Search results for: Object Detection.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2044

Search results for: Object Detection.

1474 Improved Lung Nodule Visualization on Chest Radiographs using Digital Filtering and Contrast Enhancement

Authors: Benjamin Y. M. Kwan, Hon Keung Kwan

Abstract:

Early detection of lung cancer through chest radiography is a widely used method due to its relatively affordable cost. In this paper, an approach to improve lung nodule visualization on chest radiographs is presented. The approach makes use of linear phase high-frequency emphasis filter for digital filtering and histogram equalization for contrast enhancement to achieve improvements. Results obtained indicate that a filtered image can reveal sharper edges and provide more details. Also, contrast enhancement offers a way to further enhance the global (or local) visualization by equalizing the histogram of the pixel values within the whole image (or a region of interest). The work aims to improve lung nodule visualization of chest radiographs to aid detection of lung cancer which is currently the leading cause of cancer deaths worldwide.

Keywords: Chest radiographs, Contrast enhancement, Digital filtering, Lung nodule detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
1473 A New Damage Identification Strategy for SHM Based On FBGs and Bayesian Model Updating Method

Authors: Yanhui Zhang, Wenyu Yang

Abstract:

One of the difficulties of the vibration-based damage identification methods is the nonuniqueness of the results of damage identification. The different damage locations and severity may cause the identical response signal, which is even more severe for detection of the multiple damage. This paper proposes a new strategy for damage detection to avoid this nonuniqueness. This strategy firstly determines the approximates damage area based on the statistical pattern recognition method using the dynamic strain signal measured by the distributed fiber Bragg grating, and then accurately evaluates the damage information based on the Bayesian model updating method using the experimental modal data. The stochastic simulation method is then used to compute the high-dimensional integral in the Bayesian problem. Finally, an experiment of the plate structure, simulating one part of mechanical structure, is used to verify the effectiveness of this approach.

Keywords: Bayesian method, damage detection, fiber Bragg grating, structural health monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
1472 Developing Vision-Based Digital Public Display as an Interactive Media

Authors: Adrian Samuel Limanto, Yunli Lee

Abstract:

Interactive public displays give access as an innovative media to promote enhanced communication between people and information. However, digital public displays are subject to a few constraints, such as content presentation. Content presentation needs to be developed to be more interesting to attract people’s attention and motivate people to interact with the display. In this paper, we proposed idea to implement contents with interaction elements for vision-based digital public display. Vision-based techniques are applied as a sensor to detect passers-by and theme contents are suggested to attract their attention for encouraging them to interact with the announcement content. Virtual object, gesture detection and projection installation are applied for attracting attention from passers-by. Preliminary study showed positive feedback of interactive content designing towards the public display. This new trend would be a valuable innovation as delivery of announcement content and information communication through this media is proven to be more engaging.

Keywords: Digital announcement, digital public display, human-information interaction, interactive media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
1471 Abrupt Scene Change Detection

Authors: Priyadarshinee Adhikari, Neeta Gargote, Jyothi Digge, B.G. Hogade

Abstract:

A number of automated shot-change detection methods for indexing a video sequence to facilitate browsing and retrieval have been proposed in recent years. This paper emphasizes on the simulation of video shot boundary detection using one of the methods of the color histogram wherein scaling of the histogram metrics is an added feature. The difference between the histograms of two consecutive frames is evaluated resulting in the metrics. Further scaling of the metrics is performed to avoid ambiguity and to enable the choice of apt threshold for any type of videos which involves minor error due to flashlight, camera motion, etc. Two sample videos are used here with resolution of 352 X 240 pixels using color histogram approach in the uncompressed media. An attempt is made for the retrieval of color video. The simulation is performed for the abrupt change in video which yields 90% recall and precision value.

Keywords: Abrupt change, color histogram, ground-truthing, precision, recall, scaling, threshold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
1470 Hand Gesture Recognition: Sign to Voice System (S2V)

Authors: Oi Mean Foong, Tan Jung Low, Satrio Wibowo

Abstract:

Hand gesture is one of the typical methods used in sign language for non-verbal communication. It is most commonly used by people who have hearing or speech problems to communicate among themselves or with normal people. Various sign language systems have been developed by manufacturers around the globe but they are neither flexible nor cost-effective for the end users. This paper presents a system prototype that is able to automatically recognize sign language to help normal people to communicate more effectively with the hearing or speech impaired people. The Sign to Voice system prototype, S2V, was developed using Feed Forward Neural Network for two-sequence signs detection. Different sets of universal hand gestures were captured from video camera and utilized to train the neural network for classification purpose. The experimental results have shown that neural network has achieved satisfactory result for sign-to-voice translation.

Keywords: Hand gesture detection, neural network, signlanguage, sequence detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
1469 The Water Level Detection Algorithm Using the Accumulated Histogram with Band Pass Filter

Authors: Sangbum Park, Namki Lee, Youngjoon Han, Hernsoo Hahn

Abstract:

In this paper, we propose the robust water level detection method based on the accumulated histogram under small changed image which is acquired from water level surveillance camera. In general surveillance system, this is detecting and recognizing invasion from searching area which is in big change on the sequential images. However, in case of a water level detection system, these general surveillance techniques are not suitable due to small change on the water surface. Therefore the algorithm introduces the accumulated histogram which is emphasizing change of water surface in sequential images. Accumulated histogram is based on the current image frame. The histogram is cumulating differences between previous images and current image. But, these differences are also appeared in the land region. The band pass filter is able to remove noises in the accumulated histogram Finally, this algorithm clearly separates water and land regions. After these works, the algorithm converts from the water level value on the image space to the real water level on the real space using calibration table. The detected water level is sent to the host computer with current image. To evaluate the proposed algorithm, we use test images from various situations.

Keywords: accumulated histogram, water level detection, band pass filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
1468 Evaluation of Four Different DNA Targets in Polymerase Chain Reaction for Detection and Genotyping of Helicobacter pylori

Authors: Abu Salim Mustafa

Abstract:

Polymerase chain reaction (PCR) assays targeting genomic DNA segments have been established for the detection of Helicobacter pylori in clinical specimens. However, the data on comparative evaluations of various targets in detection of H. pylori are limited. Furthermore, the frequencies of vacA (s1 and s2) and cagA genotypes, which are suggested to be involved in the pathogenesis of H. pylori in other parts of the world, are not well studied in Kuwait. The aim of this study was to evaluate PCR assays for the detection and genotyping of H. pylori by targeting the amplification of DNA targets from four genomic segments. The genomic DNA were isolated from 72 clinical isolates of H. pylori and tested in PCR with four pairs of oligonucleotides primers, i.e. ECH-U/ECH-L, ET-5U/ET-5L, CagAF/CagAR and Vac1F/Vac1XR, which were expected to amplify targets of various sizes (471 bp, 230 bp, 183 bp and 176/203 bp, respectively) from the genomic DNA of H. pylori. The PCR-amplified DNA were analyzed by agarose gel electrophoresis. PCR products of expected size were obtained with all primer pairs by using genomic DNA isolated from H. pylori. DNA dilution experiments showed that the most sensitive PCR target was 471 bp DNA amplified by the primers ECH-U/ECH-L, followed by the targets of Vac1F/Vac1XR (176 bp/203 DNA), CagAF/CagAR (183 bp DNA) and ET-5U/ET-5L (230 bp DNA). However, when tested with undiluted genomic DNA isolated from single colonies of all isolates, the Vac1F/Vac1XR target provided the maximum positive results (71/72 (99% positives)), followed by ECH-U/ECH-L (69/72 (93% positives)), ET-5U/ET-5L (51/72 (71% positives)) and CagAF/CagAR (26/72 (46% positives)). The results of genotyping experiments showed that vacA s1 (46% positive) and vacA s2 (54% positive) genotypes were almost equally associated with VaCA+/CagA- isolates (P > 0.05), but with VacA+/CagA+ isolates, S1 genotype (92% positive) was more frequently detected than S2 genotype (8% positive) (P< 0.0001). In conclusion, among the primer pairs tested, Vac1F/Vac1XR provided the best results for detection of H. pylori. The genotyping experiments showed that vacA s1 and vacA s2 genotypes were almost equally associated with vaCA+/cagA- isolates, but vacA s1 genotype had a significantly increased association with vacA+/cagA+ isolates.

Keywords: H. pylori, detection, genotyping, Kuwait.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602
1467 Edge Detection in Digital Images Using Fuzzy Logic Technique

Authors: Abdallah A. Alshennawy, Ayman A. Aly

Abstract:

The fuzzy technique is an operator introduced in order to simulate at a mathematical level the compensatory behavior in process of decision making or subjective evaluation. The following paper introduces such operators on hand of computer vision application. In this paper a novel method based on fuzzy logic reasoning strategy is proposed for edge detection in digital images without determining the threshold value. The proposed approach begins by segmenting the images into regions using floating 3x3 binary matrix. The edge pixels are mapped to a range of values distinct from each other. The robustness of the proposed method results for different captured images are compared to those obtained with the linear Sobel operator. It is gave a permanent effect in the lines smoothness and straightness for the straight lines and good roundness for the curved lines. In the same time the corners get sharper and can be defined easily.

Keywords: Fuzzy logic, Edge detection, Image processing, computer vision, Mechanical parts, Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4767
1466 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: Texture classification, texture descriptor, SIFT, SURF, ORB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
1465 Bin Bloom Filter Using Heuristic Optimization Techniques for Spam Detection

Authors: N. Arulanand, K. Premalatha

Abstract:

Bloom filter is a probabilistic and memory efficient data structure designed to answer rapidly whether an element is present in a set. It tells that the element is definitely not in the set but its presence is with certain probability. The trade-off to use Bloom filter is a certain configurable risk of false positives. The odds of a false positive can be made very low if the number of hash function is sufficiently large. For spam detection, weight is attached to each set of elements. The spam weight for a word is a measure used to rate the e-mail. Each word is assigned to a Bloom filter based on its weight. The proposed work introduces an enhanced concept in Bloom filter called Bin Bloom Filter (BBF). The performance of BBF over conventional Bloom filter is evaluated under various optimization techniques. Real time data set and synthetic data sets are used for experimental analysis and the results are demonstrated for bin sizes 4, 5, 6 and 7. Finally analyzing the results, it is found that the BBF which uses heuristic techniques performs better than the traditional Bloom filter in spam detection.

Keywords: Cuckoo search algorithm, levy’s flight, metaheuristic, optimal weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
1464 A DNA-Based Nanobiosensor for the Rapid Detection of the Dengue Virus in Mosquito

Authors: Lilia M. Fernando, Matthew K. Vasher, Evangelyn C. Alocilja

Abstract:

This paper describes the development of a DNA-based nanobiosensor to detect the dengue virus in mosquito using electrically active magnetic (EAM) nanoparticles as concentrator and electrochemical transducer. The biosensor detection encompasses two sets of oligonucleotide probes that are specific to the dengue virus: the detector probe labeled with the EAM nanoparticles and the biotinylated capture probe. The DNA targets are double hybridized to the detector and the capture probes and concentrated from nonspecific DNA fragments by applying a magnetic field. Subsequently, the DNA sandwiched targets (EAM-detector probe– DNA target–capture probe-biotin) are captured on streptavidin modified screen printed carbon electrodes through the biotinylated capture probes. Detection is achieved electrochemically by measuring the oxidation–reduction signal of the EAM nanoparticles. Results indicate that the biosensor is able to detect the redox signal of the EAM nanoparticles at dengue DNA concentrations as low as 10 ng/μl.

Keywords: Dengue, magnetic nanoparticles, mosquito, nanobiosensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2858
1463 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force

Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh

Abstract:

This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.

Keywords: Frame, grey wolf optimization algorithm, modal residual force, structural damage detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
1462 The Feedback Control for Distributed Systems

Authors: Kamil Aida-zade, C. Ardil

Abstract:

We study the problem of synthesis of lumped sources control for the objects with distributed parameters on the basis of continuous observation of phase state at given points of object. In the proposed approach the phase state space (phase space) is beforehand somehow partitioned at observable points into given subsets (zones). The synthesizing control actions therewith are taken from the class of piecewise constant functions. The current values of control actions are determined by the subset of phase space that contains the aggregate of current states of object at the observable points (in these states control actions take constant values). In the paper such synthesized control actions are called zone control actions. A technique to obtain optimal values of zone control actions with the use of smooth optimization methods is given. With this aim, the formulas of objective functional gradient in the space of zone control actions are obtained.

Keywords: Feedback control, distributed systems, smooth optimization methods, lumped control synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611
1461 Generating Class-Based Test Cases for Interface Classes of Object-Oriented Black Box Frameworks

Authors: Jehad Al Dallal, Paul Sorenson

Abstract:

An application framework provides a reusable design and implementation for a family of software systems. Application developers extend the framework to build their particular applications using hooks. Hooks are the places identified to show how to use and customize the framework. Hooks define the Framework Interface Classes (FICs) and their possible specifications, which helps in building reusable test cases for the implementations of these classes. This paper introduces a novel technique called all paths-state to generate state-based test cases to test the FICs at class level. The technique is experimentally evaluated. The empirical evaluation shows that all paths-state technique produces test cases with a high degree of coverage for the specifications of the implemented FICs comparing to test cases generated using round-trip path and all-transition techniques.

Keywords: Hooks, object-oriented framework, frameworkinterface classes (FICs), specification-based testing, test casegeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1326
1460 Techniques Used in String Matching for Network Security

Authors: Jamuna Bhandari

Abstract:

String matching also known as pattern matching is one of primary concept for network security. In this area the effectiveness and efficiency of string matching algorithms is important for applications in network security such as network intrusion detection, virus detection, signature matching and web content filtering system. This paper presents brief review on some of string matching techniques used for network security.

Keywords: Filtering, honeypot, network telescope, pattern, string, signature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700
1459 Genetic Programming Approach for Multi-Category Pattern Classification Appliedto Network Intrusions Detection

Authors: K.M. Faraoun, A. Boukelif

Abstract:

This paper describes a new approach of classification using genetic programming. The proposed technique consists of genetically coevolving a population of non-linear transformations on the input data to be classified, and map them to a new space with a reduced dimension, in order to get a maximum inter-classes discrimination. The classification of new samples is then performed on the transformed data, and so become much easier. Contrary to the existing GP-classification techniques, the proposed one use a dynamic repartition of the transformed data in separated intervals, the efficacy of a given intervals repartition is handled by the fitness criterion, with a maximum classes discrimination. Experiments were first performed using the Fisher-s Iris dataset, and then, the KDD-99 Cup dataset was used to study the intrusion detection and classification problem. Obtained results demonstrate that the proposed genetic approach outperform the existing GP-classification methods [1],[2] and [3], and give a very accepted results compared to other existing techniques proposed in [4],[5],[6],[7] and [8].

Keywords: Genetic programming, patterns classification, intrusion detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
1458 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network

Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu

Abstract:

The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than Optical Character Recognition (OCR) results.

Keywords: Biological pathway, image understanding, gene name recognition, object detection, Siamese network, Visual Geometry Group.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 674
1457 Aliveness Detection of Fingerprints using Multiple Static Features

Authors: Heeseung Choi, Raechoong Kang, Kyungtaek Choi, Jaihie Kim

Abstract:

Fake finger submission attack is a major problem in fingerprint recognition systems. In this paper, we introduce an aliveness detection method based on multiple static features, which derived from a single fingerprint image. The static features are comprised of individual pore spacing, residual noise and several first order statistics. Specifically, correlation filter is adopted to address individual pore spacing. The multiple static features are useful to reflect the physiological and statistical characteristics of live and fake fingerprint. The classification can be made by calculating the liveness scores from each feature and fusing the scores through a classifier. In our dataset, we compare nine classifiers and the best classification rate at 85% is attained by using a Reduced Multivariate Polynomial classifier. Our approach is faster and more convenient for aliveness check for field applications.

Keywords: Aliveness detection, Fingerprint recognition, individual pore spacing, multiple static features, residual noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
1456 A Robust Eyelashes and Eyelid Detection in Transformation Invariant Iris Recognition: In Application with LRC Security System

Authors: R. Bremananth

Abstract:

Biometric authentication is an essential task for any kind of real-life applications. In this paper, we contribute two primary paradigms to Iris recognition such as Robust Eyelash Detection (RED) using pathway kernels and hair curve fitting synthesized model. Based on these two paradigms, rotation invariant iris recognition is enhanced. In addition, the presented framework is tested with real-life iris data to provide the authentication for LRC (Learning Resource Center) users. Recognition performance is significantly improved based on the contributed schemes by evaluating real-life irises. Furthermore, the framework has been implemented using Java programming language. Experiments are performed based on 1250 diverse subjects in different angles of variations on the authentication process. The results revealed that the methodology can deploy in the process on LRC management system and other security required applications.

Keywords: Authentication, biometric, eye lashes detection, iris scanning, LRC security, secure access.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
1455 Detecting Community Structure in Amino Acid Interaction Networks

Authors: Omar GACI, Stefan BALEV, Antoine DUTOT

Abstract:

In this paper we introduce the notion of protein interaction network. This is a graph whose vertices are the protein-s amino acids and whose edges are the interactions between them. Using a graph theory approach, we observe that according to their structural roles, the nodes interact differently. By leading a community structure detection, we confirm this specific behavior and describe thecommunities composition to finally propose a new approach to fold a protein interaction network.

Keywords: interaction network, protein structure, community structure detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
1454 Quality Classification and Monitoring Using Adaptive Metric Distance and Neural Networks: Application in Pickling Process

Authors: S. Bouhouche, M. Lahreche, S. Ziani, J. Bast

Abstract:

Modern manufacturing facilities are large scale, highly complex, and operate with large number of variables under closed loop control. Early and accurate fault detection and diagnosis for these plants can minimise down time, increase the safety of plant operations, and reduce manufacturing costs. Fault detection and isolation is more complex particularly in the case of the faulty analog control systems. Analog control systems are not equipped with monitoring function where the process parameters are continually visualised. In this situation, It is very difficult to find the relationship between the fault importance and its consequences on the product failure. We consider in this paper an approach to fault detection and analysis of its effect on the production quality using an adaptive centring and scaling in the pickling process in cold rolling. The fault appeared on one of the power unit driving a rotary machine, this machine can not track a reference speed given by another machine. The length of metal loop is then in continuous oscillation, this affects the product quality. Using a computerised data acquisition system, the main machine parameters have been monitored. The fault has been detected and isolated on basis of analysis of monitored data. Normal and faulty situation have been obtained by an artificial neural network (ANN) model which is implemented to simulate the normal and faulty status of rotary machine. Correlation between the product quality defined by an index and the residual is used to quality classification.

Keywords: Modeling, fault detection and diagnosis, parameters estimation, neural networks, Fault Detection and Diagnosis (FDD), pickling process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
1453 Shunt Power Active Filter Control under NonIdeal Voltages Conditions

Authors: H. Abaali, M. T. Lamchich, M. Raoufi

Abstract:

In this paper, we propose the Modified Synchronous Detection (MSD) Method for determining the reference compensating currents of the shunt active power filter under non sinusoidal voltages conditions. For controlling the inverter switching we used the PI regulator. The numerical simulation results, using Power System Blockset Toolbox PSB of Matlab, from a complete structure, are presented and discussed.

Keywords: Distorted, harmonic, Modified Synchronous Detection Method, PI regulator, Shunt Active Power Filter, unbalanced.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
1452 Prediction of Reusability of Object Oriented Software Systems using Clustering Approach

Authors: Anju Shri, Parvinder S. Sandhu, Vikas Gupta, Sanyam Anand

Abstract:

In literature, there are metrics for identifying the quality of reusable components but the framework that makes use of these metrics to precisely predict reusability of software components is still need to be worked out. These reusability metrics if identified in the design phase or even in the coding phase can help us to reduce the rework by improving quality of reuse of the software component and hence improve the productivity due to probabilistic increase in the reuse level. As CK metric suit is most widely used metrics for extraction of structural features of an object oriented (OO) software; So, in this study, tuned CK metric suit i.e. WMC, DIT, NOC, CBO and LCOM, is used to obtain the structural analysis of OO-based software components. An algorithm has been proposed in which the inputs can be given to K-Means Clustering system in form of tuned values of the OO software component and decision tree is formed for the 10-fold cross validation of data to evaluate the in terms of linguistic reusability value of the component. The developed reusability model has produced high precision results as desired.

Keywords: CK-Metric, Desicion Tree, Kmeans, Reusability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
1451 Fault Detection of Drinking Water Treatment Process Using PCA and Hotelling's T2 Chart

Authors: Joval P George, Dr. Zheng Chen, Philip Shaw

Abstract:

This paper deals with the application of Principal Component Analysis (PCA) and the Hotelling-s T2 Chart, using data collected from a drinking water treatment process. PCA is applied primarily for the dimensional reduction of the collected data. The Hotelling-s T2 control chart was used for the fault detection of the process. The data was taken from a United Utilities Multistage Water Treatment Works downloaded from an Integrated Program Management (IPM) dashboard system. The analysis of the results show that Multivariate Statistical Process Control (MSPC) techniques such as PCA, and control charts such as Hotelling-s T2, can be effectively applied for the early fault detection of continuous multivariable processes such as Drinking Water Treatment. The software package SIMCA-P was used to develop the MSPC models and Hotelling-s T2 Chart from the collected data.

Keywords: Principal component analysis, hotelling's t2 chart, multivariate statistical process control, drinking water treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2784
1450 Design of an Ensemble Learning Behavior Anomaly Detection Framework

Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia

Abstract:

Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.

Keywords: Cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149
1449 Modelling of Designing a Conceptual Schema for Multimodal Freight Transportation Information System

Authors: Gia Surguladze, Lily Petriashvili, Nino Topuria, Giorgi Surguladze

Abstract:

Modelling of building processes of a multimodal freight transportation support information system is discussed based on modern CASE technologies. Functional efficiencies of ports in the eastern part of the Black Sea are analyzed taking into account their ecological, seasonal, resource usage parameters. By resources, we mean capacities of berths, cranes, automotive transport, as well as work crews and neighbouring airports. For the purpose of designing database of computer support system for Managerial (Logistics) function, using Object-Role Modeling (ORM) tool (NORMA–Natural ORM Architecture) is proposed, after which Entity Relationship Model (ERM) is generated in automated process. Software is developed based on Process-Oriented and Service-Oriented architecture, in Visual Studio.NET environment.

Keywords: Seaport resources, business-processes, multimodal transportation, CASE technology, object-role model, entity relationship model, SOA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
1448 Evaluation of Edge Configuration in Medical Echo Images Using Genetic Algorithms

Authors: Ching-Fen Jiang

Abstract:

Edge detection is usually the first step in medical image processing. However, the difficulty increases when a conventional kernel-based edge detector is applied to ultrasonic images with a textural pattern and speckle noise. We designed an adaptive diffusion filter to remove speckle noise while preserving the initial edges detected by using a Sobel edge detector. We also propose a genetic algorithm for edge selection to form complete boundaries of the detected entities. We designed two fitness functions to evaluate whether a criterion with a complex edge configuration can render a better result than a simple criterion such as the strength of gradient. The edges obtained by using a complex fitness function are thicker and more fragmented than those obtained by using a simple fitness function, suggesting that a complex edge selecting scheme is not necessary for good edge detection in medical ultrasonic images; instead, a proper noise-smoothing filter is the key.

Keywords: edge detection, ultrasonic images, speckle noise

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
1447 A Reliable FPGA-based Real-time Optical-flow Estimation

Authors: M. M. Abutaleb, A. Hamdy, M. E. Abuelwafa, E. M. Saad

Abstract:

Optical flow is a research topic of interest for many years. It has, until recently, been largely inapplicable to real-time applications due to its computationally expensive nature. This paper presents a new reliable flow technique which is combined with a motion detection algorithm, from stationary camera image streams, to allow flow-based analyses of moving entities, such as rigidity, in real-time. The combination of the optical flow analysis with motion detection technique greatly reduces the expensive computation of flow vectors as compared with standard approaches, rendering the method to be applicable in real-time implementation. This paper describes also the hardware implementation of a proposed pipelined system to estimate the flow vectors from image sequences in real time. This design can process 768 x 576 images at a very high frame rate that reaches to 156 fps in a single low cost FPGA chip, which is adequate for most real-time vision applications.

Keywords: Optical flow, motion detection, real-time systems, FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
1446 On Leak Localization in the Main Branched and Simple Inclined Gas Pipelines

Authors: T. Davitashvili, G. Gubelidze

Abstract:

In this paper two mathematical models for definition of gas accidental escape localization in the gas pipelines are suggested. The first model was created for leak localization in the horizontal branched pipeline and second one for leak detection in inclined section of the main gas pipeline. The algorithm of leak localization in the branched pipeline did not demand on knowledge of corresponding initial hydraulic parameters at entrance and ending points of each sections of pipeline. For detection of the damaged section and then leak localization in this section special functions and equations have been constructed. Some results of calculations for compound pipelines having two, four and five sections are presented. Also a method and formula for the leak localization in the simple inclined section of the main gas pipeline are suggested. Some results of numerical calculations defining localization of gas escape for the inclined pipeline are presented.

Keywords: Branched and inclined gas pipelines, leak detection, mathematical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
1445 A Stereo Image Processing System for Visually Impaired

Authors: G. Balakrishnan, G. Sainarayanan, R. Nagarajan, Sazali Yaacob

Abstract:

This paper presents a review on vision aided systems and proposes an approach for visual rehabilitation using stereo vision technology. The proposed system utilizes stereo vision, image processing methodology and a sonification procedure to support blind navigation. The developed system includes a wearable computer, stereo cameras as vision sensor and stereo earphones, all moulded in a helmet. The image of the scene infront of visually handicapped is captured by the vision sensors. The captured images are processed to enhance the important features in the scene in front, for navigation assistance. The image processing is designed as model of human vision by identifying the obstacles and their depth information. The processed image is mapped on to musical stereo sound for the blind-s understanding of the scene infront. The developed method has been tested in the indoor and outdoor environments and the proposed image processing methodology is found to be effective for object identification.

Keywords: Blind navigation, stereo vision, image processing, object preference, music tones.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4113