Search results for: friction angle
336 On the Oil Repellency of Nanotextured Aluminum Surface
Authors: G. Momen, R. Jafari, M. Farzaneh
Abstract:
Two different superhydrophobic surfaces were elaborated and their oil repellency behavior was evaluated using several liquid with different surface tension. A silicone rubber/SiO2 nanocomposite coated (A) on aluminum substrate by “spin-coating" and the sample B was an anodized aluminum surface covered by Teflon-like coating. A high static contact angle about ∼162° was measured for two prepared surfaces on which the water droplet rolloff. Scanning electron microscopy (SEM) showed the presence of micro/nanostructures for both sample A and B similar to that of lotus leaf. However the sample A presented significantly different behaviour of wettability against the low surface tension liquid. Sample A has been wetted totally by oil (dodecan) droplet while sample B showed oleophobic behaviour. Oleophobic property of Teflon like coating can be contributed to the presence of CF2 and CF3 functional group which was shown by XPS analysis.Keywords: Oleophobic, Superhydrophobic, Aluminum surface, Nano-texture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250335 Two Wheels Balancing Robot with Line Following Capability
Authors: Nor Maniha Abdul Ghani, Faradila Naim, Tan Piow Yon
Abstract:
This project focuses on the development of a line follower algorithm for a Two Wheels Balancing Robot. In this project, ATMEGA32 is chosen as the brain board controller to react towards the data received from Balance Processor Chip on the balance board to monitor the changes of the environment through two infra-red distance sensor to solve the inclination angle problem. Hence, the system will immediately restore to the set point (balance position) through the implementation of internal PID algorithms at the balance board. Application of infra-red light sensors with the PID control is vital, in order to develop a smooth line follower robot. As a result of combination between line follower program and internal self balancing algorithms, we are able to develop a dynamically stabilized balancing robot with line follower function.Keywords: infra-red sensor, PID algorithms, line followerBalancing robot
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7524334 Comparative Analysis of Vibration between Laminated Composite Plates with and without Holes under Compressive Loads
Authors: Bahi-Eddine Lahouel, Mohamed Guenfoud
Abstract:
In this study, a vibration analysis was carried out of symmetric angle-ply laminated composite plates with and without square hole when subjected to compressive loads, numerically. A buckling analysis is also performed to determine the buckling load of laminated plates. For each fibre orientation, the compression load is taken equal to 50% of the corresponding buckling load. In the analysis, finite element method (FEM) was applied to perform parametric studies, the effects of degree of orthotropy and stacking sequence upon the fundamental frequencies and buckling loads are discussed. The results show that the presence of a constant compressive load tends to reduce uniformly the natural frequencies for materials which have a low degree of orthotropy. However, this reduction becomes non-uniform for materials with a higher degree of orthotropy.Keywords: Vibration, Buckling, Cutout, Laminated composite, FEM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056333 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger
Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin
Abstract:
The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.Keywords: Heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172332 Interface Analysis of Annealed Al/Cu Cladded Sheet
Authors: Joon Ho Kim, Tae Kwon Ha
Abstract:
Effect of aging treatment on microstructural aspects of interfacial layers of the Cu/Al clad sheet produced by differential speed rolling (DSR) process were studied by electron back scattered diffraction (EBSD). Clad sheet of Al/Cu has been fabricated by using DSR, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Rolling was carried out at 100oC with speed ratio of 2, in which the total thickness reduction was 45%. Interface layers of clad sheet were analyzed by EBSD after subsequent annealing at 400oC for 30 to 120min. With increasing annealing time, thickness of interface layer and fraction of high angle grain boundary were increased and average grain size was decreased.
Keywords: Aluminum/Copper clad sheet, differential speed rolling, interface layer, microstructure, annealing, electron back scattered diffraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088331 Numerical Investigation of Wave Interaction with Double Vertical Slotted Walls
Authors: H. Ahmed, A. Schlenkhoff
Abstract:
Recently, permeable breakwaters have been suggested to overcome the disadvantages of fully protection breakwaters. These protection structures have minor impacts on the coastal environment and neighboring beaches where they provide a more economical protection from waves and currents. For regular waves, a numerical model is used (FLOW-3D, VOF) to investigate the hydraulic performance of a permeable breakwater. The model of permeable breakwater consists of a pair of identical vertical slotted walls with an impermeable upper and lower part, where the draft is a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at distant of 0.5 and 1.5 of the water depth from the first one. The numerical model is validated by comparisons with previous laboratory data and semi-analytical results of the same model. A good agreement between the numerical results and both laboratory data and semi-analytical results has been shown and the results indicate the applicability of the numerical model to reproduce most of the important features of the interaction. Through the numerical investigation, the friction factor of the model is carefully discussed.
Keywords: Coastal structures, permeable breakwater, slotted wall, numerical model, energy dissipation coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249330 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle
Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin
Abstract:
A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.Keywords: Balance control, synchronization control, two wheel inverted pendulum, TWIP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591329 A Design of Anisotropic Wet Etching System to Reduce Hillocks on Etched Surface of Silicon Substrate
Authors: Alonggot Limcharoen Kaeochotchuangkul, Pathomporn Sawatchai
Abstract:
This research aims to design and build a wet etching system, which is suitable for anisotropic wet etching, in order to reduce etching time, to reduce hillocks on the etched surface (to reduce roughness), and to create a 45-degree wall angle (micro-mirror). This study would start by designing a wet etching system. There are four main components in this system: an ultrasonic cleaning, a condenser, a motor and a substrate holder. After that, an ultrasonic machine was modified by applying a condenser to maintain the consistency of the solution concentration during the etching process and installing a motor for improving the roughness. This effect on the etch rate and the roughness showed that the etch rate increased and the roughness was reduced.
Keywords: Anisotropic wet etching, wet etching system, Hillocks, ultrasonic cleaning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696328 Thermal Analysis of Circular Pin-fin with Rectangular Slot at the Center by Forced Convection
Authors: Kavita H. Dhanawade, Hanamant S. Dhanawade, Ajay Kashikar, Shweta Matey, Mahesh Bhadane, Sunny Sarraf
Abstract:
Extended surfaces are commonly used in practice to enhance heat transfer. Most of the engineering problems require high performance heat transfer components with light weight, volumes, accommodating shapes, costs and reliability depending on industrial applications. This paper reports an experimental analysis to investigate heat transfer enhancement by forced convection using different sizes of pin-fin with rectangular slots at the center. The cross sectional area of the oblong duct was 200 mm x 80 mm. The info utilized in performance analysis was obtained experimentally for material, aluminum at 200 Watts heat input varying velocity 1 m/s to 5 m/s. Using the Taguchi experimental design method, optimum design parameters and their levels were analysed. Nusselt number and friction factor were considered as a performance characteristic parameter. An An L9 (33) orthogonal array was designated as an experimental proposal. Optimum results were found by experimenting. It is observed that pin-fins with different slots sizes have a better impact on Nusselt Number.Keywords: Heat transfer coefficient, Nusselt Number, pin-fin, forced convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806327 A 3 Dimensional Simulation of the Repeated Load Triaxial Test
Authors: Bao Thach Nguyen, Abbas Mohajerani
Abstract:
A typical flexible pavement structure consists of the surface, base, sub-base and subgrade soil. The loading traffic is transferred from the top layer with higher stiffness to the layer below with less stiffness. Under normal traffic loading, the behaviour of flexible pavement is very complex and can be predicted by using the repeated load triaxial test equipment in the laboratory. However, the nature of the repeated load triaxial testing procedure is considered time-consuming, complicated and expensive, and it is a challenge to carry out as a routine test in the laboratory. Therefore, the current paper proposes a numerical approach to simulate the repeated load triaxial test by employing the discrete element method. A sample with particle size ranging from 2.36mm to 19.0mm was constructed. Material properties, which included normal stiffness, shear stiffness, coefficient of friction, maximum dry density and particle density, were used as the input for the simulation. The sample was then subjected to a combination of deviator and confining stress and it was found that the discrete element method is able to simulate the repeated load triaxial test in the laboratory.
Keywords: Discrete element method, repeated load triaxial, pavement materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3155326 Difference of Properties on Surface Leakage and Discharge Currents of Porcelain Insulator Material
Authors: Waluyo, Ngapuli I. Sinisuka, Suwarno, Maman A. Djauhari
Abstract:
This paper presents the experimental results of comparison between leakage currents and discharge currents. The leakage currents were obtained on polluted porcelain insulator. Whereas, the discharge currents were obtained on lightly artificial polluted porcelain specimen. The conducted measurements were leakage current or discharge current and applied voltage. The insulator or specimen was in a hermetically sealed chamber, and the current waveforms were analyzed using FFT. The result indicated that the leakage current (LC) on low RH condition the fifth harmonic would be visible, and followed by the seventh harmonic. The insulator had capacitive property. Otherwise, on 99% relative humidity, the fifth harmonic would also be visible, and the phase angle reached up to 12.2 degree. Whereas, on discharge current, the third harmonic would be visible, and followed by fifth harmonic. The third harmonic would increase as pressure reduced. On this condition, the specimen had a non-linear characteristicsKeywords: leakage current, discharge current, third harmonic, fifth harmonic, porcelain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650325 Effects of the Wavy Surface on Free Convection-Radiation along an Inclined Plate
Authors: M. Si Abdallah, B. Zeghmati
Abstract:
A numerical analysis used to simulate the effects of wavy surfaces and thermal radiation on natural convection heat transfer boundary layer flow over an inclined wavy plate has been investigated. A simple coordinate transformation is employed to transform the complex wavy surface into a flat plate. The boundary layer equations and the boundary conditions are discretized by the finite difference scheme and solved numerically using the Gauss-Seidel algorithm with relaxation coefficient. Effects of the wavy geometry, the inclination angle of the wavy plate and the thermal radiation on the velocity profiles, temperature profiles and the local Nusselt number are presented and discussed in detail.
Keywords: Free convection, wavy surface, inclined surface, thermal radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334324 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non-Uniform Heat Source/Sink
Authors: Bandaris Shankar, Yohannes Yirga
Abstract:
In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement.
Keywords: Manetohydrodynamics, nanofluid, non-uniform heat source/sink, unsteady.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3223323 Enhancement and Characterization of Titanium Surfaces with Sandblasting and Acid Etching for Dental Implants
Authors: Busra Balli, Tuncay Dikici, Mustafa Toparli
Abstract:
Titanium and its alloys have been used extensively over the past 25 years as biomedical materials in orthopedic and dental applications because of their good mechanical properties, corrosion resistance, and biocompatibility. It is known that the surface properties of titanium implants can enhance the cellular response and play an important role in Osseo integration. The rate and quality of Osseo integration in titanium implants are related to their surface properties. The purpose of this investigation was to evaluate the effect of sandblasting and acid etching on surface morphology, roughness, the wettability of titanium. The surface properties will be characterized by scanning electron microscopy and contact angle and roughness measurements. The results show that surface morphology, roughness, and wettability were changed and enhanced by these treatments.Keywords: Dental implant, etching, surface modifications, surface morphology, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328322 CFD simulation of Pressure Drops in Liquid Acquisition Device Channel with Sub-Cooled Oxygen
Authors: David J. Chato, John B. McQuillen, Brian J.Motil, David F. Chao, Nengli Zhang
Abstract:
In order to better understand the performance of screen channel liquid acquisition devices (LADs) in liquid oxygen (LOX), a computational fluid dynamics (CFD) simulation of LOX passing through a LAD screen channel was conducted. In the simulation, the screen is taken as a 'porous jump' where the pressure drop across the screen depends on the incoming velocity and is formulated by Δp = Av + Bv2 . The CFD simulation reveals the importance of the pressure losses due to the flow entering from across the screen and impacting and merging with the channel flow and the vortices in the channel to the cumulative flow resistance. In fact, both the flow resistance of flows impact and mergence and the resistance created by vortices are much larger than the friction and dynamic pressure losses in the channel and are comparable to the flow resistance across the screen. Therefore, these resistances in the channel must be considered as part of the evaluation for the LAD channel performance. For proper operation of a LAD in LOX these resistances must be less than the bubble point pressure for the screen channel in LOX. The simulation also presents the pressure and velocity distributions within the LAD screen channel, expanding the understanding of the fluid flow characteristics within the channel.Keywords: Liquid acquisition devices, liquid oxygen, pressure drop, vortex, bubble point, flow rate limitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026321 Sensitivity Analysis for Direction of Arrival Estimation Using Capon and Music Algorithms in Mobile Radio Environment
Authors: Mustafa Abdalla, Khaled A. Madi, Rajab Farhat
Abstract:
An array antenna system with innovative signal processing can improve the resolution of a source direction of arrival (DoA) estimation. High resolution techniques take the advantage of array antenna structures to better process the incoming waves. They also have the capability to identify the direction of multiple targets. This paper investigates performance of the DOA estimation algorithm namely; Capon and MUSIC on the uniform linear array (ULA). The simulation results show that in Capon and MUSIC algorithm the resolution of the DOA techniques improves as number of snapshots, number of array elements, signal-to-noise ratio and separation angle between the two sources θ increases.Keywords: Antenna array, Capon, MUSIC, Direction-of-arrival estimation, signal processing, uniform linear arrays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733320 Numerical Simulation of Minimum Distance Jet Impingement Heat Transfer
Authors: Aman Agarwal, Georg Klepp
Abstract:
Impinging jets are used in various industrial areas as a cooling and drying technique. The current research is concerned with the means of improving the heat transfer for configurations with a minimum distance of the nozzle to the impingement surface. The impingement heat transfer is described using numerical methods over a wide range of parameters for an array of planar jets. These parameters include varying jet flow speed, width of nozzle, distance of nozzle, angle of the jet flow, velocity and geometry of the impingement surface. Normal pressure and shear stress are computed as additional parameters. Using dimensionless characteristic numbers the parameters and the results are correlated to gain generalized equations. The results demonstrate the effect of the investigated parameters on the flow.Keywords: Heat Transfer Coefficient, Minimum distance jet impingement, Numerical simulation, Dimensionless coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2354319 Motion Control of a 2-link Revolute Manipulator in an Obstacle-Ridden Workspace
Authors: Avinesh Prasad, Bibhya Sharma, Jito Vanualailai
Abstract:
In this paper, we propose a solution to the motion control problem of a 2-link revolute manipulator arm. We require the end-effector of the arm to move safely to its designated target in a priori known workspace cluttered with fixed circular obstacles of arbitrary position and sizes. Firstly a unique velocity algorithm is used to move the end-effector to its target. Secondly, for obstacle avoidance a turning angle is designed, which when incorporated into the control laws ensures that the entire robot arm avoids any number of fixed obstacles along its path enroute the target. The control laws proposed in this paper also ensure that the equilibrium point of the system is asymptotically stable. Computer simulations of the proposed technique are presented.Keywords: 2-link revolute manipulator, motion control, obstacle avoidance, asymptotic stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2851318 Classroom Incivility Behaviours among Medical Students: A Comparative Study in Pakistan
Authors: Manal Rauf
Abstract:
Trained medical practitioners are produced from medical colleges serving in public and private sectors. Prime responsibility of teaching faculty is to inculcate required work ethic among the students by serving as role models for them. It is an observed fact that classroom incivility behaviours are providing a friction in achieving these targets. Present study aimed at identification of classroom incivility behaviours observed by teachers and students of public and private medical colleges as per Glasser’s Choice Theory, making a comparison and investigating the strategies being adopted by teachers of both sectors to control undesired class room behaviours. Findings revealed that a significant difference occurs between teacher and student incivility behaviours. Public sector teacher focussed on survival as a strong factor behind in civil behaviours whereas private sector teachers considered power as the precedent for incivility. Teachers of both sectors are required to use verbal as well as non-verbal immediacy to reach a healthy leaning environment.
Keywords: Classroom incivility behaviour, Glasser choice theory, Mehrabian immediacy theory, medical student.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365317 French Managers and Their Subordinates’ Well-Being
Authors: B. Gangloff, N. Malleh
Abstract:
Well-being at work has many positive aspects. Our general hypothesis is that employees who feel well-being at work will be positively valued by their superiors, and that this positive value, which evokes the concept of social norms, allows us to assign to well-being at work a normative status. Three populations (line managers, students destined to become human resource managers, and employees) responded to a well-being questionnaire. Managers had to indicate, for each item, if they appreciated (or not) an employee feeling the well-being presented in the item; students had to indicate which items an employee should check if s/he wants to be positively (versus negatively) appreciated by his/her superior; and employees had to indicate to what degree each item corresponded to the well-being they used to feel. Three hypotheses are developed and confirmed: Managers positively value employees feeling some sense of well-being; students are aware of this positivity; spontaneously employees show a state of well-being, which means, knowing that spontaneous self-presentation is often produced by social desirability, that employees are aware of the well-being positivity. These data are discussed under a conceptual and applied angle.
Keywords: Normativity, well-being at work, organization, evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127316 Using Information Theory to Observe Natural Intelligence and Artificial Intelligence
Authors: Lipeng Zhang, Limei Li, Yanming Pearl Zhang
Abstract:
This paper takes a philosophical view as axiom, and reveals the relationship between information theory and Natural Intelligence and Artificial Intelligence under real world conditions. This paper also derives the relationship between natural intelligence and nature. According to communication principle of information theory, Natural Intelligence can be divided into real part and virtual part. Based on information theory principle that Information does not increase, the restriction mechanism of Natural Intelligence creativity is conducted. The restriction mechanism of creativity reveals the limit of natural intelligence and artificial intelligence. The paper provides a new angle to observe natural intelligence and artificial intelligence.Keywords: Natural intelligence, artificial intelligence, creativity, information theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976315 Effect of Different Configurations of Mechanical Aerators on Oxygen Transfer and Aeration Efficiency with respect to Power Consumption
Authors: S.B. Thakre, L.B. Bhuyar, S.J. Deshmukh
Abstract:
This paper examines the use of mechanical aerator for oxidation-ditch process. The rotor, which controls the aeration, is the main component of the aeration process. Therefore, the objective of this study is to find out the variations in overall oxygen transfer coefficient (KLa) and aeration efficiency (AE) for different configurations of aerator by varying the parameters viz. speed of aerator, depth of immersion, blade tip angles so as to yield higher values of KLa and AE. Six different configurations of aerator were developed and fabricated in the laboratory and were tested for abovementioned parameters. The curved blade rotor (CBR) emerged as a potential aerator with blade tip angle of 47°. The mathematical models are developed for predicting the behaviour of CBR w.r.t kLa and power. In laboratory studies, the optimum value of KLa and AE were observed to be 10.33 h-1 and 2.269 kg O2/ kWh.Keywords: Aerator, Aeration efficiency, Dissolve Oxygen, Overall oxygen transfer coefficient, Oxidation ditch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3893314 Influence of Flame-Holder on Existence Important Parameters in a Duct Combustion Simulator
Authors: M. M. Doustdar, M. Mojtahedpoor
Abstract:
The effects of flame-holder position, the ratio of flame holder diameter to combustion chamber diameter and injection angle on fuel propulsive droplets sizing and effective mass fraction have been studied by a cold flow. We named the mass of fuel vapor inside the flammability limit as the effective mass fraction. An empty cylinder as well as a flame-holder which are a simulator for duct combustion has been considered. The airflow comes into the cylinder from one side and injection operation will be done by four nozzles which are located on the entrance of cylinder. To fulfill the calculations a modified version of KIVA-3V code which is a transient, three-dimensional, multiphase, multi component code for the analysis of chemically reacting flows with sprays, is used.Keywords: KIVA-3V, flame-holder, duct combustion, effective mass fraction, mean diameter of droplets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744313 Simulation and Analytical Investigation of Different Combination of Single Phase Power Transformers
Authors: M. Salih Taci, N. Tayebi, I. Bozkır
Abstract:
In this paper, the equivalent circuit of the ideal single-phase power transformer with its appropriate voltage current measurement was presented. The calculated values of the voltages and currents of the different connections single phase normal transformer and the results of the simulation process are compared. As it can be seen, the calculated results are the same as the simulated results. This paper includes eight possible different transformer connections. Depending on the desired voltage level, step-down and step-up application transformer is considered. Modelling and analysis of a system consisting of an equivalent source, transformer (primary and secondary), and loads are performed to investigate the combinations. The obtained values are simulated in PSpice environment and then how the currents, voltages and phase angle are distributed between them is explained based on calculation.
Keywords: Transformer, simulation, equivalent model, parallel series combinations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116312 Stability Analysis of Three-Dimensional Flow and Heat Transfer over a Permeable Shrinking Surface in a Cu-Water Nanofluid
Authors: Roslinda Nazar, Amin Noor, Khamisah Jafar, Ioan Pop
Abstract:
In this paper, the steady laminar three-dimensional boundary layer flow and heat transfer of a copper (Cu)-water nanofluid in the vicinity of a permeable shrinking flat surface in an otherwise quiescent fluid is studied. The nanofluid mathematical model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Dual solutions (upper and lower branch solutions) are found for the similarity boundary layer equations for a certain range of the suction parameter. A stability analysis has been performed to show which branch solutions are stable and physically realizable. The numerical results for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles are obtained, presented and discussed in detail for a range of various governing parameters.
Keywords: Heat Transfer, Nanofluid, Shrinking Surface, Stability Analysis, Three-Dimensional Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194311 Effect of Channel Estimation on Capacity of MIMO System Employing Circular or Linear Receiving Array Antennas
Authors: Xia Liu, Marek E. Bialkowski
Abstract:
This paper reports on investigations into capacity of a Multiple Input Multiple Output (MIMO) wireless communication system employing a uniform linear array (ULA) at the transmitter and either a uniform linear array (ULA) or a uniform circular array (UCA) antenna at the receiver. The transmitter is assumed to be surrounded by scattering objects while the receiver is postulated to be free from scattering objects. The Laplacian distribution of angle of arrival (AOA) of a signal reaching the receiver is postulated. Calculations of the MIMO system capacity are performed for two cases without and with the channel estimation errors. For estimating the MIMO channel, the scaled least square (SLS) and minimum mean square error (MMSE) methods are considered.Keywords: MIMO, channel capacity, channel estimation, ULA, UCA, spatial correlation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367310 Internal Loading Distribution in Statically Loaded Ball Bearings Subjected to a Centric Thrust Load: Numerical Aspects
Authors: Mário C. Ricci
Abstract:
A known iterative computational procedure is used for internal normal ball loads calculation in statically loaded single-row, angular-contact ball bearings, subjected to a known thrust load, which is applied in the inner ring at the geometric bearing center line. Numerical aspects of the iterative procedure are discussed. Numerical examples results for a 218 angular-contact ball bearing have been compared with those from the literature. Twenty figures are presented showing the geometrical features, the behavior of the convergence variables and the following parameters as functions of the thrust load: normal ball loads, contact angle, distance between curvature centers, and normal ball and axial deflections between the raceways.Keywords: Ball, Bearing, Static, Load, Iterative, Numerical, Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874309 Panoramic Sensor Based Blind Spot Accident Prevention System
Authors: Rajendra Prasad Mahapatra, K. Vimal Kumar
Abstract:
There are many automotive accidents due to blind spots and driver inattentiveness. Blind spot is the area that is invisible to the driver's viewpoint without head rotation. Several methods are available for assisting the drivers. Simplest methods are — rear mirrors and wide-angle lenses. But, these methods have a disadvantage of the requirement for human assistance. So, the accuracy of these devices depends on driver. Another approach called an automated approach that makes use of sensors such as sonar or radar. These sensors are used to gather range information. The range information will be processed and used for detecting the collision. The disadvantage of this system is — low angular resolution and limited sensing volumes. This paper is a panoramic sensor based automotive vehicle monitoring..
Keywords: Panoramic sensors, Blind spot, Convex lens, Computer Vision, Sonar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117308 RANS Simulation of Viscous Flow around Hull of Multipurpose Amphibious Vehicle
Authors: M. Nakisa, A. Maimun, Yasser M. Ahmed, F. Behrouzi, A. Tarmizi
Abstract:
The practical application of the Computational Fluid Dynamics (CFD), for predicting the flow pattern around Multipurpose Amphibious Vehicle (MAV) hull has made much progress over the last decade. Today, several of the CFD tools play an important role in the land and water going vehicle hull form design. CFD has been used for analysis of MAV hull resistance, sea-keeping, maneuvering and investigating its variation when changing the hull form due to varying its parameters, which represents a very important task in the principal and final design stages. Resistance analysis based on CFD (Computational Fluid Dynamics) simulation has become a decisive factor in the development of new, economically efficient and environmentally friendly hull forms. Three-dimensional finite volume method (FVM) based on Reynolds Averaged Navier-Stokes equations (RANS) has been used to simulate incompressible flow around three types of MAV hull bow models in steady-state condition. Finally, the flow structure and streamlines, friction and pressure resistance and velocity contours of each type of hull bow will be compared and discussed.
Keywords: RANS Simulation, Multipurpose Amphibious Vehicle, Viscous Flow Structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2963307 Non-contact Gaze Tracking with Head Movement Adaptation based on Single Camera
Authors: Ying Huang, Zhiliang Wang, An Ping
Abstract:
With advances in computer vision, non-contact gaze tracking systems are heading towards being much easier to operate and more comfortable for use, the technique proposed in this paper is specially designed for achieving these goals. For the convenience in operation, the proposal aims at the system with simple configuration which is composed of a fixed wide angle camera and dual infrared illuminators. Then in order to enhance the usability of the system based on single camera, a self-adjusting method which is called Real-time gaze Tracking Algorithm with head movement Compensation (RTAC) is developed for estimating the gaze direction under natural head movement and simplifying the calibration procedure at the same time. According to the actual evaluations, the average accuracy of about 1° is achieved over a field of 20×15×15 cm3.
Keywords: computer vision, gaze tracking, human-computer interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920