Search results for: Association language features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2622

Search results for: Association language features

2052 Working Memory Capacity in Australian Sign Language (Auslan)/English Interpreters and Deaf Signers

Authors: Jihong Wang

Abstract:

Little research has examined working memory capacity (WMC) in signed language interpreters and deaf signers. This paper presents the findings of a study that investigated WMC in professional Australian Sign Language (Auslan)/English interpreters and deaf signers. Thirty-one professional Auslan/English interpreters (14 hearing native signers and 17 hearing non-native signers) completed an English listening span task and then an Auslan working memory span task, which tested their English WMC and their Auslan WMC, respectively. Moreover, 26 deaf signers (6 deaf native signers and 20 deaf non-native signers) completed the Auslan working memory span task. The results revealed a non-significant difference between the hearing native signers and the hearing non-native signers in their English WMC, and a non-significant difference between the hearing native signers and the hearing non-native signers in their Auslan WMC. Moreover, the results yielded a non-significant difference between the hearing native signers- English WMC and their Auslan WMC, and a non-significant difference between the hearing non-native signers- English WMC and their Auslan WMC. Furthermore, a non-significant difference was found between the deaf native signers and the deaf non-native signers in their Auslan WMC.

Keywords: deaf signers, signed language interpreters, working memory capacity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
2051 Meaning Chasing Kiddies: Children-s Perception of Metaphors Used in Printed Advertisements

Authors: Asina Gülerarslan

Abstract:

Today-s children, who are born into a more colorful, more creative, more abstract and more accessible communication environment than their ancestors as a result of dizzying advances in technology, have an interesting capacity to perceive and make sense of the world. Millennium children, who live in an environment where all kinds of efforts by marketing communication are more intensive than ever are, from their early childhood on, subject to all kinds of persuasive messages. As regards advertising communication, it outperforms all the other marketing communication efforts in creating little consumer individuals and, as a result of processing of codes and signs, plays a significant part in building a world of seeing, thinking and understanding for children. Children who are raised with metaphorical expressions such as tales and riddles also meet that fast and effective meaning communication in advertisements. Children-s perception of metaphors, which help grasp the “product and its promise" both verbally and visually and facilitate association between them is the subject of this study. Stimulating and activating imagination, metaphors have unique advantages in promoting the product and its promise especially in regard to print advertisements, which have certain limitations. This study deals comparatively with both literal and metaphoric versions of print advertisements belonging to various product groups and attempts to discover to what extent advertisements are liked, recalled, perceived and are persuasive. The sample group of the study, which was conducted in two elementary schools situated in areas that had different socioeconomic features, consisted of children aged 12.

Keywords: Children, metaphor, perception, print advertisements, recall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
2050 A Generic Approach to Reuse Unified Modeling Language Components Following an Agile Process

Authors: Rim Bouhaouel, Naoufel Kraïem, Zuhoor Al Khanjari

Abstract:

Unified Modeling Language (UML) is considered as one of the widespread modeling language standardized by the Object Management Group (OMG). Therefore, the model driving engineering (MDE) community attempts to provide reuse of UML diagrams, and do not construct it from scratch. The UML model appears according to a specific software development process. The existing method generation models focused on the different techniques of transformation without considering the development process. Our work aims to construct an UML component from fragments of UML diagram basing on an agile method. We define UML fragment as a portion of a UML diagram, which express a business target. To guide the generation of fragments of UML models using an agile process, we need a flexible approach, which adapts to the agile changes and covers all its activities. We use the software product line (SPL) to derive a fragment of process agile method. This paper explains our approach, named RECUP, to generate UML fragments following an agile process, and overviews the different aspects. In this paper, we present the approach and we define the different phases and artifacts.

Keywords: UML, component, fragment, agile, SPL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
2049 Face Authentication for Access Control based on SVM using Class Characteristics

Authors: SeHun Lim, Sanghoon Kim, Sun-Tae Chung, Seongwon Cho

Abstract:

Face authentication for access control is a face membership authentication which passes the person of the incoming face if he turns out to be one of an enrolled person based on face recognition or rejects if not. Face membership authentication belongs to the two class classification problem where SVM(Support Vector Machine) has been successfully applied and shows better performance compared to the conventional threshold-based classification. However, most of previous SVMs have been trained using image feature vectors extracted from face images of each class member(enrolled class/unenrolled class) so that they are not robust to variations in illuminations, poses, and facial expressions and much affected by changes in member configuration of the enrolled class In this paper, we propose an effective face membership authentication method based on SVM using class discriminating features which represent an incoming face image-s associability with each class distinctively. These class discriminating features are weakly related with image features so that they are less affected by variations in illuminations, poses and facial expression. Through experiments, it is shown that the proposed face membership authentication method performs better than the threshold rule-based or the conventional SVM-based authentication methods and is relatively less affected by changes in member size and membership.

Keywords: Face Authentication, Access control, member ship authentication, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
2048 An Improved k Nearest Neighbor Classifier Using Interestingness Measures for Medical Image Mining

Authors: J. Alamelu Mangai, Satej Wagle, V. Santhosh Kumar

Abstract:

The exponential increase in the volume of medical image database has imposed new challenges to clinical routine in maintaining patient history, diagnosis, treatment and monitoring. With the advent of data mining and machine learning techniques it is possible to automate and/or assist physicians in clinical diagnosis. In this research a medical image classification framework using data mining techniques is proposed. It involves feature extraction, feature selection, feature discretization and classification. In the classification phase, the performance of the traditional kNN k nearest neighbor classifier is improved using a feature weighting scheme and a distance weighted voting instead of simple majority voting. Feature weights are calculated using the interestingness measures used in association rule mining. Experiments on the retinal fundus images show that the proposed framework improves the classification accuracy of traditional kNN from 78.57 % to 92.85 %.

Keywords: Medical Image Mining, Data Mining, Feature Weighting, Association Rule Mining, k nearest neighbor classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3308
2047 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification

Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh

Abstract:

Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.

Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
2046 Automatic Segmentation of the Clean Speech Signal

Authors: M. A. Ben Messaoud, A. Bouzid, N. Ellouze

Abstract:

Speech Segmentation is the measure of the change point detection for partitioning an input speech signal into regions each of which accords to only one speaker. In this paper, we apply two features based on multi-scale product (MP) of the clean speech, namely the spectral centroid of MP, and the zero crossings rate of MP. We focus on multi-scale product analysis as an important tool for segmentation extraction. The MP is based on making the product of the speech wavelet transform coefficients (WTC). We have estimated our method on the Keele database. The results show the effectiveness of our method. It indicates that the two features can find word boundaries, and extracted the segments of the clean speech.

Keywords: Speech segmentation, Multi-scale product, Spectral centroid, Zero crossings rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
2045 Vehicle Detection Method using Haar-like Feature on Real Time System

Authors: Sungji Han, Youngjoon Han, Hernsoo Hahn

Abstract:

This paper presents a robust vehicle detection approach using Haar-like feature. It is possible to get a strong edge feature from this Haar-like feature. Therefore it is very effective to remove the shadow of a vehicle on the road. And we can detect the boundary of vehicles accurately. In the paper, the vehicle detection algorithm can be divided into two main steps. One is hypothesis generation, and the other is hypothesis verification. In the first step, it determines vehicle candidates using features such as a shadow, intensity, and vertical edge. And in the second step, it determines whether the candidate is a vehicle or not by using the symmetry of vehicle edge features. In this research, we can get the detection rate over 15 frames per second on our embedded system.

Keywords: vehicle detection, haar-like feauture, single camera, real time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3334
2044 Hand Vein Image Enhancement With Radon Like Features Descriptor

Authors: Randa Boukhris Trabelsi, Alima Damak Masmoudi, Dorra Sellami Masmoudi

Abstract:

Nowadays, hand vein recognition has attracted more attentions in identification biometrics systems. Generally, hand vein image is acquired with low contrast and irregular illumination. Accordingly, if you have a good preprocessing of hand vein image, we can easy extracted the feature extraction even with simple binarization. In this paper, a proposed approach is processed to improve the quality of hand vein image. First, a brief survey on existing methods of enhancement is investigated. Then a Radon Like features method is applied to preprocessing hand vein image. Finally, experiments results show that the proposed method give the better effective and reliable in improving hand vein images.

Keywords: Hand Vein, Enhancement, Contrast, RLF, SDME

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
2043 K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors

Authors: Shao-Tzu Huang, Chen-Chien Hsu, Wei-Yen Wang

Abstract:

Matching high dimensional features between images is computationally expensive for exhaustive search approaches in computer vision. Although the dimension of the feature can be degraded by simplifying the prior knowledge of homography, matching accuracy may degrade as a tradeoff. In this paper, we present a feature matching method based on k-means algorithm that reduces the matching cost and matches the features between images instead of using a simplified geometric assumption. Experimental results show that the proposed method outperforms the previous linear exhaustive search approaches in terms of the inlier ratio of matched pairs.

Keywords: Feature matching, k-means clustering, scale invariant feature transform, linear exhaustive search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086
2042 Ultra High Speed Approach for Document Skew Detection and Correction Based On Centre of Gravity

Authors: Seyyed Yasser Hashemi

Abstract:

Skew detection and correction (SDC) has a direct effect in efficiency and exactitude of documents’ segmentation and analysis and thus is considered as a very important step in documents’ analysis field. Skew is a major problem in documents’ analysis for every language. For Arabic/Persian document scripts this problem is more severe because of special features of these languages. In this paper an efficient and fast algorithm for Document Skew Detection (DSD) based on the concept of segmentation and Center of Gravity (COG) is proposed. This algorithm is examined for 150 Arabic/Persian and English documents and SDC process are done successfully for 93 percent of documents with error rate of less than 1°. This algorithm shows better results for English documents compared to Arabic/Persian documents. The proposed method is also represents favorable results for handwritten, printed and also complicated documents such as newspapers and journals even with very low quality and resolution.

Keywords: Arabic/Persian document, Baseline, Centre of gravity, Document segmentation, Skew detection and correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
2041 Multi-board Run-time Reconfigurable Implementation of Intrinsic Evolvable Hardware

Authors: Cyrille Lambert, Tatiana Kalganova, Emanuele Stomeo, Manissa Wilson

Abstract:

A multi-board run-time reconfigurable (MRTR) system for evolvable hardware (EHW) is introduced with the aim to implement on hardware the bidirectional incremental evolution (BIE) method. The main features of this digital intrinsic EHW solution rely on the multi-board approach, the variable chromosome length management and the partial configuration of the reconfigurable circuit. These three features provide a high scalability to the solution. The design has been written in VHDL with the concern of not being platform dependant in order to keep a flexibility factor as high as possible. This solution helps tackling the problem of evolving complex task on digital configurable support.

Keywords: Evolvable Hardware, Evolutionary Strategy, multiboardFPGA system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
2040 Balancing of Quad Tree using Point Pattern Analysis

Authors: Amitava Chakraborty, Sudip Kumar De, Ranjan Dasgupta

Abstract:

Point quad tree is considered as one of the most common data organizations to deal with spatial data & can be used to increase the efficiency for searching the point features. As the efficiency of the searching technique depends on the height of the tree, arbitrary insertion of the point features may make the tree unbalanced and lead to higher time of searching. This paper attempts to design an algorithm to make a nearly balanced quad tree. Point pattern analysis technique has been applied for this purpose which shows a significant enhancement of the performance and the results are also included in the paper for the sake of completeness.

Keywords: Algorithm, Height balanced tree, Point patternanalysis, Point quad tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699
2039 SIFT Accordion: A Space-Time Descriptor Applied to Human Action Recognition

Authors: Olfa.Ben Ahmed, Mahmoud. Mejdoub, Chokri. Ben Amar

Abstract:

Recognizing human action from videos is an active field of research in computer vision and pattern recognition. Human activity recognition has many potential applications such as video surveillance, human machine interaction, sport videos retrieval and robot navigation. Actually, local descriptors and bag of visuals words models achieve state-of-the-art performance for human action recognition. The main challenge in features description is how to represent efficiently the local motion information. Most of the previous works focus on the extension of 2D local descriptors on 3D ones to describe local information around every interest point. In this paper, we propose a new spatio-temporal descriptor based on a spacetime description of moving points. Our description is focused on an Accordion representation of video which is well-suited to recognize human action from 2D local descriptors without the need to 3D extensions. We use the bag of words approach to represent videos. We quantify 2D local descriptor describing both temporal and spatial features with a good compromise between computational complexity and action recognition rates. We have reached impressive results on publicly available action data set

Keywords: Accordion, Bag of Features, Human action, Motion, Moving point, Space-Time Descriptor, SIFT, Video.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
2038 Effects of Hidden Unit Sizes and Autoregressive Features in Mental Task Classification

Authors: Ramaswamy Palaniappan, Nai-Jen Huan

Abstract:

Classification of electroencephalogram (EEG) signals extracted during mental tasks is a technique that is actively pursued for Brain Computer Interfaces (BCI) designs. In this paper, we compared the classification performances of univariateautoregressive (AR) and multivariate autoregressive (MAR) models for representing EEG signals that were extracted during different mental tasks. Multilayer Perceptron (MLP) neural network (NN) trained by the backpropagation (BP) algorithm was used to classify these features into the different categories representing the mental tasks. Classification performances were also compared across different mental task combinations and 2 sets of hidden units (HU): 2 to 10 HU in steps of 2 and 20 to 100 HU in steps of 20. Five different mental tasks from 4 subjects were used in the experimental study and combinations of 2 different mental tasks were studied for each subject. Three different feature extraction methods with 6th order were used to extract features from these EEG signals: AR coefficients computed with Burg-s algorithm (ARBG), AR coefficients computed with stepwise least square algorithm (ARLS) and MAR coefficients computed with stepwise least square algorithm. The best results were obtained with 20 to 100 HU using ARBG. It is concluded that i) it is important to choose the suitable mental tasks for different individuals for a successful BCI design, ii) higher HU are more suitable and iii) ARBG is the most suitable feature extraction method.

Keywords: Autoregressive, Brain-Computer Interface, Electroencephalogram, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
2037 Educational Values of Virtual Reality: The Case of Spatial Ability

Authors: Elinda Ai-Lim Lee, Kok Wai Wong, Chun Che Fung

Abstract:

The use of Virtual Reality (VR) in schools and higher education is proliferating. Due to its interactive and animated features, it is regarded as a promising technology to increase students- spatial ability. Spatial ability is assumed to have a prominent role in science and engineering domains. However, research concerning individual differences such as spatial ability in the context of VR is still at its infancy. Moreover, empirical studies that focus on the features of VR to improve spatial ability are to date rare. Thus, this paper explores the possible educational values of VR in relation to spatial ability to call for more research concerning spatial ability in the context of VR based on studies in computerbased learning. It is believed that the incorporation of state-of-the-art VR technology for educational purposes should be justified by the enhanced benefits for the target learners.

Keywords: Ability-as-compensator, ability-as-enhancer, spatialability, virtual reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
2036 Emotion Classification for Students with Autism in Mathematics E-learning using Physiological and Facial Expression Measures

Authors: Hui-Chuan Chu, Min-Ju Liao, Wei-Kai Cheng, William Wei-Jen Tsai, Yuh-Min Chen

Abstract:

Avoiding learning failures in mathematics e-learning environments caused by emotional problems in students with autism has become an important topic for combining of special education with information and communications technology. This study presents an adaptive emotional adjustment model in mathematics e-learning for students with autism, emphasizing the lack of emotional perception in mathematics e-learning systems. In addition, an emotion classification for students with autism was developed by inducing emotions in mathematical learning environments to record changes in the physiological signals and facial expressions of students. Using these methods, 58 emotional features were obtained. These features were then processed using one-way ANOVA and information gain (IG). After reducing the feature dimension, methods of support vector machines (SVM), k-nearest neighbors (KNN), and classification and regression trees (CART) were used to classify four emotional categories: baseline, happy, angry, and anxious. After testing and comparisons, in a situation without feature selection, the accuracy rate of the SVM classification can reach as high as 79.3-%. After using IG to reduce the feature dimension, with only 28 features remaining, SVM still has a classification accuracy of 78.2-%. The results of this research could enhance the effectiveness of eLearning in special education.

Keywords: Emotion classification, Physiological and facial Expression measures, Students with autism, Mathematics e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
2035 The Effect of Realizing Emotional Synchrony with Teachers or Peers on Children’s Linguistic Proficiency: The Case Study of Uji Elementary School

Authors: Reiko Yamamoto

Abstract:

This paper reports on a joint research project in which a researcher in applied linguistics and elementary school teachers in Japan explored new ways to realize emotional synchrony in a classroom in childhood education. The primary purpose of this project was to develop a cross-curriculum of the first language (L1) and second language (L2) based on the concept of plurilingualism. This concept is common in Europe, and can-do statements are used in forming the standard of linguistic proficiency in any language; these are attributed to the action-oriented approach in the Common European Framework of Reference for Languages (CEFR). CEFR has a basic tenet of language education: improving communicative competence. Can-do statements are classified into five categories based on the tenet: reading, writing, listening, speaking/ interaction, and speaking/ speech. The first approach of this research was to specify the linguistic proficiency of the children, who are still developing their L1. Elementary school teachers brainstormed and specified the linguistic proficiency of the children as the competency needed to synchronize with others – teachers or peers – physically and mentally. The teachers formed original can-do statements in language proficiency on the basis of the idea that emotional synchrony leads to understanding others in communication. The research objectives are to determine the effect of language education based on the newly developed curriculum and can-do statements. The participants of the experiment were 72 third-graders in Uji Elementary School, Japan. For the experiment, 17 items were developed from the can-do statements formed by the teachers and divided into the same five categories as those of CEFR. A can-do checklist consisting of the items was created. The experiment consisted of three steps: first, the students evaluated themselves using the can-do checklist at the beginning of the school year. Second, one year of instruction was given to the students in Japanese and English classes (six periods a week). Third, the students evaluated themselves using the same can-do checklist at the end of the school year. The results of statistical analysis showed an enhancement of linguistic proficiency of the students. The average results of the post-check exceeded that of the pre-check in 12 out of the 17 items. Moreover, significant differences were shown in four items, three of which belonged to the same category: speaking/ interaction. It is concluded that children can get to understand others’ minds through physical and emotional synchrony. In particular, emotional synchrony is what teachers should aim at in childhood education.

Keywords: Elementary school education, emotional synchrony, language proficiency, sympathy with others.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620
2034 Effect of Silica Fume on the Properties of Steel-Fiber Reinforced Self-compacting Concrete

Authors: Ahmed Fathi Mohamed, Nasir Shafiq, M. F. Nuruddin, Ali Elheber

Abstract:

Implementing significant advantages in the supply of self-compacting concrete (SCC) is necessary because of the, negative features of SCC. Examples of these features are the ductility problem along with the very high cost of its constituted materials. Silica fume with steel fiber can fix this matter by improving the ductility and decreasing the total cost of SCC by varying the cement ingredients. Many different researchers have found that there have not been enough research carried out on the steel fiber-reinforced self-compacting concrete (SFRSCC) produced with silica fume. This paper inspects both the fresh and the mechanical properties of SFRSCC with silica fume, the fresh qualities where slump flow, slump T50 and V- funnel. While, the mechanical characteristics were the compressive strength, ultrasound pulse velocity (UPV) and elastic modulus of the concrete samples. The experimental results have proven that steel fiber can enhance the mechanical features. In addition, the silica fume within the entire hybrid mix may possibly adapt the fiber dispersion and strengthen deficits due to the fibers. It could also improve the strength plus the bond between the fiber and the matrix with a dense calcium silicate-hydrate gel in SFRSCC. The concluded result was predicted using linear mathematical models and was found to be in great agreement with the experimental results.

Keywords: Self-compacting concrete, silica fume, steel fiber, fresh and mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3275
2033 Detection of Coupling Misalignment in a Rotor System Using Wavelet Transforms

Authors: Prabhakar Sathujoda

Abstract:

Vibration analysis of a misaligned rotor coupling bearing system has been carried out while decelerating through its critical speed. The finite element method (FEM) is used to model the rotor system and simulate flexural vibrations. A flexible coupling with a frictionless joint is considered in the present work. The continuous wavelet transform is used to extract the misalignment features from the simulated time response. Subcritical speeds at one-half, one-third, and one-fourth the critical speed have appeared in the wavelet transformed vibration response of a misaligned rotor coupling bearing system. These features are also verified through a parametric study.

Keywords: Continuous wavelet transform, flexible coupling, rotor system, sub critical speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
2032 Soft Computing based Retrieval System for Medical Applications

Authors: Pardeep Singh, Sanjay Sharma

Abstract:

With increasing data in medical databases, medical data retrieval is growing in popularity. Some of this analysis including inducing propositional rules from databases using many soft techniques, and then using these rules in an expert system. Diagnostic rules and information on features are extracted from clinical databases on diseases of congenital anomaly. This paper explain the latest soft computing techniques and some of the adaptive techniques encompasses an extensive group of methods that have been applied in the medical domain and that are used for the discovery of data dependencies, importance of features, patterns in sample data, and feature space dimensionality reduction. These approaches pave the way for new and interesting avenues of research in medical imaging and represent an important challenge for researchers.

Keywords: CBIR, GA, Rough sets, CBMIR, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
2031 Rotation Invariant Face Recognition Based on Hybrid LPT/DCT Features

Authors: Rehab F. Abdel-Kader, Rabab M. Ramadan, Rawya Y. Rizk

Abstract:

The recognition of human faces, especially those with different orientations is a challenging and important problem in image analysis and classification. This paper proposes an effective scheme for rotation invariant face recognition using Log-Polar Transform and Discrete Cosine Transform combined features. The rotation invariant feature extraction for a given face image involves applying the logpolar transform to eliminate the rotation effect and to produce a row shifted log-polar image. The discrete cosine transform is then applied to eliminate the row shift effect and to generate the low-dimensional feature vector. A PSO-based feature selection algorithm is utilized to search the feature vector space for the optimal feature subset. Evolution is driven by a fitness function defined in terms of maximizing the between-class separation (scatter index). Experimental results, based on the ORL face database using testing data sets for images with different orientations; show that the proposed system outperforms other face recognition methods. The overall recognition rate for the rotated test images being 97%, demonstrating that the extracted feature vector is an effective rotation invariant feature set with minimal set of selected features.

Keywords: Discrete Cosine Transform, Face Recognition, Feature Extraction, Log Polar Transform, Particle SwarmOptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
2030 A New Approach for Fingerprint Classification based on Minutiae Distribution

Authors: Jayant V Kulkarni, Jayadevan R, Suresh N Mali, Hemant K Abhyankar, Raghunath S Holambe

Abstract:

The paper describes a new approach for fingerprint classification, based on the distribution of local features (minute details or minutiae) of the fingerprints. The main advantage is that fingerprint classification provides an indexing scheme to facilitate efficient matching in a large fingerprint database. A set of rules based on heuristic approach has been proposed. The area around the core point is treated as the area of interest for extracting the minutiae features as there are substantial variations around the core point as compared to the areas away from the core point. The core point in a fingerprint has been located at a point where there is maximum curvature. The experimental results report an overall average accuracy of 86.57 % in fingerprint classification.

Keywords: Minutiae distribution, Minutiae, Classification, Orientation, Heuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
2029 Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) Parameters for Propane, Ethylene, and Hydrogen under Supercritical Conditions

Authors: Ilke Senol

Abstract:

Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) equation of state (EOS) is a modified SAFT EOS with three pure component specific parameters: segment number (m), diameter (σ) and energy (ε). These PC-SAFT parameters need to be determined for each component under the conditions of interest by fitting experimental data, such as vapor pressure, density or heat capacity. PC-SAFT parameters for propane, ethylene and hydrogen in supercritical region were successfully estimated by fitting experimental density data available in literature. The regressed PCSAFT parameters were compared with the literature values by means of estimating pure component density and calculating average absolute deviation between the estimated and experimental density values. PC-SAFT parameters available in literature especially for ethylene and hydrogen estimated density in supercritical region reasonably well. However, the regressed PC-SAFT parameters performed better in supercritical region than the PC-SAFT parameters from literature.

Keywords: Equation of state, perturbed-chain, PC-SAFT, super critical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6991
2028 Performance Analysis of Traffic Classification with Machine Learning

Authors: Htay Htay Yi, Zin May Aye

Abstract:

Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.

Keywords: False negative rate, intrusion detection system, machine learning methods, performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1070
2027 Reading and Teaching Poetry as Communicative Discourse: A Pragma-Linguistic Approach

Authors: Omnia Elkommos

Abstract:

Language is communication on several discourse levels. The target of teaching a language and the literature of a foreign language is to communicate a message. Reading, appreciating, analysing, and interpreting poetry as a sophisticated rhetorical expression of human thoughts, emotions, and philosophical messages is more feasible through the use of linguistic pragmatic tools from a communicative discourse perspective. The poet's intention, speech act, illocutionary act, and perlocutionary goal can be better understood when communicative situational context as well as linguistic discourse structure theories are employed. The use of linguistic theories in the teaching of poetry is, therefore, intrinsic to students' comprehension, interpretation, and appreciation of poetry of the different ages. It is the purpose of this study to show how both teachers as well as students can apply these linguistic theories and tools to dramatic poetic texts for an engaging, enlightening, and effective interpretation and appreciation of the language. Theories drawn from areas of pragmatics, discourse analysis, embedded discourse level, communicative situational context, and other linguistic approaches were applied to selected poetry texts from the different centuries. Further, in a simple statistical count of the number of poems with dialogic dramatic discourse with embedded two or three levels of discourse in different anthologies outweighs the number of descriptive poems with a one level of discourse, between the poet and the reader. Poetry is thus discourse on one, two, or three levels. It is, therefore, recommended that teachers and students in the area of ESL/EFL use the linguistics theories for a better understanding of poetry as communicative discourse. The practice of applying these linguistic theories in classrooms and in research will allow them to perceive the language and its linguistic, social, and cultural aspect. Texts will become live illocutionary acts with a perlocutionary acts goal rather than mere literary texts in anthologies.

Keywords: Coda, commissives, communicative situation, context of culture, context of reference, context of utterance, dialogue, directives, discourse analysis, dramatic discourse interaction, duologue, embedded discourse levels, language for communication, linguistic structures, literary texts, poetry, pragmatic theories, reader response, speech acts (macro/micro), stylistics, teaching literature, TEFL, terms of address, turn-taking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
2026 A Hybrid Machine Learning System for Stock Market Forecasting

Authors: Rohit Choudhry, Kumkum Garg

Abstract:

In this paper, we propose a hybrid machine learning system based on Genetic Algorithm (GA) and Support Vector Machines (SVM) for stock market prediction. A variety of indicators from the technical analysis field of study are used as input features. We also make use of the correlation between stock prices of different companies to forecast the price of a stock, making use of technical indicators of highly correlated stocks, not only the stock to be predicted. The genetic algorithm is used to select the set of most informative input features from among all the technical indicators. The results show that the hybrid GA-SVM system outperforms the stand alone SVM system.

Keywords: Genetic Algorithms, Support Vector Machines, Stock Market Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9318
2025 Adaptive Total Variation Based on Feature Scale

Authors: Jianbo Hu, Hongbao Wang

Abstract:

The widely used Total Variation de-noising algorithm can preserve sharp edge, while removing noise. However, since fixed regularization parameter over entire image, small details and textures are often lost in the process. In this paper, we propose a modified Total Variation algorithm to better preserve smaller-scaled features. This is done by allowing an adaptive regularization parameter to control the amount of de-noising in any region of image, according to relative information of local feature scale. Experimental results demonstrate the efficient of the proposed algorithm. Compared with standard Total Variation, our algorithm can better preserve smaller-scaled features and show better performance.

Keywords: Adaptive, de-noising, feature scale, regularizationparameter, Total Variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
2024 A Web-Based Self-Learning Grammar for Spoken Language Understanding

Authors: S. M. Biondi, V. Catania, R. Di Natale, A. R. Intilisano, D. Panno

Abstract:

One of the major goals of Spoken Dialog Systems (SDS) is to understand what the user utters. In the SDS domain, the Spoken Language Understanding (SLU) Module classifies user utterances by means of a pre-definite conceptual knowledge. The SLU module is able to recognize only the meaning previously included in its knowledge base. Due the vastity of that knowledge, the information storing is a very expensive process. Updating and managing the knowledge base are time-consuming and error-prone processes because of the rapidly growing number of entities like proper nouns and domain-specific nouns. This paper proposes a solution to the problem of Name Entity Recognition (NER) applied to a SDS domain. The proposed solution attempts to automatically recognize the meaning associated with an utterance by using the PANKOW (Pattern based Annotation through Knowledge On the Web) method at runtime. The method being proposed extracts information from the Web to increase the SLU knowledge module and reduces the development effort. In particular, the Google Search Engine is used to extract information from the Facebook social network.

Keywords: Spoken Dialog System, Spoken Language Understanding, Web Semantic, Name Entity Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
2023 Texture Feature Extraction of Infrared River Ice Images using Second-Order Spatial Statistics

Authors: Bharathi P. T, P. Subashini

Abstract:

Ice cover County has a significant impact on rivers as it affects with the ice melting capacity which results in flooding, restrict navigation, modify the ecosystem and microclimate. River ices are made up of different ice types with varying ice thickness, so surveillance of river ice plays an important role. River ice types are captured using infrared imaging camera which captures the images even during the night times. In this paper the river ice infrared texture images are analysed using first-order statistical methods and secondorder statistical methods. The second order statistical methods considered are spatial gray level dependence method, gray level run length method and gray level difference method. The performance of the feature extraction methods are evaluated by using Probabilistic Neural Network classifier and it is found that the first-order statistical method and second-order statistical method yields low accuracy. So the features extracted from the first-order statistical method and second-order statistical method are combined and it is observed that the result of these combined features (First order statistical method + gray level run length method) provides higher accuracy when compared with the features from the first-order statistical method and second-order statistical method alone.

Keywords: Gray Level Difference Method, Gray Level Run Length Method, Kurtosis, Probabilistic Neural Network, Skewness, Spatial Gray Level Dependence Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2908