Search results for: Carbon Dioxide Sequestration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 884

Search results for: Carbon Dioxide Sequestration

314 Light Emission Enhancement of Silicon Nanocrystals by Gold Layer

Authors: R. Karmouch

Abstract:

A thin gold metal layer was deposited on the top of silicon oxide films containing embedded Si nanocrystals (Si-nc). The sample was annealed in a gas containing nitrogen, and subsequently characterized by photoluminescence. We obtained 3-fold enhancement of photon emission from the Si-nc embedded in silicon dioxide covered with a Gold layer as compared with an uncovered sample. We attribute this enhancement to the increase of the spontaneous emission rate caused by the coupling of the Si-nc emitters with the surface plasmons (SP). The evolution of PL emission with laser irradiated time was also collected from covered samples, and compared to that from uncovered samples. In an uncovered sample, the PL intensity decreases with time, approximately with two decay constants. Although the decrease of the initial PL intensity associated with the increase of sample temperature under CW pumping is still observed in samples covered with a gold layer, this film significantly contributes to reduce the permanent deterioration of the PL intensity. The resistance to degradation of light-emitting silicon nanocrystals can be increased by SP coupling to suppress the permanent deterioration. Controlling the permanent photodeterioration can allow to perform a reliable optical gain measurement.

Keywords: Photodeterioration, Silicon Nanocrystals, Ion Implantation, Photoluminescence, Surface Plasmons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
313 Production of Pre-Reduction of Iron Ore Nuggets with Lesser Sulphur Intake by Devolatisation of Boiler Grade Coal

Authors: Chanchal Biswas, Anrin Bhattacharyya, Gopes Chandra Das, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Boiler coals with low fixed carbon and higher ash content have always challenged the metallurgists to develop a suitable method for their utilization. In the present study, an attempt is made to establish an energy effective method for the reduction of iron ore fines in the form of nuggets by using ‘Syngas’. By devolatisation (expulsion of volatile matter by applying heat) of boiler coal, gaseous product (enriched with reducing agents like CO, CO2, H2, and CH4 gases) is generated. Iron ore nuggets are reduced by this syngas. For that reason, there is no direct contact between iron ore nuggets and coal ash. It helps to control the minimization of the sulphur intake of the reduced nuggets. A laboratory scale devolatisation furnace designed with reduction facility is evaluated after in-depth studies and exhaustive experimentations including thermo-gravimetric (TG-DTA) analysis to find out the volatile fraction present in boiler grade coal, gas chromatography (GC) to find out syngas composition in different temperature and furnace temperature gradient measurements to minimize the furnace cost by applying one heating coil. The nuggets are reduced in the devolatisation furnace at three different temperatures and three different times. The pre-reduced nuggets are subjected to analytical weight loss calculations to evaluate the extent of reduction. The phase and surface morphology analysis of pre-reduced samples are characterized using X-ray diffractometry (XRD), energy dispersive x-ray spectrometry (EDX), scanning electron microscopy (SEM), carbon sulphur analyzer and chemical analysis method. Degree of metallization of the reduced nuggets is 78.9% by using boiler grade coal. The pre-reduced nuggets with lesser sulphur content could be used in the blast furnace as raw materials or coolant which would reduce the high quality of coke rate of the furnace due to its pre-reduced character. These can be used in Basic Oxygen Furnace (BOF) as coolant also.

Keywords: Alternative ironmaking, coal devolatisation, extent of reduction, nugget making, syngas based DRI, solid state reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
312 Production of Biodiesel from Different Edible Oils

Authors: Amir Shafeeq, Ayyaz Muhammad, Noman Hassan, Rofice Dickson

Abstract:

Different vegetable oil based biodiesel (FAMES) were prepared by alkaline transesterification using refined oils as well as waste frying oil (WFO). Methanol and sodium hydroxide are used as catalyst under similar reaction conditions. To ensure the quality of biodiesel produced, a series of different ASTM Standard tests were carried out. In this context, various testwere done including viscosity, carbon residue, specific gravity, corrosion test, flash point, cloud point and pour point. Results revealed that characteristics of biodiesel depend on the feedstock and it is far better than petroleum diesel.

Keywords: Biodiesel, Edible oils, Separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
311 Optimal Conditions for Carotenoid Production and Antioxidation Characteristics by Rhodotorula rubra

Authors: N. Chanchay, S. Sirisansaneeyakul, C. Chaiyasut, N. Poosaran

Abstract:

This study aims to screen out and to optimize the major nutrients for maximum carotenoid production and antioxidation characteristics by Rhodotorula rubra. It was found that supplementary of 10 g/l glucose as carbon source, 1 g/l ammonium sulfate as nitrogen source and 1 g/l yeast extract as growth factor in the medium provided the better yield of carotenoid content of 30.39 μg/g cell dry weight the amount of antioxidation of Rhodotorula rubra by DPPH, ABTS and MDA method were 1.463%, 34.21% and 34.09 μmol/l, respectively.

Keywords: Carotenoid, Rhodotorula rubra, Antioxidation, DPPH, ABTS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2909
310 An Immunosensor for Bladder Cancer Screening

Authors: Congo Tak Shing Ching, Hong-Sheng Chen, Tai-Ping Sun, Hsiu-Li Shieh

Abstract:

Nuclear matrix protein 22 (NMP22) is a FDA approved biomarker for bladder cancer. The objective of this study is to develop a simple NMP22 immumosensor (NMP22-IMS) for accurate measurement of NMP22. The NMP22-IMS was constructed with NMP22 antibody immobilized on screen-printed carbon electrodes. The construction procedures and antibody immobilization are simple. Results showed that the NMP22-IMS has an excellent (r2³0.95) response range (20 – 100 ng/mL). In conclusion, a simple and reliable NMP22-IMS was developed, capable of precisely determining urine NMP22 level.

Keywords: Bladder Cancer, Immunosensor, Impedance, NMP22

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
309 TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection

Authors: Dionisios Panagiotaras, Dimitrios Papoulis, Elias Stathatos

Abstract:

Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450oC. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties.

The composite palygorskite-TiO2 and halloysite-TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite-TiO2 or halloysite-TiO2 catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO2 on clay minerals avoiding aggregation.

Keywords: Halloysite, Palygorskite, Photocatalysis, Titanium Dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3562
308 Rapid Processing Techniques Applied to Sintered Nickel Battery Technologies for Utility Scale Applications

Authors: J. D. Marinaccio, I. Mabbett, C. Glover, D. Worsley

Abstract:

Through use of novel modern/rapid processing techniques such as screen printing and Near-Infrared (NIR) radiative curing, process time for the sintering of sintered nickel plaques, applicable to alkaline nickel battery chemistries, has been drastically reduced from in excess of 200 minutes with conventional convection methods to below 2 minutes using NIR curing methods. Steps have also been taken to remove the need for forming gas as a reducing agent by implementing carbon as an in-situ reducing agent, within the ink formulation.

Keywords: Batteries, energy, iron, nickel, storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311
307 Implementation of Environmental Sustainability into Event Management

Authors: Özlem Küçükakça

Abstract:

The world population is rapidly growing. In the last few decades, environmental protection and climate change have been remarked as a global concern. All events have their own ecological footprint. Therefore, all participants who take part in the events, from event organizer to audience should be responsible for reducing carbon emissions. Currently, there is a literature gap which investigates the relationship between events and environment. Hence, this study is conducted to investigate how to implement environmental sustainability in the event management. Therefore, a wide literature and also the UK festivals database have been investigated. Finally, environmental effects and the solution of reducing impacts at events were discussed.

Keywords: Ecological footprint, environmental sustainability, events, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1178
306 La promoted Ni/α-Al2O3 Catalysts for Syngas Methanation

Authors: Anmin Zhao, Weiyong Yingı , Haitao Zhang, Hongfang Ma, Dingye Fang

Abstract:

The Ni/α-Al2O3 catalysts with different amounts of La as promoter from 0 to 4 wt % were prepared, characterized and their catalytic activity was investigated in syngas methanation reaction. Effects of reaction temperature and lanthanum loading on carbon oxides conversion and methane selectivity were also studied. Adding certain amount of lanthanum to 10Ni /α-Al2O3 catalysts can decrease the average NiO crystallite diameter which leads to higher activity and stability while excessive addition would cause deactivation quickly. Stability on stream towards deactivation was observed up to 800 min at 500 °C, 0.1MPa and 600000 mL·g-1·h-1.

Keywords: Methanation; Nickel catalysts; Syngas methanation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3602
305 Green Building and Energy Saving

Authors: Nahed Ayedh Al-Hajeri

Abstract:

In a world of climate change and limited fossil fuel resources, renewable energy sources are playing an increasingly important role. Due to industrializations and population growth our economy and technologies today largely depend upon natural resources, which are not replaceable. Approximately 90% of our energy consumption comes from fossil fuels (viz. coal, oil and natural gas). The irony is that these resources are depleting. Also, the huge consumption of fossil fuels has caused visible damage to the environment in various forms viz. global warming, acid rains etc.

Keywords: Kilo watt, kilo watt hour, carbon di-oxide, photovoltaic, environmental protection agency, Kwaiti dinar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4131
304 Synthesis and Characterization of New Thermotropic Liquid Crystals Derived from 4-Hydroxybenzaldehyde

Authors: Sie-Tiong Ha, Teck-Leong Lee, Yip-Foo Win, Siew-Ling Lee, Guan-Yeow Yeap

Abstract:

A homologous series of aromatic esters, 4-nalkanoyloxybenzylidene- 4--bromoanilines, nABBA, consisting of two 1,4-disubstituted phenyl cores and a Schiff base central linkage was synthesized. All the members can be differed by the number of carbon atoms at terminal alkanoyloxy chain (CnH2n-1COO-, n = 2, 6, 18). The molecular structure of nABBA was confirmed with infrared spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and electron-ionization mass (EI-MS) spectrometry. Mesomorphic properties were studied using differential scanning calorimetry and polarizing optical microscopy.

Keywords: Liquid Crystals, Schiff base, Smectic, Mesomorphic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
303 Gas Detection via Machine Learning

Authors: Walaa Khalaf, Calogero Pace, Manlio Gaudioso

Abstract:

We present an Electronic Nose (ENose), which is aimed at identifying the presence of one out of two gases, possibly detecting the presence of a mixture of the two. Estimation of the concentrations of the components is also performed for a volatile organic compound (VOC) constituted by methanol and acetone, for the ranges 40-400 and 22-220 ppm (parts-per-million), respectively. Our system contains 8 sensors, 5 of them being gas sensors (of the class TGS from FIGARO USA, INC., whose sensing element is a tin dioxide (SnO2) semiconductor), the remaining being a temperature sensor (LM35 from National Semiconductor Corporation), a humidity sensor (HIH–3610 from Honeywell), and a pressure sensor (XFAM from Fujikura Ltd.). Our integrated hardware–software system uses some machine learning principles and least square regression principle to identify at first a new gas sample, or a mixture, and then to estimate the concentrations. In particular we adopt a training model using the Support Vector Machine (SVM) approach with linear kernel to teach the system how discriminate among different gases. Then we apply another training model using the least square regression, to predict the concentrations. The experimental results demonstrate that the proposed multiclassification and regression scheme is effective in the identification of the tested VOCs of methanol and acetone with 96.61% correctness. The concentration prediction is obtained with 0.979 and 0.964 correlation coefficient for the predicted versus real concentrations of methanol and acetone, respectively.

Keywords: Electronic nose, Least square regression, Mixture ofgases, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2507
302 Effective Photodegradation of Tetracycline by a Heteropoly Acid/Graphene Oxide Nanocomposite Based on Uio-66

Authors: Anasheh Maridiroosi, Ali Reza Mahjoub, Hanieh Fakhri

Abstract:

Heteropoly acid nanoparticles anchored on graphene oxide based on UiO-66 were synthesized via in-situ growth hydrothermal method and tested for photodegradation of a tetracycline as critical pollutant. Results showed that presence of graphene oxide and UiO-66 with high specific surface area, great electron mobility and various functional groups make an excellent support for heteropoly acid and improve photocatalytic efficiency up to 95% for tetracycline. Furthermore, total organic carbon (TOC) analysis verified 79% mineralization of this pollutant under optimum condition.

Keywords: Heteropoly acid, graphene oxide, MOF, tetracycline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711
301 The Toxicity of Doxorubicin with Nanotransporters

Authors: I. Blazkova, A. Moulick, V. Milosavljevic, P. Kopel, M. Vaculovicova, V. Adam, R. Kizek

Abstract:

Doxorubicin (DOX) is an anthracycline drug used to treat many cancer diseases. Similarly to other cytostatic drugs, DOX has serious side effects; the biggest obstacle is the cardiotoxicity. With the aim of lowering the negative side effects and to target the DOX into the tumor tissue, the different nanoparticles (NPs) are studied. The aim of this work was to synthetized different NPs and conjugated them with DOX and determine the binding capacity of the NPs. For this experiment, carbon nanotubes (CNTs), graphene oxide (GO), fullerene (FUL) and liposomes (LIP) were used. The highest binding capacity was observed in GO (85%). Subsequently the toxicity of NPs and NPs-DOX conjugates was analyzed in in vivo system (chicken embryos). Some NPs (GO) can increase the toxicity of DOX, whereas other NPs (LIP, CNTs) decrease DOX toxicity.

Keywords: Chicken embryos, Doxorubicin, Nanotransporters, Toxicity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
300 Precision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication

Authors: Ahmed A. D. Sarhan, Hong Wan Ping, M. Sayuti

Abstract:

In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollution-preventing machining processes. As such, this research is targeted to study on a plausible solution to the issue in grinding titanium alloy (Ti-6Al-4V) by using nanolubrication, as an alternative to flood grinding. The aim of this research is to evaluate the optimum condition of grinding force and surface roughness using MQL lubricating system to deliver nano-oil at different level of weight concentration of Silicon Dioxide (SiO2) mixed normal mineral oil. Taguchi Design of Experiment (DoE) method is carried out using a standard Taguchi orthogonal array of L16(43) to find the optimized combination of weight concentration mixture of SiO2, nozzle orientation and pressure of MQL. Surface roughness and grinding force are also analyzed using signal-to-noise(S/N) ratio to determine the best level of each factor that are tested. Consequently, the best combination of parameters is tested for a period of time and the results are compared with conventional grinding method of dry and flood condition. The results show a positive performance of MQL nanolubrication.  

Keywords: Grinding, MQL, precision grinding, Taguchi optimization, titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
299 Na Promoted Ni/γ-Al2O3 Catalysts Prepared by Solution Combustion Method for Syngas Methanation

Authors: Yan Zeng, Hongfang Ma, Haitao Zhang, Weiyong Ying

Abstract:

Ni-based catalysts with different amounts of Na as promoter from 2 to 6 wt % were prepared by solution combustion method. The catalytic activity was investigated in syngas methanation reaction. Carbon oxides conversion and methane selectivity are greatly influenced by sodium loading. Adding 2 wt% Na remarkably improves catalytic activity and long-term stability, attributed to its smaller mean NiO particle size, better distribution, and milder metal-support interaction. However, excess addition of Na results in deactivation distinctly due to the blockage of active sites.

Keywords: Nickel catalysts, Syngas methanation, Sodium, Solution combustion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4257
298 Biodegradation of Carbazole By a Promising Gram-Negative Bacterium

Authors: G. B. Singh, S. Srivastava, N. Gupta

Abstract:

In the present work we report a gram negative bacterial isolate, from soil of a dye industry, with promising biorefining and bioremediation potential. This isolate (GBS.5) could utilize carbazole (nitrogen containing polycyclic aromatic hydrocarbon) as the sole source of nitrogen and carbon and utilize almost 98% of 3mM carbazole in 100 hours. The specific activity of our GBS.5 isolate for carbazole degradation at 30°C and pH 7.0 was found to be 11.36 μmol/min/g dry cell weight as compared to 10.4 μmol/min/g dry cell weight, the highest reported specific activity till date. The presence of car genes (the genes involved in denitrogenation of carbazole) was confirmed through PCR amplification.

Keywords: Biodenitrogenation, Biorefining, Carbazoledegradation, Crude oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
297 Extraction of Squalene from Lebanese Olive Oil

Authors: Henri El Zakhem, Christina Romanos, Charlie Bakhos, Hassan Chahal, Jessica Koura

Abstract:

Squalene is a valuable component of the oil composed of 30 carbon atoms and is mainly used for cosmetic materials. The main concern of this article is to study the Squalene composition in the Lebanese olive oil and to compare it with foreign oil results. To our knowledge, extraction of Squalene from the Lebanese olive oil has not been conducted before. Three different techniques were studied and experiments were performed on three brands of olive oil, Al Wadi Al Akhdar, Virgo Bio and Boulos. The techniques performed are the Fractional Crystallization, the Soxhlet and the Esterification. By comparing the results, it is found that the Lebanese oil contains squalene and Soxhlet method is the most effective between the three methods extracting about 6.5E-04 grams of Squalene per grams of olive oil.

Keywords: Squalene, extraction, crystallization, Soxhlet.‎

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266
296 CFD Simulation of Fixed Bed Reactor in Fischer-Tropsch Synthesis of GTL Technology

Authors: Sh. Shahhosseini, S. Alinia, M. Irani

Abstract:

In this paper 2D Simulation of catalytic Fixed Bed Reactor in Fischer-Tropsch Synthesis of GTL technology has been performed utilizing computational fluid dynamics (CFD). Synthesis gas (a mixture of carbon monoxide and hydrogen) has been used as feedstock. The reactor was modeled and the model equations were solved employing finite volume method. The model was validated against the experimental data reported in literature. The comparison showed a good agreement between simulation results and the experimental data. In addition, the model was applied to predict the concentration contours of the reactants and products along the length of reactor.

Keywords: GTL, Fischer–Tropsch synthesis, Fixed Bed Reactor, CFD simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2889
295 Photo-Fenton Treatment of 1,3-dichloro-2- Propanol Aqueous Solutions Using UV Radiation and H2O2 – A Kinetic Study

Authors: Maria D. Nikolaki, Katerina N. Zerva, Constantine. J. Philippopoulos

Abstract:

The photochemical and photo-Fenton oxidation of 1,3-dichloro-2-propanol was performed in a batch reactor, at room temperature, using UV radiation, H2O2 as oxidant, and Fenton-s reagent. The effect of the oxidative agent-s initial concentration was investigated as well as the effect of the initial concentration of Fe(II) by following the target compound degradation, the total organic carbon removal and the chloride ion production. Also, from the kinetic analysis conducted and proposed reaction scheme it was deduced that the addition of Fe(II) significantly increases the production and the further oxidation of the chlorinated intermediates.

Keywords: 1, 3-dichloro-2-propanol, hydrogen peroxide, photo- Fenton, UV .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
294 Adjusting the Furnace and Converter Temperature of the Sulfur Recovery Units

Authors: Hamid Reza Mahdipoor, Hamid Ganji, Hamed Naderi, Hajar Yousefian, Hooman Javaherizadeh

Abstract:

The modified Claus process is commonly used in oil refining and gas processing to recover sulfur and destroy contaminants formed in upstream processing. A Claus furnace feed containing a relatively low concentration of H2S may be incapable of producing a stable flame. Also, incomplete combustion of hydrocarbons in the feed can lead to deterioration of the catalyst in the reactors due to soot or carbon deposition. Therefore, special consideration is necessary to achieve the appropriate overall sulfur recovery. In this paper, some configurations available to treat lean acid gas streams are described and the most appropriate ones are studied to overcome low H2S concentration problems. As a result, overall sulfur recovery is investigated for feed preheating and hot gas configurations.

Keywords: Sulfur recovery unit, Low H2S content

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4583
293 Effect of Fermentation Time on Xanthan Gum Production from Sugar Beet Molasses

Authors: Marzieh Moosavi- Nasab, Safoora Pashangeh, Maryam Rafsanjani

Abstract:

Xanthan gum is a microbial polysaccharide of great commercial significance. The purpose of this study was to select the optimum fermentation time for xanthan gum production by Xanthomonas campestris (NRRL-B-1459) using 10% sugar beet molasses as a carbon source. The pre-heating of sugar beet molasses and the supplementation of the medium were investigated in order to improve xanthan gum production. Maximum xanthan gum production in fermentation media (9.02 g/l) was observed after 4 days shaking incubation at 25°C and 240 rpm agitation speed. A solution of 10% sucrose was used as a control medium. Results indicated that the optimum period for xanthan gum production in this condition was 4 days.

Keywords: Biomass, Molasses, Xanthan gum, Xanthomonascampestris

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3690
292 Investigation of Mesoporous Silicon Carbonization Process

Authors: N. I. Kargin, G. K. Safaraliev, A. S. Gusev, A. O. Sultanov, N. V. Siglovaya, S. M. Ryndya, A. A. Timofeev

Abstract:

In this paper, an experimental and theoretical study of the processes of mesoporous silicon carbonization during the formation of buffer layers for the subsequent epitaxy of 3C-SiC films and related wide-band-gap semiconductors is performed. Experimental samples were obtained by the method of chemical vapor deposition and investigated by scanning electron microscopy. Analytic expressions were obtained for the effective diffusion factor and carbon atoms diffusion length in a porous system. The proposed model takes into account the processes of Knudsen diffusion, coagulation and overgrowing of pores during the formation of a silicon carbide layer.

Keywords: Silicon carbide, porous silicon, carbonization, electrochemical etching, diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
291 Dielectric Properties of MWCNT-Muscovite/Epoxy Hybrid Composites

Authors: Nur Suraya Anis Ahmad Bakhtiar, Hazizan Md Akil

Abstract:

In the present work, the dielectric properties of Epoxy/MWCNT-muscovite HYBRID and MIXED composites based on a ratio 30:70 were studied. The multi-wall carbon nanotubes (MWCNT) were prepared using two methods: (a) MWCNTmuscovite hybrids were synthesised by chemical vapour deposition (CVD) and (b) physically mixing muscovite with MWCNT. The effects of different preparation of the composites and filler loading were evaluated. It was revealed that the dielectric constants of HYBRID epoxy composites are slightly higher than MIXED epoxy composites. It was also indicated that the dielectric constant increased by increasing the MWCNT filler loading.

Keywords: MWCNT-Muscovite, Epoxy, Dielectric Properties, Hybrid Composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
290 Hydrodynamic Simulation of Fixed Bed GTL Reactor Using CFD

Authors: Sh. Shahhosseini, S. Alinia, M. Irani

Abstract:

In this work, axisymetric CFD simulation of fixed bed GTL reactor has been conducted, using computational fluid dynamics (CFD). In fixed bed CFD modeling, when N (tube-to-particle diameter ratio) has a large value, it is common to consider the packed bed as a porous media. Synthesis gas (a mixture of predominantly carbon monoxide and hydrogen) was fed to the reactor. The reactor length was 20 cm, divided to three sections. The porous zone was in the middle section of the reactor. The model equations were solved employing finite volume method. The effects of particle diameter, bed voidage, fluid velocity and bed length on pressure drop have been investigated. Simulation results showed these parameters could have remarkable impacts on the reactor pressure drop.

Keywords: GTL Process, Fixed bed reactor, Pressure drop, CFDsimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344
289 Plasma Arc Burner for Pulverized Coal Combustion

Authors: Gela Gelashvili, David Gelenidze, Sulkhan Nanobashvili, Irakli Nanobashvili, George Tavkhelidze, Tsiuri Sitchinava

Abstract:

Development of new highly efficient plasma arc combustion system of pulverized coal is presented. As it is well-known, coal is one of the main energy carriers by means of which electric and heat energy is produced in thermal power stations. The quality of the extracted coal decreases very rapidly. Therefore, the difficulties associated with its firing and complete combustion arise and thermo-chemical preparation of pulverized coal becomes necessary. Usually, other organic fuels (mazut-fuel oil or natural gas) are added to low-quality coal for this purpose. The fraction of additional organic fuels varies within 35-40% range. This decreases dramatically the economic efficiency of such systems. At the same time, emission of noxious substances in the environment increases. Because of all these, intense development of plasma combustion systems of pulverized coal takes place in whole world. These systems are equipped with Non-Transferred Plasma Arc Torches. They allow practically complete combustion of pulverized coal (without organic additives) in boilers, increase of energetic and financial efficiency. At the same time, emission of noxious substances in the environment decreases dramatically. But, the non-transferred plasma torches have numerous drawbacks, e.g. complicated construction, low service life (especially in the case of high power), instability of plasma arc and most important – up to 30% of energy loss due to anode cooling. Due to these reasons, intense development of new plasma technologies that are free from these shortcomings takes place. In our proposed system, pulverized coal-air mixture passes through plasma arc area that burns between to carbon electrodes directly in pulverized coal muffler burner. Consumption of the carbon electrodes is low and does not need a cooling system, but the main advantage of this method is that radiation of plasma arc directly impacts on coal-air mixture that accelerates the process of thermo-chemical preparation of coal to burn. To ensure the stability of the plasma arc in such difficult conditions, we have developed a power source that provides fixed current during fluctuations in the arc resistance automatically compensated by the voltage change as well as regulation of plasma arc length over a wide range. Our combustion system where plasma arc acts directly on pulverized coal-air mixture is simple. This should allow a significant improvement of pulverized coal combustion (especially low-quality coal) and its economic efficiency. Preliminary experiments demonstrated the successful functioning of the system.

Keywords: Coal combustion, plasma arc, plasma torches, pulverized coal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1212
288 Experimental Study on Effects of Addition of Rice Husk on Coal Gasification

Authors: M. Bharath, Vasudevan Raghavan, B. V. S. S. S. Prasad, S. R. Chakravarthy

Abstract:

In this experimental study, effects of addition of rice husk on coal gasification in a bubbling fluidized bed gasifier, operating at atmospheric pressure with air as gasifying agent, are reported. Rice husks comprising of 6.5% and 13% by mass are added to coal. Results show that, when rice husk is added the methane yield increases from volumetric percentage of 0.56% (with no rice husk) to 2.77% (with 13% rice husk). CO and H2 remain almost unchanged and CO2 decreases with addition of rice husk. The calorific value of the synthetic gas is around 2.73 MJ/Nm3. All performance indices, such as cold gas efficiency and carbon conversion, increase with addition of rice husk.

Keywords: Bubbling fluidized bed reactor, coal gasification, calorific value, rice husk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
287 The Research of Taiwan Green Building Materials (GBM) system and GBM Eco-Efficiency Model on Climate Change

Authors: Ting-Ting Hsieh, Che-Ming Chiang, Ming-Chin Ho, Kwang-Pang Lai

Abstract:

The globe Sustainability has become the subject of international attention, the key reason is that global climate change. Climate and disasters around the abnormal frequency multiplier, the global temperature of the catastrophe and disaster continue to occur throughout the world, as well as countries around the world. Currently there are many important international conferences and policy, it is a "global environmental sustainability " and "living human health " as the goal of development, including the APEC 2007 meeting to "climate Clean Energy" as the theme Sydney Declaration, 2008 World Economic Forum's "Carbon - promote Cool Earth energy efficiency improvement project", the EU proposed "Green Idea" program, the Japanese annual policy, "low-carbon society, sustainable eco-city environment (Eco City) "And from 2009 to 2010 to promote the "Eco-Point" to promote green energy and carbon reduction products .And the 2010 World Climate Change Conference (COP16 United Nations Climate Change Conference Copenhagen), the world has been the subject of Negative conservative "Environmental Protection ", "save energy consumption, " into a positive response to the "Sustainable " and" LOHAS", while Taiwan has actively put forward eco-cities, green building, green building materials and other related environmental response Measures, especially green building construction environment that is the basis of factors, the most widely used application level, and direct contact with human health and the key to sustainable planet. "Sustainable development "is a necessary condition for continuation of the Earth, "healthy and comfortable" is a necessary condition for the continuation of life, and improve the "quality" is a necessary condition for economic development, balance between the three is "to enhance the efficiency of ", According to the World Business Council for Sustainable Development (WBCSD) for the "environmental efficiency "(Eco-Efficiency) proposed: " the achievement of environmental efficiency, the price to be competitive in the provision of goods or services to meet people's needs, improve living Quality at the same time, the goods or services throughout the life cycle. Its impact on the environment and natural resource utilization and gradually reduced to the extent the Earth can load. "whichever is the economy "Economic" and " Ecologic". The research into the methodology to obtain the Taiwan Green Building Material Labeling product as the scope of the study, by investigating and weight analysis to explore green building environmental load (Ln) factor and the Green Building Quality (Qn) factor to Establish green building environmental efficiency assessment model (GBM Eco-Efficiency). And building materials for healthy green label products for priority assessment object, the object is set in the material evidence for the direct response to the environmental load from the floor class-based, explicit feedback correction to the Green Building environmental efficiency assessment model, "efficiency " as a starting point to achieve balance between human "health "and Earth "sustainable development of win-win strategy. The study is expected to reach 1.To establish green building materials and the quality of environmental impact assessment system, 2. To establish value of GBM Eco-Efficiency model, 3. To establish the GBM Eco-Efficiency model for application of green building material feedback mechanisms.

Keywords: Climate Change, Green Building Material (GBM), Eco-Efficiency, Life Cycle Assessment, Performance Evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
286 Industry Symbiosis and Waste Glass Upgrading: A Feasibility Study in Liverpool towards Circular Economy

Authors: Han-Mei Chen, Rongxin Zhou, Taige Wang

Abstract:

Glass is widely used in everyday life, from glass bottles for beverages, to architectural glass for various forms of glazing. Although the mainstream of used glass is recycled in the UK, the single-use and then recycling procedure results in a lot of waste as it incorporates intact glass with smashing, re-melting and remanufacturing. These processes bring massive energy consumption with a huge loss of high embodied energy and economic value, compared to re-use which’s towards a ‘zero carbon’ target. As a tourism city, Liverpool has more glass bottle consumption than most less leisure focused cities. It is therefore vital for Liverpool to find an upgrading approach for the single-use glass bottles with a low carbon output. This project aims to assess the feasibility of an industrial symbiosis and upgrading framework of glass and to investigate the ways of achieving them. It is significant to Liverpool’s future industry strategy since it provides an opportunity to target on economy recovery for post-COVID by industry symbiosis and an up-grading waste management in Liverpool to respond to the climate emergency. In addition, it will influence the local government policy for glass bottle reuse and recycling in North West England, and as a good practice to be further recommended to other areas of the UK. First, critical literature review of glass waste strategies has been conducted in the UK, and world-wide industrial symbiosis practices. Second, mapping, data collection and analysis have shown the current life cycle chain and the strong links of glass reuse and upgrading potentials via site visits to 16 local waste recycling centres. The results of this research have demonstrated the understanding the influence of key factors on the development of a circular industrial symbiosis business model for beverage glass bottles. The current waste management procedures of glass bottle industry, its business model, supply chain and the material flow have been reviewed. The various potential opportunities for glass bottle up-valuing have been investigated towards an industrial symbiosis in Liverpool. Finally, an up-valuing business model has been developed for an industrial symbiosis framework of glass in Liverpool. For glass bottles, there are two possibilities: 1) focus on upgrading processes towards re-use rather than single-use and recycling, 2) focus on ‘smart’ re-use and recycling leading to optimised values in other sectors to create a wider industry symbiosis for a multi-level and circular economy.

Keywords: Glass bottles, industry symbiosis, smart reuse, waste upgrading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173
285 Propane Dehydrogenation over Pt-Sn Supported on Magnesium Aluminate Material

Authors: Deepa Govindarajan, Debdut Roy

Abstract:

Pt-Sn catalysts have been prepared using magnesium aluminate as a support with two different Mg/Al ratio. The supports/catalysts have been characterized by N2-adsorption, XRD, and temperature programmed desorption of NH3 and thermogravimetry analysis (TGA). The catalysts have been evaluated at 595 0C for the propane dehydrogenation reaction at 0.5 barg pressure using a feed containing pure propane with steam to hydrocarbon ratio of 1 mol/mol and weight hourly space velocity (WHSV) 0.9 h-1. Chlorine quantification studies have been developed using Carbon-Hydrogen-Nitrogen-Sulphur (CHNS) analyzer. The dechlorinated catalyst with higher alumina content showed better performance (38-43% propane conversion, 91-94% propylene selectivity) in propane conversion and propylene selectivity than Pt-Sn-MG-AL-DC-1 (30-18% propane conversion, 83-90% propylene selectivity).

Keywords: Dehydrogenation, alumina, platinum-tin catalyst, dechlorination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 677