotor Flow Analysis using Animplicit Harmonic Balance Method
Authors: D. Im, S. Choi, H. Kwon, S. H. Park, J. H. Kwon
Abstract:
This paper is an extension of a previous work where a diagonally implicit harmonic balance method was developed and applied to simulate oscillatory motions of pitching airfoil and wing. A more detailed study on the accuracy, convergence, and the efficiency of the method is carried out in the current paperby varying the number of harmonics in the solution approximation. As the main advantage of the method is itsusage for the design optimization of the unsteady problems, its application to more practical case of rotor flow analysis during forward flight is carried out and compared with flight test data and time-accurate computation results.
Keywords: Design optimization, Implicit harmonic balancemethod, number of harmonics, rotor flows
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19721136 Low-Cost and Highly Accurate Motion Models for Three-Dimensional Local Landmark-based Autonomous Navigation
Authors: Gheorghe Galben, Daniel N. Aloi
Abstract:
Recently, the Spherical Motion Models (SMM-s) have been introduced [1]. These new models have been developed for 3D local landmark-base Autonomous Navigation (AN). This paper is revealing new arguments and experimental results to support the SMM-s characteristics. The accuracy and the robustness in performing a specific task are the main concerns of the new investigations. To analyze their performances of the SMM-s, the most powerful tools of estimation theory, the extended Kalman filter (EKF) and unscented Kalman filter (UKF), which give the best estimations in noisy environments, have been employed. The Monte Carlo validation implementations used to test the stability and robustness of the models have been employed as well.
Keywords: Autonomous navigation, extended kalman filter, unscented kalman filter, localization algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13111135 Multiple Regression based Graphical Modeling for Images
Authors: Pavan S., Sridhar G., Sridhar V.
Abstract:
Super resolution is one of the commonly referred inference problems in computer vision. In the case of images, this problem is generally addressed using a graphical model framework wherein each node represents a portion of the image and the edges between the nodes represent the statistical dependencies. However, the large dimensionality of images along with the large number of possible states for a node makes the inference problem computationally intractable. In this paper, we propose a representation wherein each node can be represented as acombination of multiple regression functions. The proposed approach achieves a tradeoff between the computational complexity and inference accuracy by varying the number of regression functions for a node.
Keywords: Belief propagation, Graphical model, Regression, Super resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15471134 Predictions Using Data Mining and Case-based Reasoning: A Case Study for Retinopathy
Authors: Vimala Balakrishnan, Mohammad R. Shakouri, Hooman Hoodeh, Loo, Huck-Soo
Abstract:
Diabetes is one of the high prevalence diseases worldwide with increased number of complications, with retinopathy as one of the most common one. This paper describes how data mining and case-based reasoning were integrated to predict retinopathy prevalence among diabetes patients in Malaysia. The knowledge base required was built after literature reviews and interviews with medical experts. A total of 140 diabetes patients- data were used to train the prediction system. A voting mechanism selects the best prediction results from the two techniques used. It has been successfully proven that both data mining and case-based reasoning can be used for retinopathy prediction with an improved accuracy of 85%.Keywords: Case-Based Reasoning, Data Mining, Prediction, Retinopathy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30221133 A New Analytic Solution for the Heat Conduction with Time-Dependent Heat Transfer Coefficient
Authors: Te Wen Tu, Sen Yung Lee
Abstract:
An alternative approach is proposed to develop the analytic solution for one dimensional heat conduction with one mixed type boundary condition and general time-dependent heat transfer coefficient. In this study, the physic meaning of the solution procedure is revealed. It is shown that the shifting function takes the physic meaning of the reciprocal of Biot function in the initial time. Numerical results show the accuracy of this study. Comparing with those given in the existing literature, the difference is less than 0.3%.
Keywords: Analytic solution, heat transfer coefficient, shifting function method, time-dependent boundary condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30121132 On the Verification of Power Nap Associated with Stage 2 Sleep and Its Application
Authors: Jetsada Arnin, Yodchanan Wongsawat
Abstract:
One of the most important causes of accidents is driver fatigue. To reduce the accidental rate, the driver needs a quick nap when feeling sleepy. Hence, searching for the minimum time period of nap is a very challenging problem. The purpose of this paper is twofold, i.e. to investigate the possible fastest time period for nap and its relationship with stage 2 sleep, and to develop an automatic stage 2 sleep detection and alarm device. The experiment for this investigation is designed with 21 subjects. It yields the result that waking up the subjects after getting into stage 2 sleep for 3-5 minutes can efficiently reduce the sleepiness. Furthermore, the automatic stage 2 sleep detection and alarm device yields the real-time detection accuracy of approximately 85% which is comparable with the commercial sleep lab system.Keywords: Stage 2 sleep, nap, sleep detection, real-time, EEG
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14591131 Predicting the Success of Bank Telemarketing Using Artificial Neural Network
Authors: Mokrane Selma
Abstract:
The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.
Keywords: Bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31501130 A New Approach for Recoverable Timestamp Ordering Schedule
Authors: Hassan M. Najadat
Abstract:
A new approach for timestamp ordering problem in serializable schedules is presented. Since the number of users using databases is increasing rapidly, the accuracy and needing high throughput are main topics in database area. Strict 2PL does not allow all possible serializable schedules and so does not result high throughput. The main advantages of the approach are the ability to enforce the execution of transaction to be recoverable and the high achievable performance of concurrent execution in central databases. Comparing to Strict 2PL, the general structure of the algorithm is simple, free deadlock, and allows executing all possible serializable schedules which results high throughput. Various examples which include different orders of database operations are discussed.Keywords: Concurrency control, schedule, timestamp, transaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20881129 A Novel Approach to Fault Classification and Fault Location for Medium Voltage Cables Based on Artificial Neural Network
Authors: H. Khorashadi-Zadeh, M. R. Aghaebrahimi
Abstract:
A novel application of neural network approach to fault classification and fault location of Medium voltage cables is demonstrated in this paper. Different faults on a protected cable should be classified and located correctly. This paper presents the use of neural networks as a pattern classifier algorithm to perform these tasks. The proposed scheme is insensitive to variation of different parameters such as fault type, fault resistance, and fault inception angle. Studies show that the proposed technique is able to offer high accuracy in both of the fault classification and fault location tasks.Keywords: Artificial neural networks, cable, fault location andfault classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18511128 Optimization of the Input Layer Structure for Feed-Forward Narx Neural Networks
Authors: Zongyan Li, Matt Best
Abstract:
This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.Keywords: Correlation analysis, F-ratio, Levenberg-Marquardt, MSE, NARX, neural network, optimisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21891127 Empirical Statistical Modeling of Rainfall Prediction over Myanmar
Authors: Wint Thida Zaw, Thinn Thu Naing
Abstract:
One of the essential sectors of Myanmar economy is agriculture which is sensitive to climate variation. The most important climatic element which impacts on agriculture sector is rainfall. Thus rainfall prediction becomes an important issue in agriculture country. Multi variables polynomial regression (MPR) provides an effective way to describe complex nonlinear input output relationships so that an outcome variable can be predicted from the other or others. In this paper, the modeling of monthly rainfall prediction over Myanmar is described in detail by applying the polynomial regression equation. The proposed model results are compared to the results produced by multiple linear regression model (MLR). Experiments indicate that the prediction model based on MPR has higher accuracy than using MLR.Keywords: Polynomial Regression, Rainfall Forecasting, Statistical forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26341126 RBF- based Meshless Method for Free Vibration Analysis of Laminated Composite Plates
Authors: Jeeoot Singh, Sandeep Singh, K. K. Shukla
Abstract:
The governing differential equations of laminated plate utilizing trigonometric shear deformation theory are derived using energy approach. The governing differential equations discretized by different radial basis functions are used to predict the free vibration behavior of symmetric laminated composite plates. Effect of orthotropy and span to thickness ratio on frequency parameter of simply supported laminated plate is presented. Numerical results show the accuracy and good convergence of radial basis functions.Keywords: Composite plates, Meshfree method, free vibration, Shear deformation, RBFs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21261125 Parametric Cost Estimating Relationships for Design Effort Estimation
Authors: Adil Salam, Nadia Bhuiyan, Gerard J. Gouw
Abstract:
The Canadian aerospace industry faces many challenges. One of them is the difficulty in estimating costs. In particular, the design effort required in a project impacts resource requirements and lead-time, and consequently the final cost. This paper presents the findings of a case study conducted for recognized global leader in the design and manufacturing of aircraft engines. The study models parametric cost estimation relationships to estimate the design effort of integrated blade-rotor low-pressure compressor fans. Several effort drivers are selected to model the relationship. Comparative analyses of three types of models are conducted. The model with the best accuracy and significance in design estimation is retained.
Keywords: Effort estimation, design, aerospace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25781124 Anomaly Detection and Characterization to Classify Traffic Anomalies Case Study: TOT Public Company Limited Network
Authors: O. Siriporn, S. Benjawan
Abstract:
This paper represents four unsupervised clustering algorithms namely sIB, RandomFlatClustering, FarthestFirst, and FilteredClusterer that previously works have not been used for network traffic classification. The methodology, the result, the products of the cluster and evaluation of these algorithms with efficiency of each algorithm from accuracy are shown. Otherwise, the efficiency of these algorithms considering form the time that it use to generate the cluster quickly and correctly. Our work study and test the best algorithm by using classify traffic anomaly in network traffic with different attribute that have not been used before. We analyses the algorithm that have the best efficiency or the best learning and compare it to the previously used (K-Means). Our research will be use to develop anomaly detection system to more efficiency and more require in the future.
Keywords: Unsupervised, clustering, anomaly, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21131123 Cement Mortar Lining as a Potential Source of Water Contamination
Authors: M. Zielina, W. Dabrowski, E. Radziszewska-Zielina
Abstract:
Several different cements have been tested to evaluate their potential to leach calcium, chromium and aluminum ions in soft water environment. The research allows comparing some different cements in order to the potential risk of water contamination. This can be done only in the same environment. To reach the results in reasonable short time intervals and to make heavy metals measurements with high accuracy, demineralized water was used. In this case the conditions of experiments are far away from the water supply practice, but short time experiments and measurably high concentrations of elements in the water solution are an important advantage. Moreover leaching mechanisms can be recognized, our experiments reported here refer to this kind of cements evaluation.
Keywords: Concrete corrosion, hydrogen sulfide, odors, reinforced concrete sewers, sewerage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33431122 A Tubular Electrode for Radiofrequency Ablation Therapy
Authors: Carlos L. Antunes, Tony R. Almeida, Nélia Raposeiro, Belarmino Gonçalves, Paulo Almeida, André Antunes
Abstract:
In the last two decades radiofrequency ablation (RFA) has been considered a promising medical procedure for the treatment of primary and secondary malignancies. However, the needle-based electrodes so far developed for this kind of treatment are not suitable for the thermal ablation of tumors located in hollow organs like esophagus, colon or bile duct. In this work a tubular electrode solution is presented. Numerical and experimental analyses were performed to characterize the volume of the lesion induced. Results show that this kind of electrode is a feasible solution and numerical simulation might provide a tool for planning RFA procedure with some accuracy.Keywords: 3D modeling, cancer, medical therapy, radiofrequency ablation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18751121 Evaluation of the Displacement-Based and the Force-Based Adaptive Pushover Methods in Seismic Response Estimation of Irregular Buildings Considering Torsional Effects
Authors: R. Abbasnia, F. Mohajeri Nav, S. Zahedifar, A. Tajik
Abstract:
Recent years, adaptive pushover methods have been developed for seismic analysis of structures. Herein, the accuracy of the displacement-based adaptive pushover (DAP) method, which is introduced by Antoniou and Pinho [2004], is evaluated for Irregular buildings. The results are compared to the force-based procedure. Both concrete and steel frame structures, asymmetric in plan and elevation are analyzed and also torsional effects are taking into the account. These analyses are performed using both near fault and far fault records. In order to verify the results, the Incremental Dynamic Analysis (IDA) is performed.Keywords: Pushover Analysis, DAP, IDA, Torsion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30971120 Enhanced Parallel-Connected Comb Filter Method for Multiple Pitch Estimation
Authors: Taro Matsuno, Yuta Otani, Ryo Tanaka, Kaori Ikezaki, Hitoshi Yamamoto, Masaru Fujieda, Yoshihisa Ishida
Abstract:
This paper presents an improvement method of the multiple pitch estimation algorithm using comb filters. Conventionally the pitch was estimated by using parallel -connected comb filters method (PCF). However, PCF has problems which often fail in the pitch estimation when there is the fundamental frequency of higher tone near harmonics of lower tone. Therefore the estimation is assigned to a wrong note when shared frequencies happen. This issue often occurs in estimating octave 3 or more. Proposed method, for solving the problem, estimates the pitch with every harmonic instead of every octave. As a result, our method reaches the accuracy of more than 80%.Keywords: music transcription, pitch estimation, comb filter, fractional delay
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14111119 K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors
Authors: Shao-Tzu Huang, Chen-Chien Hsu, Wei-Yen Wang
Abstract:
Matching high dimensional features between images is computationally expensive for exhaustive search approaches in computer vision. Although the dimension of the feature can be degraded by simplifying the prior knowledge of homography, matching accuracy may degrade as a tradeoff. In this paper, we present a feature matching method based on k-means algorithm that reduces the matching cost and matches the features between images instead of using a simplified geometric assumption. Experimental results show that the proposed method outperforms the previous linear exhaustive search approaches in terms of the inlier ratio of matched pairs.
Keywords: Feature matching, k-means clustering, scale invariant feature transform, linear exhaustive search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10861118 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features
Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli
Abstract:
Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.
Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23121117 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features
Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli
Abstract:
Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17011116 On the Prediction of Transmembrane Helical Segments in Membrane Proteins
Abstract:
The prediction of transmembrane helical segments (TMHs) in membrane proteins is an important field in the bioinformatics research. In this paper, a method based on discrete wavelet transform (DWT) has been developed to predict the number and location of TMHs in membrane proteins. PDB coded as 1F88 was chosen as an example to describe the prediction of the number and location of TMHs in membrane proteins by using this method. One group of test data sets that contain total 19 protein sequences was utilized to access the effect of this method. Compared with the prediction results of DAS, PRED-TMR2, SOSUI, HMMTOP2.0 and TMHMM2.0, the obtained results indicate that the presented method has higher prediction accuracy.Keywords: hydrophobicity, membrane protein, transmembranehelical segments, wavelet transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15821115 An Erosion-based Modeling of Abrasive Waterjet Turning
Authors: I. Zohourkari, M. Zohoor
Abstract:
In this paper, an erosion-based model for abrasive waterjet (AWJ) turning process is presented. By using modified Hashish erosion model, the volume of material removed by impacting of abrasive particles to surface of the rotating cylindrical specimen is estimated and radius reduction at each rotation is calculated. Different to previous works, the proposed model considers the continuous change in local impact angle due to change in workpiece diameter, axial traverse rate of the jet, the abrasive particle roundness and density. The accuracy of the proposed model is examined by experimental tests under various traverse rates. The final diameters estimated by the proposed model are in good accordance with experiments.Keywords: Abrasive, Erosion, impact, Particle, Waterjet, Turning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24231114 A Linear Use Case Based Software Cost Estimation Model
Authors: Hasan.O. Farahneh, Ayman A. Issa
Abstract:
Software development is moving towards agility with use cases and scenarios being used for requirements stories. Estimates of software costs are becoming even more important than before as effects of delays is much larger in successive short releases context of agile development. Thus, this paper reports on the development of new linear use case based software cost estimation model applicable in the very early stages of software development being based on simple metric. Evaluation showed that accuracy of estimates varies between 43% and 55% of actual effort of historical test projects. These results outperformed those of wellknown models when applied in the same context. Further work is being carried out to improve the performance of the proposed model when considering the effect of non-functional requirements.
Keywords: Metrics, Software Cost Estimation, Use Cases
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20131113 An Engineering Approach to Forecast Volatility of Financial Indices
Authors: Irwin Ma, Tony Wong, Thiagas Sankar
Abstract:
By systematically applying different engineering methods, difficult financial problems become approachable. Using a combination of theory and techniques such as wavelet transform, time series data mining, Markov chain based discrete stochastic optimization, and evolutionary algorithms, this work formulated a strategy to characterize and forecast non-linear time series. It attempted to extract typical features from the volatility data sets of S&P100 and S&P500 indices that include abrupt drops, jumps and other non-linearity. As a result, accuracy of forecasting has reached an average of over 75% surpassing any other publicly available results on the forecast of any financial index.Keywords: Discrete stochastic optimization, genetic algorithms, genetic programming, volatility forecast
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16301112 Self-evolving Neural Networks Based On PSO and JPSO Algorithms
Authors: Abdussamad Ismail, Dong-Sheng Jeng
Abstract:
A self-evolution algorithm for optimizing neural networks using a combination of PSO and JPSO is proposed. The algorithm optimizes both the network topology and parameters simultaneously with the aim of achieving desired accuracy with less complicated networks. The performance of the proposed approach is compared with conventional back-propagation networks using several synthetic functions, with better results in the case of the former. The proposed algorithm is also implemented on slope stability problem to estimate the critical factor of safety. Based on the results obtained, the proposed self evolving network produced a better estimate of critical safety factor in comparison to conventional BPN network.
Keywords: Neural networks, Topology evolution, Particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18081111 Image Sensor Matrix High Speed Simulation
Authors: Z. Feng, V. Viswanathan, D. Navarro, I. O'Connor
Abstract:
This paper presents a new high speed simulation methodology to solve the long simulation time problem of CMOS image sensor matrix. Generally, for integrating the pixel matrix in SOC and simulating the system performance, designers try to model the pixel in various modeling languages such as VHDL-AMS, SystemC or Matlab. We introduce a new alternative method based on spice model in cadence design platform to achieve accuracy and reduce simulation time. The simulation results indicate that the pixel output voltage maximum error is at 0.7812% and time consumption reduces from 2.2 days to 13 minutes achieving about 240X speed-up for the 256x256 pixel matrix.
Keywords: CMOS image sensor, high speed simulation, image sensor matrix simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20131110 Vehicle Velocity Estimation for Traffic Surveillance System
Authors: H. A. Rahim, U. U. Sheikh, R. B. Ahmad, A. S. M. Zain
Abstract:
This paper describes an algorithm to estimate realtime vehicle velocity using image processing technique from the known camera calibration parameters. The presented algorithm involves several main steps. First, the moving object is extracted by utilizing frame differencing technique. Second, the object tracking method is applied and the speed is estimated based on the displacement of the object-s centroid. Several assumptions are listed to simplify the transformation of 2D images from 3D real-world images. The results obtained from the experiment have been compared to the estimated ground truth. From this experiment, it exhibits that the proposed algorithm has achieved the velocity accuracy estimation of about ± 1.7 km/h.
Keywords: camera calibration, object tracking, velocity estimation, video image processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4456