Search results for: power-aware signal integrity analysis
9134 The Forensic Swing of Things: The Current Legal and Technical Challenges of IoT Forensics
Authors: Pantaleon Lutta, Mohamed Sedky, Mohamed Hassan
Abstract:
The inability of organizations to put in place management control measures for Internet of Things (IoT) complexities persists to be a risk concern. Policy makers have been left to scamper in finding measures to combat these security and privacy concerns. IoT forensics is a cumbersome process as there is no standardization of the IoT products, no or limited historical data are stored on the devices. This paper highlights why IoT forensics is a unique adventure and brought out the legal challenges encountered in the investigation process. A quadrant model is presented to study the conflicting aspects in IoT forensics. The model analyses the effectiveness of forensic investigation process versus the admissibility of the evidence integrity; taking into account the user privacy and the providers’ compliance with the laws and regulations. Our analysis concludes that a semi-automated forensic process using machine learning, could eliminate the human factor from the profiling and surveillance processes, and hence resolves the issues of data protection (privacy and confidentiality).
Keywords: Cloud forensics, data protection laws, GDPR, IoT forensics, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10999133 Analyzing the Historical Ayazma Bath within the Scope of Integrated Preservation and Specifying the Criteria for Reuse
Authors: Meryem Elif Çelebi Yakartepe, Ayşe Betül Gökarslan
Abstract:
Today, preservation of the historical constructions in "single construction" scale creates an inadequate preservation model in terms of the integrity of the historical environment in which they are located. However, in order to preserve these structures forming this integrity with a holistic approach, the structures either need to continue their unique functions or to be reshaped for function conforming to today's comfort conditions brought by the modern life.
In this work, the preservation of Ayazma Social Complex located in Ayazma Neighborhood of Üsküdar, one of the most important historical districts of İstanbul, with integrated preservation method has been discussed. In the conventional Turkish architecture, the social complex is a structure complex formed via constructing the public buildings required for the daily life of the people living in a settlement. Thus, the preservation of the social complexes within the scope of "integrated preservation" has gained importance. Ayazma Social Complex that forms the examination area of this work consists of a mosque in its center and structures around this mosque such as sultan mansion, time assignment center, primary school, stores, bath and water reservoirs. Mosque, sultan mansion and the water reservoirs survived to today as mostly preserved status. However, time assignment center, primary school and the stores didn't survive to today and new structures were built on their plots. The bath was mostly damaged and only the wall residues survive to today. Thus, it's urgent and crucial especially carry out the preservation restoration of the bath in accordance with integrated preservation principles. The preservation problems of the bath based on the social complex were determined as a working method and preservation suggestions were made to overcome these problems and to include the bath into daily life. Furthermore, it was suggested that the bath should be reshaped for a different function in order to be preserved with the social complex.
Keywords: Üsküdar, Ayazma Complex, Ayazma Bath, Conservation, Restoration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18209132 Use of Fuzzy Edge Image in Block Truncation Coding for Image Compression
Authors: Amarunnishad T.M., Govindan V.K., Abraham T. Mathew
Abstract:
An image compression method has been developed using fuzzy edge image utilizing the basic Block Truncation Coding (BTC) algorithm. The fuzzy edge image has been validated with classical edge detectors on the basis of the results of the well-known Canny edge detector prior to applying to the proposed method. The bit plane generated by the conventional BTC method is replaced with the fuzzy bit plane generated by the logical OR operation between the fuzzy edge image and the corresponding conventional BTC bit plane. The input image is encoded with the block mean and standard deviation and the fuzzy bit plane. The proposed method has been tested with test images of 8 bits/pixel and size 512×512 and found to be superior with better Peak Signal to Noise Ratio (PSNR) when compared to the conventional BTC, and adaptive bit plane selection BTC (ABTC) methods. The raggedness and jagged appearance, and the ringing artifacts at sharp edges are greatly reduced in reconstructed images by the proposed method with the fuzzy bit plane.Keywords: Image compression, Edge detection, Ground truth image, Peak signal to noise ratio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16999131 Improved Small-Signal Characteristics of Infrared 850 nm Top-Emitting Vertical-Cavity Lasers
Authors: Ahmad Al-Omari, Osama Khreis, Ahmad M. K. Dagamseh, Abdullah Ababneh, Kevin Lear
Abstract:
High-speed infrared vertical-cavity surface-emitting laser diodes (VCSELs) with Cu-plated heat sinks were fabricated and tested. VCSELs with 10 mm aperture diameter and 4 mm of electroplated copper demonstrated a -3dB modulation bandwidth (f-3dB) of 14 GHz and a resonance frequency (fR) of 9.5 GHz at a bias current density (Jbias) of only 4.3 kA/cm2, which corresponds to an improved f-3dB2/Jbias ratio of 44 GHz2/kA/cm2. At higher and lower bias current densities, the f-3dB2/ Jbias ratio decreased to about 30 GHz2/kA/cm2 and 18 GHz2/kA/cm2, respectively. Examination of the analogue modulation response demonstrated that the presented VCSELs displayed a steady f-3dB/ fR ratio of 1.41±10% over the whole range of the bias current (1.3Ith to 6.2Ith). The devices also demonstrated a maximum modulation bandwidth (f-3dB max) of more than 16 GHz at a bias current less than the industrial bias current standard for reliability by 25%.Keywords: Current density, High-speed VCSELs, Modulation bandwidth, Small-Signal Characteristics, Thermal impedance, Vertical-cavity surface-emitting lasers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12919130 The Relationship between Fluctuation of Biological Signal: Finger Plethysmogram in Conversation and Anthropophobic Tendency
Authors: Haruo Okabayashi
Abstract:
Human biological signals (pulse wave and brain wave, etc.) have a rhythm which shows fluctuations. This study investigates the relationship between fluctuations of biological signals which are shown by a finger plethysmogram (i.e., finger pulse wave) in conversation and anthropophobic tendency, and identifies whether the fluctuation could be an index of mental health. 32 college students participated in the experiment. The finger plethysmogram of each subject was measured in the following conversation situations: Fun memory talking/listening situation and regrettable memory talking/ listening situation for three minutes each. Lyspect 3.5 was used to collect the data of the finger plethysmogram. Since Lyspect calculates the Lyapunov spectrum, it is possible to obtain the largest Lyapunov exponent (LLE). LLE is an indicator of the fluctuation and shows the degree to which a measure is going away from close proximity to the track in a dynamical system. Before the finger plethysmogram experiment, each participant took the psychological test questionnaire “Anthropophobic Scale.” The scale measures the social phobia trend close to the consciousness of social phobia. It is revealed that there is a remarkable relationship between the fluctuation of the finger plethysmography and anthropophobic tendency scale in talking about a regrettable story in conversation: The participants (N=15) who have a low anthropophobic tendency show significantly more fluctuation of finger pulse waves than the participants (N=17) who have a high anthropophobic tendency (F (1, 31) =5.66, p<0.05). That is, the participants who have a low anthropophobic tendency make conversation flexibly using large fluctuation of biological signal; on the other hand, the participants who have a high anthropophobic tendency constrain a conversation because of small fluctuation. Therefore, fluctuation is not an error but an important drive to make better relationships with others and go towards the development of interaction. In considering mental health, the fluctuation of biological signals would be an important indicator.
Keywords: Anthropophobic tendency, finger plethymogram, fluctuation of biological signal, LLE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13329129 Vibroacoustic Modulation of Wideband Vibrations and Its Possible Application for Windmill Blade Diagnostics
Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu
Abstract:
Wind turbine has become one of the most popular energy production methods. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the VAM are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.
Keywords: Damage detection, turbine blades, Vibro-Acoustic Structural Health Monitoring, SHM, Detecting of Envelope Modulation on Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4499128 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: Classification, classifier fusion, CNN, Deep Learning, prediction, SNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7209127 Analysis of Lightweight Register Hardware Threat
Authors: Yang Luo, Beibei Wang
Abstract:
In this paper, we present a design methodology of lightweight register transfer level (RTL) hardware threat implemented based on a MAX II FPGA platform. The dynamic power consumed by the toggling of the various bit of registers as well as the dynamic power consumed per unit of logic circuits were analyzed. The hardware threat was designed taking advantage of the differences in dynamic power consumed per unit of logic circuits to hide the transfer information. The experiment result shows that the register hardware threat was successfully implemented by using different dynamic power consumed per unit of logic circuits to hide the key information of DES encryption module. It needs more than 100000 sample curves to reduce the background noise by comparing the sample space when it completely meets the time alignment requirement. In additional, an external trigger signal is playing a very important role to detect the hardware threat in this experiment.
Keywords: Side-channel analysis, hardware threat, register transfer level, dynamic power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9939126 A Grid Synchronization Method Based on Adaptive Notch Filter for SPV System with Modified MPPT
Authors: Priyanka Chaudhary, M. Rizwan
Abstract:
This paper presents a grid synchronization technique based on adaptive notch filter for SPV (Solar Photovoltaic) system along with MPPT (Maximum Power Point Tracking) techniques. An efficient grid synchronization technique offers proficient detection of various components of grid signal like phase and frequency. It also acts as a barrier for harmonics and other disturbances in grid signal. A reference phase signal synchronized with the grid voltage is provided by the grid synchronization technique to standardize the system with grid codes and power quality standards. Hence, grid synchronization unit plays important role for grid connected SPV systems. As the output of the PV array is fluctuating in nature with the meteorological parameters like irradiance, temperature, wind etc. In order to maintain a constant DC voltage at VSC (Voltage Source Converter) input, MPPT control is required to track the maximum power point from PV array. In this work, a variable step size P & O (Perturb and Observe) MPPT technique with DC/DC boost converter has been used at first stage of the system. This algorithm divides the dPpv/dVpv curve of PV panel into three separate zones i.e. zone 0, zone 1 and zone 2. A fine value of tracking step size is used in zone 0 while zone 1 and zone 2 requires a large value of step size in order to obtain a high tracking speed. Further, adaptive notch filter based control technique is proposed for VSC in PV generation system. Adaptive notch filter (ANF) approach is used to synchronize the interfaced PV system with grid to maintain the amplitude, phase and frequency parameters as well as power quality improvement. This technique offers the compensation of harmonics current and reactive power with both linear and nonlinear loads. To maintain constant DC link voltage a PI controller is also implemented and presented in this paper. The complete system has been designed, developed and simulated using SimPower System and Simulink toolbox of MATLAB. The performance analysis of three phase grid connected solar photovoltaic system has been carried out on the basis of various parameters like PV output power, PV voltage, PV current, DC link voltage, PCC (Point of Common Coupling) voltage, grid voltage, grid current, voltage source converter current, power supplied by the voltage source converter etc. The results obtained from the proposed system are found satisfactory.
Keywords: Solar photovoltaic systems, MPPT, voltage source converter, grid synchronization technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19689125 GSM-Based Approach for Indoor Localization
Authors: M.Stella, M. Russo, D. Begušić
Abstract:
Ability of accurate and reliable location estimation in indoor environment is the key issue in developing great number of context aware applications and Location Based Services (LBS). Today, the most viable solution for localization is the Received Signal Strength (RSS) fingerprinting based approach using wireless local area network (WLAN). This paper presents two RSS fingerprinting based approaches – first we employ widely used WLAN based positioning as a reference system and then investigate the possibility of using GSM signals for positioning. To compare them, we developed a positioning system in real world environment, where realistic RSS measurements were collected. Multi-Layer Perceptron (MLP) neural network was used as the approximation function that maps RSS fingerprints and locations. Experimental results indicate advantage of WLAN based approach in the sense of lower localization error compared to GSM based approach, but GSM signal coverage by far outreaches WLAN coverage and for some LBS services requiring less precise accuracy our results indicate that GSM positioning can also be a viable solution.Keywords: Indoor positioning, WLAN, GSM, RSS, location fingerprints, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27479124 Applications of Stable Distributions in Time Series Analysis, Computer Sciences and Financial Markets
Authors: Mohammad Ali Baradaran Ghahfarokhi, Parvin Baradaran Ghahfarokhi
Abstract:
In this paper, first we introduce the stable distribution, stable process and theirs characteristics. The a -stable distribution family has received great interest in the last decade due to its success in modeling data, which are too impulsive to be accommodated by the Gaussian distribution. In the second part, we propose major applications of alpha stable distribution in telecommunication, computer science such as network delays and signal processing and financial markets. At the end, we focus on using stable distribution to estimate measure of risk in stock markets and show simulated data with statistical softwares.
Keywords: stable distribution, SaS, infinite variance, heavy tail networks, VaR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20619123 Fast Wavelet Image Denoising Based on Local Variance and Edge Analysis
Authors: Gaoyong Luo
Abstract:
The approach based on the wavelet transform has been widely used for image denoising due to its multi-resolution nature, its ability to produce high levels of noise reduction and the low level of distortion introduced. However, by removing noise, high frequency components belonging to edges are also removed, which leads to blurring the signal features. This paper proposes a new method of image noise reduction based on local variance and edge analysis. The analysis is performed by dividing an image into 32 x 32 pixel blocks, and transforming the data into wavelet domain. Fast lifting wavelet spatial-frequency decomposition and reconstruction is developed with the advantages of being computationally efficient and boundary effects minimized. The adaptive thresholding by local variance estimation and edge strength measurement can effectively reduce image noise while preserve the features of the original image corresponding to the boundaries of the objects. Experimental results demonstrate that the method performs well for images contaminated by natural and artificial noise, and is suitable to be adapted for different class of images and type of noises. The proposed algorithm provides a potential solution with parallel computation for real time or embedded system application.Keywords: Edge strength, Fast lifting wavelet, Image denoising, Local variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20289122 Security Architecture for Cloud Networking: A Survey
Authors: Vishnu Pratap Singh Kirar
Abstract:
In the cloud computing hierarchy IaaS is the lowest layer, all other layers are built over it. Thus it is the most important layer of cloud and requisite more importance. Along with advantages IaaS faces some serious security related issue. Mainly Security focuses on Integrity, confidentiality and availability. Cloud computing facilitate to share the resources inside as well as outside of the cloud. On the other hand, cloud still not in the state to provide surety to 100% data security. Cloud provider must ensure that end user/client get a Quality of Service. In this report we describe possible aspects of cloud related security.
Keywords: Cloud Computing, Cloud Networking, IaaS, PaaS, SaaS, Cloud Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22449121 An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method
Authors: Thirasak Panyaphirawat, Pairoj Sapsmarnwong, Teeratas Pornyungyuen
Abstract:
This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory.
Keywords: Design of Experiment, Taguchi Design, Optimization, Analysis of Variance, Machining Parameters, Horizontal Boring Tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27069120 SySRA: A System of a Continuous Speech Recognition in Arab Language
Authors: Samir Abdelhamid, Noureddine Bouguechal
Abstract:
We report in this paper the model adopted by our system of continuous speech recognition in Arab language SySRA and the results obtained until now. This system uses the database Arabdic-10 which is a corpus of word for the Arab language and which was manually segmented. Phonetic decoding is represented by an expert system where the knowledge base is translated in the form of production rules. This expert system transforms a vocal signal into a phonetic lattice. The higher level of the system takes care of the recognition of the lattice thus obtained by deferring it in the form of written sentences (orthographical Form). This level contains initially the lexical analyzer which is not other than the module of recognition. We subjected this analyzer to a set of spectrograms obtained by dictating a score of sentences in Arab language. The rate of recognition of these sentences is about 70% which is, to our knowledge, the best result for the recognition of the Arab language. The test set consists of twenty sentences from four speakers not having taken part in the training.Keywords: Continuous speech recognition, lexical analyzer, phonetic decoding, phonetic lattice, vocal signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13899119 ECG-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline R. T. Alipo-on, Francesca I. F. Escobar, Myles J. T. Tan, Hezerul Abdul Karim, Nouar AlDahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases which are considered as one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis on the ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heart beat types. The dataset used in this work is the synthetic MIT-Beth Israel Hospital (MIT-BIH) Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.
Keywords: Heartbeat classification, convolutional neural network, electrocardiogram signals, ECG signals, generative adversarial networks, long short-term memory, LSTM, ResNet-50.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889118 Structural Health Monitoring of Buildings and Infrastructure
Authors: Mojtaba Valinejadshoubi, Ashutosh Bagchi, Osama Moselhi
Abstract:
Structures such as buildings, bridges, dams, wind turbines etc. need to be maintained against various factors such as deterioration, excessive loads, environment, temperature, etc. Choosing an appropriate monitoring system is important for determining any critical damage to a structure and address that to avoid any adverse consequence. Structural Health Monitoring (SHM) has emerged as an effective technique to monitor the health of the structures. SHM refers to an ongoing structural performance assessment using different kinds of sensors attached to or embedded in the structures to evaluate their integrity and safety to help engineers decide on rehabilitation measures. Ability of SHM in identifying the location and severity of structural damages by considering any changes in characteristics of the structures such as their frequency, stiffness and mode shapes helps engineers to monitor the structures and take the most effective corrective actions to maintain their safety and extend their service life. The main objective of this study is to review the overall SHM process specifically determining the natural frequency of an instrumented simply-supported concrete beam using modal testing and finite element model updating.
Keywords: Structural Health Monitoring, Natural Frequency, FFT analysis, Finite element model updating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24429117 Motor Imaginary Signal Classification Using Adaptive Recursive Bandpass Filter and Adaptive Autoregressive Models for Brain Machine Interface Designs
Authors: Vickneswaran Jeyabalan, Andrews Samraj, Loo Chu Kiong
Abstract:
The noteworthy point in the advancement of Brain Machine Interface (BMI) research is the ability to accurately extract features of the brain signals and to classify them into targeted control action with the easiest procedures since the expected beneficiaries are of disabled. In this paper, a new feature extraction method using the combination of adaptive band pass filters and adaptive autoregressive (AAR) modelling is proposed and applied to the classification of right and left motor imagery signals extracted from the brain. The introduction of the adaptive bandpass filter improves the characterization process of the autocorrelation functions of the AAR models, as it enhances and strengthens the EEG signal, which is noisy and stochastic in nature. The experimental results on the Graz BCI data set have shown that by implementing the proposed feature extraction method, a LDA and SVM classifier outperforms other AAR approaches of the BCI 2003 competition in terms of the mutual information, the competition criterion, or misclassification rate.
Keywords: Adaptive autoregressive, adaptive bandpass filter, brain machine Interface, EEG, motor imaginary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29019116 Optimized Data Fusion in an Intelligent Integrated GPS/INS System Using Genetic Algorithm
Authors: Ali Asadian, Behzad Moshiri, Ali Khaki Sedigh, Caro Lucas
Abstract:
Most integrated inertial navigation systems (INS) and global positioning systems (GPS) have been implemented using the Kalman filtering technique with its drawbacks related to the need for predefined INS error model and observability of at least four satellites. Most recently, a method using a hybrid-adaptive network based fuzzy inference system (ANFIS) has been proposed which is trained during the availability of GPS signal to map the error between the GPS and the INS. Then it will be used to predict the error of the INS position components during GPS signal blockage. This paper introduces a genetic optimization algorithm that is used to update the ANFIS parameters with respect to the INS/GPS error function used as the objective function to be minimized. The results demonstrate the advantages of the genetically optimized ANFIS for INS/GPS integration in comparison with conventional ANFIS specially in the cases of satellites- outages. Coping with this problem plays an important role in assessment of the fusion approach in land navigation.Keywords: Adaptive Network based Fuzzy Inference System (ANFIS), Genetic optimization, Global Positioning System (GPS), Inertial Navigation System (INS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19099115 Determination of the Concentrated State Using Multiple EEG Channels
Authors: Tae Jin Choi, Jong Ok Kim, Sang Min Jin, Gilwon Yoon
Abstract:
Analysis of EEG brainwave provides information on mental or emotional states. One of the particular states that can have various applications in human machine interface (HMI) is concentration. 8-channel EEG signals were measured and analyzed. The concentration index was compared during resting and concentrating periods. Among eight channels, locations the frontal lobe (Fp1 and Fp2) showed a clear increase of the concentration index during concentration regardless of subjects. The rest six channels produced conflicting observations depending on subjects. At this time, it is not clear whether individual difference or how to concentrate made these results for the rest six channels. Nevertheless, it is expected that Fp1 and Fp2 are promising locations for extracting control signal for HMI applications.
Keywords: Concentration, EEG, human machine interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34379114 Pre-Deflection Routing with Control Packet Signal Scheme in Optical Burst Switch Networks
Authors: Jaipal Bisht, Aditya Goel
Abstract:
Optical Burst Switching (OBS) is a promising technology for the future generation Internet. Control architecture and Contention resolution are the main issues faced by the Optical Burst Switching networks. In this paper we are only taking care of the Contention problem and to overcome this issue we propose Pre-Deflection Routing with Control Packet Signal Scheme for Contention Resolution in Optical Burst Switch Networks. In this paper Pre-deflection routing approach has been proposed in which routing is carried out in two ways, Shortest Path First (SPF) and Least Hop First (LHF) Routing to forward the clusters and canoes respectively. Hereafter Burst Offset Time Control Algorithm has been proposed where a forward control packet (FCP) collects the congestion price and contention price along its paths. Thereafter a reverse-direction control packet (RCP) sent by destination node which delivers the information of FCP to the source node, and source node uses this information to revise its offset time and burst length.
Keywords: Contention Resolution, FCP, OBS, Offset Time, PST, RCP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19009113 Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems
Authors: Kifah Tout, Nisrine Sinno, Mohamad Mikati
Abstract:
Many studies have focused on the nonlinear analysis of electroencephalography (EEG) mainly for the characterization of epileptic brain states. It is assumed that at least two states of the epileptic brain are possible: the interictal state characterized by a normal apparently random, steady-state EEG ongoing activity; and the ictal state that is characterized by paroxysmal occurrence of synchronous oscillations and is generally called in neurology, a seizure. The spatial and temporal dynamics of the epileptogenic process is still not clear completely especially the most challenging aspects of epileptology which is the anticipation of the seizure. Despite all the efforts we still don-t know how and when and why the seizure occurs. However actual studies bring strong evidence that the interictal-ictal state transition is not an abrupt phenomena. Findings also indicate that it is possible to detect a preseizure phase. Our approach is to use the neural network tool to detect interictal states and to predict from those states the upcoming seizure ( ictal state). Analysis of the EEG signal based on neural networks is used for the classification of EEG as either seizure or non-seizure. By applying prediction methods it will be possible to predict the upcoming seizure from non-seizure EEG. We will study the patients admitted to the epilepsy monitoring unit for the purpose of recording their seizures. Preictal, ictal, and post ictal EEG recordings are available on such patients for analysis The system will be induced by taking a body of samples then validate it using another. Distinct from the two first ones a third body of samples is taken to test the network for the achievement of optimum prediction. Several methods will be tried 'Backpropagation ANN' and 'RBF'.Keywords: Artificial neural network (ANN), automatic prediction, epileptic seizures analysis, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15409112 Classification of Discharges Initiated by Liquid Droplet on Insulation Material under AC Voltages Adopting UHF Technique
Authors: R. Sarathi, G. Nagesh, K. Vasudevan
Abstract:
In the present work, an attempt has been made to understand the feasibility of using UHF technique for identification of any corona discharges/ arcing in insulating material due to water droplets. The sensors of broadband type are useful for identification of such discharges. It is realised that arcing initiated by liquid droplet radiates UHF signals in the entire bandwidth up to 2 GHz. The frequency content of the UHF signal generated due to corona/arcing is not much varied in epoxy nanocomposites with different weight percentage of clay content. The exfoliated/intercalated properties were analysed through TEM studies. It is realized that corona initiated discharges are of intermittent process. The hydrophobicity of the material characterized through contact angle measurement. It is realized that low Wt % of nanoclay content in epoxy resin reduces the surface carbonization due to arcing/corona discharges. The results of the study with gamma irradiated specimen indicates that contact angle, discharge inception time and evaporation time of the liquid are much lower than the virgin epoxy nanocomposite material.Keywords: Arcing, Corona, epoxy resin, insulation, nanocomposites, UHF signal, water droplet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19169111 Damping Power System Oscillations Improvement by FACTS Devices: A Comparison between SSSC and STATCOM
Authors: J. Barati, A. Saeedian, S. S. Mortazavi
Abstract:
The main objective of this paper is a comparative investigate in enhancement of damping power system oscillation via coordinated design of the power system stabilizer (PSS) and static synchronous series compensator (SSSC) and static synchronous compensator (STATCOM). The design problem of FACTS-based stabilizers is formulated as a GA based optimization problem. In this paper eigenvalue analysis method is used on small signal stability of single machine infinite bus (SMIB) system installed with SSSC and STATCOM. The generator is equipped with a PSS. The proposed stabilizers are tested on a weakly connected power system with different disturbances and loading conditions. This aim is to enhance both rotor angle and power system stability. The eigenvalue analysis and non-linear simulation results are presented to show the effects of these FACTS-based stabilizers and reveal that SSSC exhibits the best effectiveness on damping power system oscillation.Keywords: Power system stability, PSS, SSSC, STATCOM, Coordination, Optimization, Damping Oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40129110 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement
Authors: Pogula Rakesh, T. Kishore Kumar
Abstract:
Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR) and SNR Loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.
Keywords: Adaptive filter, Adaptive Noise Canceller, Mean Squared Error, Noise reduction, NLMS, RLS, SNR, SNR Loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31839109 Low Cost Real Time Robust Identification of Impulsive Signals
Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman
Abstract:
This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.
Keywords: Sound Detection, Impulsive Signal, Background Noise, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23349108 The Renewal Strategy for Ancient Residential Area in Small and Medium-Sized Cities Based on Field Research of Changshu City in China
Abstract:
Renewing ancient residential areas is an integral part of the sustainable development of modern cities. Compared with a metropolis, the old areas of small and medium-sized cities is more complicated to update, as the spatial form is more fragmented. In this context, the author takes as the research object, the ancient town of Changshu City, which is a small city representative in China with a history of more than 1,200 years. Through the analysis of urban research and update projects, the spatial evolution characteristics and renewal strategies of small ancient urban settlements are studied. On this basis, it is proposed to protect the residential area from the perspective of integrity and sustainability, strengthen the core public part, control the district building, and reshape the important interface. Renewing small and medium-sized urban areas should respect the rhythm of their own urban development and gradually complete the update, not blindly copying the experience of large cities.
Keywords: Ancient residential area, Changshu, city renewal strategy, small and medium-sized cities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5949107 Texture Feature Extraction using Slant-Hadamard Transform
Authors: M. J. Nassiri, A. Vafaei, A. Monadjemi
Abstract:
Random and natural textures classification is still one of the biggest challenges in the field of image processing and pattern recognition. In this paper, texture feature extraction using Slant Hadamard Transform was studied and compared to other signal processing-based texture classification schemes. A parametric SHT was also introduced and employed for natural textures feature extraction. We showed that a subtly modified parametric SHT can outperform ordinary Walsh-Hadamard transform and discrete cosine transform. Experiments were carried out on a subset of Vistex random natural texture images using a kNN classifier.Keywords: Texture Analysis, Slant Transform, Hadamard, DCT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26739106 Classification of Non Stationary Signals Using Ben Wavelet and Artificial Neural Networks
Authors: Mohammed Benbrahim, Khalid Benjelloun, Aomar Ibenbrahim, Adil Daoudi
Abstract:
The automatic classification of non stationary signals is an important practical goal in several domains. An essential classification task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, we present a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "Ben wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.
Keywords: Seismic signals, Ben Wavelet, Dimensionality reduction, Artificial neural networks, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14509105 A Semi- One Time Pad Using Blind Source Separation for Speech Encryption
Authors: Long Jye Sheu, Horng-Shing Chiou, Wei Ching Chen
Abstract:
We propose a new perspective on speech communication using blind source separation. The original speech is mixed with key signals which consist of the mixing matrix, chaotic signals and a random noise. However, parts of the keys (the mixing matrix and the random noise) are not necessary in decryption. In practice implement, one can encrypt the speech by changing the noise signal every time. Hence, the present scheme obtains the advantages of a One Time Pad encryption while avoiding its drawbacks in key exchange. It is demonstrated that the proposed scheme is immune against traditional attacks.Keywords: one time pad, blind source separation, independentcomponent analysis, speech encryption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572