Search results for: Adaptive image filtering
1784 Quality of Non-Point Source Pollutant Identification using Digital Image and Remote Sensing Image
Authors: Riki Mukhaiyar
Abstract:
The integration between technology of remote sensing, information from the data of digital image, and modeling technology for the simulation of water quality will provide easiness during the observation on the quality of water changes on the river surface. For example, Ciliwung River which is contaminated with non-point source pollutant from household wastes, particularly on its downstream. This fact informed that the quality of water in this river is getting worse. The land use for settlements and housing ranges between 62.84% - 81.26% on the downstream of Ciliwung River, give a significant picture in seeing factors that affected the water quality of Ciliwung River.Keywords: Digital Image, Digitize, Landuse, Non-Point SourcePollutant, Qual2e Simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17091783 Unequal Error Protection of Facial Features for Personal ID Images Coding
Abstract:
This paper presents an approach for an unequal error protection of facial features of personal ID images coding. We consider unequal error protection (UEP) strategies for the efficient progressive transmission of embedded image codes over noisy channels. This new method is based on the progressive image compression embedded zerotree wavelet (EZW) algorithm and UEP technique with defined region of interest (ROI). In this case is ROI equal facial features within personal ID image. ROI technique is important in applications with different parts of importance. In ROI coding, a chosen ROI is encoded with higher quality than the background (BG). Unequal error protection of image is provided by different coding techniques and encoding LL band separately. In our proposed method, image is divided into two parts (ROI, BG) that consist of more important bytes (MIB) and less important bytes (LIB). The proposed unequal error protection of image transmission has shown to be more appropriate to low bit rate applications, producing better quality output for ROI of the compresses image. The experimental results verify effectiveness of the design. The results of our method demonstrate the comparison of the UEP of image transmission with defined ROI with facial features and the equal error protection (EEP) over additive white gaussian noise (AWGN) channel.Keywords: Embedded zerotree wavelet (EZW), equal error protection (EEP), facial features, personal ID images, region of interest (ROI), unequal error protection (UEP)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14901782 Generation of Photo-Mosaic Images through Block Matching and Color Adjustment
Authors: Hae-Yeoun Lee
Abstract:
Mosaic refers to a technique that makes image by gathering lots of small materials in various colors. This paper presents an automatic algorithm that makes the photo-mosaic image using photos. The algorithm is composed of 4 steps: partition and feature extraction, block matching, redundancy removal and color adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis.
Keywords: Photo-mosaic, Euclidean distance, Block matching, Intensity adjustment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35711781 A Weighted Sum Technique for the Joint Optimization of Performance and Power Consumption in Data Centers
Authors: Samee Ullah Khan, C.Ardil
Abstract:
With data centers, end-users can realize the pervasiveness of services that will be one day the cornerstone of our lives. However, data centers are often classified as computing systems that consume the most amounts of power. To circumvent such a problem, we propose a self-adaptive weighted sum methodology that jointly optimizes the performance and power consumption of any given data center. Compared to traditional methodologies for multi-objective optimization problems, the proposed self-adaptive weighted sum technique does not rely on a systematical change of weights during the optimization procedure. The proposed technique is compared with the greedy and LR heuristics for large-scale problems, and the optimal solution for small-scale problems implemented in LINDO. the experimental results revealed that the proposed selfadaptive weighted sum technique outperforms both of the heuristics and projects a competitive performance compared to the optimal solution.Keywords: Meta-heuristics, distributed systems, adaptive methods, resource allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18361780 Neural Adaptive Switching Control of Robotic Systems
Authors: A. Denker, U. Akıncıoğlu
Abstract:
In this paper a neural adaptive control method has been developed and applied to robot control. Simulation results are presented to verify the effectiveness of the controller. These results show that the performance by using this controller is better than those which just use either direct inverse control or predictive control. In addition, they show that the resulting is a useful method which combines the advantages of both direct inverse control and predictive control.Keywords: Neural networks, robotics, direct inverse control, predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21841779 A Novel Stator Resistance Estimation Method and Control Design of Speed-Sensorless Induction Motor Drives
Authors: N. Ben Si Ali, N. Benalia, N. Zarzouri
Abstract:
Speed sensorless systems are intensively studied during recent years; this is mainly due to their economical benefit and fragility of mechanical sensors and also the difficulty of installing this type of sensor in many applications. These systems suffer from instability problems and sensitivity to parameter mismatch at low speed operation. In this paper an analysis of adaptive observer stability with stator resistance estimation is given.
Keywords: Motor drive, sensorless control, adaptive observer, stator resistance estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22141778 Finite Time Symplectic Synchronization between Two Different Chaotic Systems
Authors: Chunming Xu
Abstract:
In this paper, the finite-time symplectic synchronization between two different chaotic systems is investigated. Based on the finite-time stability theory, a simple adaptive feedback scheme is proposed to realize finite-time symplectic synchronization for the Lorenz and L¨u systems. Numerical examples are provided to show the effectiveness of the proposed method.Keywords: Chaotic systems, symplectic synchronization, finite-time synchronization, adaptive controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9611777 A Perceptually Optimized Foveation Based Wavelet Embedded Zero Tree Image Coding
Authors: A. Bajit, M. Nahid, A. Tamtaoui, E. H. Bouyakhf
Abstract:
In this paper, we propose a Perceptually Optimized Foveation based Embedded ZeroTree Image Coder (POEFIC) that introduces a perceptual weighting to wavelet coefficients prior to control SPIHT encoding algorithm in order to reach a targeted bit rate with a perceptual quality improvement with respect to a given bit rate a fixation point which determines the region of interest ROI. The paper also, introduces a new objective quality metric based on a Psychovisual model that integrates the properties of the HVS that plays an important role in our POEFIC quality assessment. Our POEFIC coder is based on a vision model that incorporates various masking effects of human visual system HVS perception. Thus, our coder weights the wavelet coefficients based on that model and attempts to increase the perceptual quality for a given bit rate and observation distance. The perceptual weights for all wavelet subbands are computed based on 1) foveation masking to remove or reduce considerable high frequencies from peripheral regions 2) luminance and Contrast masking, 3) the contrast sensitivity function CSF to achieve the perceptual decomposition weighting. The new perceptually optimized codec has the same complexity as the original SPIHT techniques. However, the experiments results show that our coder demonstrates very good performance in terms of quality measurement.
Keywords: DWT, linear-phase 9/7 filter, Foveation Filtering, CSF implementation approaches, 9/7 Wavelet JND Thresholds and Wavelet Error Sensitivity WES, Luminance and Contrast masking, standard SPIHT, Objective Quality Measure, Probability Score PS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17951776 Digital Predistorter with Pipelined Architecture Using CORDIC Processors
Authors: Kyunghoon Kim, Sungjoon Shim, Jun Tae Kim, Jong Tae Kim
Abstract:
In a wireless communication system, a predistorter(PD) is often employed to alleviate nonlinear distortions due to operating a power amplifier near saturation, thereby improving the system performance and reducing the interference to adjacent channels. This paper presents a new adaptive polynomial digital predistorter(DPD). The proposed DPD uses Coordinate Rotation Digital Computing(CORDIC) processors and PD process by pipelined architecture. It is simpler and faster than conventional adaptive polynomial DPD. The performance of the proposed DPD is proved by MATLAB simulation. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17881775 A Nonoblivious Image Watermarking System Based on Singular Value Decomposition and Texture Segmentation
Authors: Soroosh Rezazadeh, Mehran Yazdi
Abstract:
In this paper, a robust digital image watermarking scheme for copyright protection applications using the singular value decomposition (SVD) is proposed. In this scheme, an entropy masking model has been applied on the host image for the texture segmentation. Moreover, the local luminance and textures of the host image are considered for watermark embedding procedure to increase the robustness of the watermarking scheme. In contrast to all existing SVD-based watermarking systems that have been designed to embed visual watermarks, our system uses a pseudo-random sequence as a watermark. We have tested the performance of our method using a wide variety of image processing attacks on different test images. A comparison is made between the results of our proposed algorithm with those of a wavelet-based method to demonstrate the superior performance of our algorithm.Keywords: Watermarking, copyright protection, singular value decomposition, entropy masking, texture segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17641774 Maximizer of the Posterior Marginal Estimate for Noise Reduction of JPEG-compressed Image
Authors: Yohei Saika, Yuji Haraguchi
Abstract:
We constructed a method of noise reduction for JPEG-compressed image based on Bayesian inference using the maximizer of the posterior marginal (MPM) estimate. In this method, we tried the MPM estimate using two kinds of likelihood, both of which enhance grayscale images converted into the JPEG-compressed image through the lossy JPEG image compression. One is the deterministic model of the likelihood and the other is the probabilistic one expressed by the Gaussian distribution. Then, using the Monte Carlo simulation for grayscale images, such as the 256-grayscale standard image “Lena" with 256 × 256 pixels, we examined the performance of the MPM estimate based on the performance measure using the mean square error. We clarified that the MPM estimate via the Gaussian probabilistic model of the likelihood is effective for reducing noises, such as the blocking artifacts and the mosquito noise, if we set parameters appropriately. On the other hand, we found that the MPM estimate via the deterministic model of the likelihood is not effective for noise reduction due to the low acceptance ratio of the Metropolis algorithm.Keywords: Noise reduction, JPEG-compressed image, Bayesian inference, the maximizer of the posterior marginal estimate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19881773 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition (HAR) modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view Football datasets. Our HAR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH Multi-view Football datasets, respectively.
Keywords: Computer vision, human motion analysis, random forest, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391772 Highly Scalable, Reversible and Embedded Image Compression System
Authors: Federico Pérez González, Iñaki Goiricelaia Ordorika, Pedro Iriondo Bengoa
Abstract:
A new method for low complexity image coding is presented, that permits different settings and great scalability in the generation of the final bit stream. This coding presents a continuoustone still image compression system that groups loss and lossless compression making use of finite arithmetic reversible transforms. Both transformation in the space of color and wavelet transformation are reversible. The transformed coefficients are coded by means of a coding system in depending on a subdivision into smaller components (CFDS) similar to the bit importance codification. The subcomponents so obtained are reordered by means of a highly configure alignment system depending on the application that makes possible the re-configure of the elements of the image and obtaining different levels of importance from which the bit stream will be generated. The subcomponents of each level of importance are coded using a variable length entropy coding system (VBLm) that permits the generation of an embedded bit stream. This bit stream supposes itself a bit stream that codes a compressed still image. However, the use of a packing system on the bit stream after the VBLm allows the realization of a final highly scalable bit stream from a basic image level and one or several enhance levels.
Keywords: Image compression, wavelet transform, highlyscalable, reversible transform, embedded, subcomponents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14131771 On the AC-Side Interface Filter in Three-Phase Shunt Active Power Filter Systems
Authors: Mihaela Popescu, Alexandru Bitoleanu, Mircea Dobriceanu
Abstract:
The proper selection of the AC-side passive filter interconnecting the voltage source converter to the power supply is essential to obtain satisfactory performances of an active power filter system. The use of the LCL-type filter has the advantage of eliminating the high frequency switching harmonics in the current injected into the power supply. This paper is mainly focused on analyzing the influence of the interface filter parameters on the active filtering performances. Some design aspects are pointed out. Thus, the design of the AC interface filter starts from transfer functions by imposing the filter performance which refers to the significant current attenuation of the switching harmonics without affecting the harmonics to be compensated. A Matlab/Simulink model of the entire active filtering system including a concrete nonlinear load has been developed to examine the system performances. It is shown that a gamma LC filter could accomplish the attenuation requirement of the current provided by converter. Moreover, the existence of an optimal value of the grid-side inductance which minimizes the total harmonic distortion factor of the power supply current is pointed out. Nevertheless, a small converter-side inductance and a damping resistance in series with the filter capacitance are absolutely needed in order to keep the ripple and oscillations of the current at the converter side within acceptable limits. The effect of change in the LCL-filter parameters is evaluated. It is concluded that good active filtering performances can be achieved with small values of the capacitance and converter-side inductance.Keywords: Active power filter, LCL filter, Matlab/Simulinkmodeling, Passive filters, Transfer function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30201770 Reversible Medical Image Watermarking For Tamper Detection And Recovery With Run Length Encoding Compression
Authors: Siau-Chuin Liew, Siau-Way Liew, Jasni Mohd Zain
Abstract:
Digital watermarking in medical images can ensure the authenticity and integrity of the image. This design paper reviews some existing watermarking schemes and proposes a reversible tamper detection and recovery watermarking scheme. Watermark data from ROI (Region Of Interest) are stored in RONI (Region Of Non Interest). The embedded watermark allows tampering detection and tampered image recovery. The watermark is also reversible and data compression technique was used to allow higher embedding capacity.Keywords: data compression, medical image, reversible, tamperdetection and recovery, watermark.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20781769 Quality Evaluation of Compressed MRI Medical Images for Telemedicine Applications
Authors: Seddeq E. Ghrare, Salahaddin M. Shreef
Abstract:
Medical image modalities such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), X-ray are adapted to diagnose disease. These modalities provide flexible means of reviewing anatomical cross-sections and physiological state in different parts of the human body. The raw medical images have a huge file size and need large storage requirements. So it should be such a way to reduce the size of those image files to be valid for telemedicine applications. Thus the image compression is a key factor to reduce the bit rate for transmission or storage while maintaining an acceptable reproduction quality, but it is natural to rise the question of how much an image can be compressed and still preserve sufficient information for a given clinical application. Many techniques for achieving data compression have been introduced. In this study, three different MRI modalities which are Brain, Spine and Knee have been compressed and reconstructed using wavelet transform. Subjective and objective evaluation has been done to investigate the clinical information quality of the compressed images. For the objective evaluation, the results show that the PSNR which indicates the quality of the reconstructed image is ranging from (21.95 dB to 30.80 dB, 27.25 dB to 35.75 dB, and 26.93 dB to 34.93 dB) for Brain, Spine, and Knee respectively. For the subjective evaluation test, the results show that the compression ratio of 40:1 was acceptable for brain image, whereas for spine and knee images 50:1 was acceptable.Keywords: Medical Image, Magnetic Resonance Imaging, Image Compression, Discrete Wavelet Transform, Telemedicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29771768 Statistical Genetic Algorithm
Authors: Mohammad Ali Tabarzad, Caro Lucas, Ali Hamzeh
Abstract:
Adaptive Genetic Algorithms extend the Standard Gas to use dynamic procedures to apply evolutionary operators such as crossover, mutation and selection. In this paper, we try to propose a new adaptive genetic algorithm, which is based on the statistical information of the population as a guideline to tune its crossover, selection and mutation operators. This algorithms is called Statistical Genetic Algorithm and is compared with traditional GA in some benchmark problems.Keywords: Genetic Algorithms, Statistical Information ofthe Population, PAUX, SSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17541767 Implementing an Adaptive Behavior for Spread Spectrum Watermarking Procedures
Authors: Franco Frattolillo
Abstract:
The advances in multimedia and networking technologies have created opportunities for Internet pirates, who can easily copy multimedia contents and illegally distribute them on the Internet, thus violating the legal rights of content owners. This paper describes how a simple and well-known watermarking procedure based on a spread spectrum method and a watermark recovery by correlation can be improved to effectively and adaptively protect MPEG-2 videos distributed on the Internet. In fact, the procedure, in its simplest form, is vulnerable to a variety of attacks. However, its security and robustness have been increased, and its behavior has been made adaptive with respect to the video terminals used to open the videos and the network transactions carried out to deliver them to buyers. In fact, such an adaptive behavior enables the proposed procedure to efficiently embed watermarks, and this characteristic makes the procedure well suited to be exploited in web contexts, where watermarks usually generated from fingerprinting codes have to be inserted into the distributed videos “on the fly", i.e. during the purchase web transactions.Keywords: Copyright protection, digital watermarking, intellectualproperty protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13821766 Improvement of Synchronous Machine Dynamic Characteristics via Neural Network Based Controllers
Authors: S. A. Gawish, F. A. Khalifa, R. M. Mostafa
Abstract:
This paper presents Simulation and experimental study aimed at investigating the effectiveness of an adaptive artificial neural network stabilizer on enhancing the damping torque of a synchronous generator. For this purpose, a power system comprising a synchronous generator feeding a large power system through a short tie line is considered. The proposed adaptive neuro-control system consists of two multi-layered feed forward neural networks, which work as a plant model identifier and a controller. It generates supplementary control signals to be utilized by conventional controllers. The details of the interfacing circuits, sensors and transducers, which have been designed and built for use in tests, are presented. The synchronous generator is tested to investigate the effect of tuning a Power System Stabilizer (PSS) on its dynamic stability. The obtained simulation and experimental results verify the basic theoretical concepts.Keywords: Adaptive artificial neural network, power system stabilizer, synchronous generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14551765 Inter-frame Collusion Attack in SS-N Video Watermarking System
Authors: Yaser Mohammad Taheri, Alireza Zolghadr–asli, Mehran Yazdi
Abstract:
Video watermarking is usually considered as watermarking of a set of still images. In frame-by-frame watermarking approach, each video frame is seen as a single watermarked image, so collusion attack is more critical in video watermarking. If the same or redundant watermark is used for embedding in every frame of video, the watermark can be estimated and then removed by watermark estimate remodolulation (WER) attack. Also if uncorrelated watermarks are used for every frame, these watermarks can be washed out with frame temporal filtering (FTF). Switching watermark system or so-called SS-N system has better performance against WER and FTF attacks. In this system, for each frame, the watermark is randomly picked up from a finite pool of watermark patterns. At first SS-N system will be surveyed and then a new collusion attack for SS-N system will be proposed using a new algorithm for separating video frame based on watermark pattern. So N sets will be built in which every set contains frames carrying the same watermark. After that, using WER attack in every set, N different watermark patterns will be estimated and removed later.
Keywords: Watermark estimation remodulation (WER), Frame Temporal Averaging (FTF), switching watermark system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14971764 Image Sensor Matrix High Speed Simulation
Authors: Z. Feng, V. Viswanathan, D. Navarro, I. O'Connor
Abstract:
This paper presents a new high speed simulation methodology to solve the long simulation time problem of CMOS image sensor matrix. Generally, for integrating the pixel matrix in SOC and simulating the system performance, designers try to model the pixel in various modeling languages such as VHDL-AMS, SystemC or Matlab. We introduce a new alternative method based on spice model in cadence design platform to achieve accuracy and reduce simulation time. The simulation results indicate that the pixel output voltage maximum error is at 0.7812% and time consumption reduces from 2.2 days to 13 minutes achieving about 240X speed-up for the 256x256 pixel matrix.
Keywords: CMOS image sensor, high speed simulation, image sensor matrix simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20131763 Hybrid Feature and Adaptive Particle Filter for Robust Object Tracking
Authors: Xinyue Zhao, Yutaka Satoh, Hidenori Takauji, Shun'ichi Kaneko
Abstract:
A hybrid feature based adaptive particle filter algorithm is presented for object tracking in real scenarios with static camera. The hybrid feature is combined by two effective features: the Grayscale Arranging Pairs (GAP) feature and the color histogram feature. The GAP feature has high discriminative ability even under conditions of severe illumination variation and dynamic background elements, while the color histogram feature has high reliability to identify the detected objects. The combination of two features covers the shortage of single feature. Furthermore, we adopt an updating target model so that some external problems such as visual angles can be overcame well. An automatic initialization algorithm is introduced which provides precise initial positions of objects. The experimental results show the good performance of the proposed method.Keywords: Hybrid feature, adaptive Particle Filter, robust Object Tracking, Grayscale Arranging Pairs (GAP) feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15281762 An Improved C-Means Model for MRI Segmentation
Authors: Ying Shen, Weihua Zhu
Abstract:
Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.
Keywords: Magnetic Resonance Image, C-means model, image segmentation, information entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9181761 A New Image Psychovisual Coding Quality Measurement based Region of Interest
Authors: M. Nahid, A. Bajit, A. Tamtaoui, E. H. Bouyakhf
Abstract:
To model the human visual system (HVS) in the region of interest, we propose a new objective metric evaluation adapted to wavelet foveation-based image compression quality measurement, which exploits a foveation setup filter implementation technique in the DWT domain, based especially on the point and region of fixation of the human eye. This model is then used to predict the visible divergences between an original and compressed image with respect to this region field and yields an adapted and local measure error by removing all peripheral errors. The technique, which we call foveation wavelet visible difference prediction (FWVDP), is demonstrated on a number of noisy images all of which have the same local peak signal to noise ratio (PSNR), but visibly different errors. We show that the FWVDP reliably predicts the fixation areas of interest where error is masked, due to high image contrast, and the areas where the error is visible, due to low image contrast. The paper also suggests ways in which the FWVDP can be used to determine a visually optimal quantization strategy for foveation-based wavelet coefficients and to produce a quantitative local measure of image quality.
Keywords: Human Visual System, Image Quality, ImageCompression, foveation wavelet, region of interest ROI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14981760 Encryption Image via Mutual Singular Value Decomposition
Authors: Adil Al-Rammahi
Abstract:
Image or document encryption is needed through egovernment data base. Really in this paper we introduce two matrices images, one is the public, and the second is the secret (original). The analyses of each matrix is achieved using the transformation of singular values decomposition. So each matrix is transformed or analyzed to three matrices say row orthogonal basis, column orthogonal basis, and spectral diagonal basis. Product of the two row basis is calculated. Similarly the product of the two column basis is achieved. Finally we transform or save the files of public, row product and column product. In decryption stage, the original image is deduced by mutual method of the three public files.
Keywords: Image cryptography, Singular values decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20861759 Image Segment Matching Using Affine- Invariant Regions
Authors: Ibrahim El rube'
Abstract:
In this paper, a method for matching image segments using triangle-based (geometrical) regions is proposed. Triangular regions are formed from triples of vertex points obtained from a keypoint detector (SIFT). However, triangle regions are subject to noise and distortion around the edges and vertices (especially acute angles). Therefore, these triangles are expanded into parallelogramshaped regions. The extracted image segments inherit an important triangle property; the invariance to affine distortion. Given two images, matching corresponding regions is conducted by computing the relative affine matrix, rectifying one of the regions w.r.t. the other one, then calculating the similarity between the reference and rectified region. The experimental tests show the efficiency and robustness of the proposed algorithm against geometrical distortion.Keywords: Image matching, key point detection, affine invariant, triangle-shaped segments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18901758 Performance Analysis and Optimization for Diagonal Sparse Matrix-Vector Multiplication on Machine Learning Unit
Authors: Qiuyu Dai, Haochong Zhang, Xiangrong Liu
Abstract:
Efficient matrix-vector multiplication with diagonal sparse matrices is pivotal in a multitude of computational domains, ranging from scientific simulations to machine learning workloads. When encoded in the conventional Diagonal (DIA) format, these matrices often induce computational overheads due to extensive zero-padding and non-linear memory accesses, which can hamper the computational throughput, and elevate the usage of precious compute and memory resources beyond necessity. The ’DIA-Adaptive’ approach, a methodological enhancement introduced in this paper, confronts these challenges head-on by leveraging the advanced parallel instruction sets embedded within Machine Learning Units (MLUs). This research presents a thorough analysis of the DIA-Adaptive scheme’s efficacy in optimizing Sparse Matrix-Vector Multiplication (SpMV) operations. The scope of the evaluation extends to a variety of hardware architectures, examining the repercussions of distinct thread allocation strategies and cluster configurations across multiple storage formats. A dedicated computational kernel, intrinsic to the DIA-Adaptive approach, has been meticulously developed to synchronize with the nuanced performance characteristics of MLUs. Empirical results, derived from rigorous experimentation, reveal that the DIA-Adaptive methodology not only diminishes the performance bottlenecks associated with the DIA format but also exhibits pronounced enhancements in execution speed and resource utilization. The analysis delineates a marked improvement in parallelism, showcasing the DIA-Adaptive scheme’s ability to adeptly manage the interplay between storage formats, hardware capabilities, and algorithmic design. The findings suggest that this approach could set a precedent for accelerating SpMV tasks, thereby contributing significantly to the broader domain of high-performance computing and data-intensive applications.
Keywords: Adaptive method, DIA, diagonal sparse matrices, MLU, sparse matrix-vector multiplication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2351757 Design of Gain Scheduled Fuzzy PID Controller
Authors: Leehter Yao, Chin-Chin Lin
Abstract:
An adaptive fuzzy PID controller with gain scheduling is proposed in this paper. The structure of the proposed gain scheduled fuzzy PID (GS_FPID) controller consists of both fuzzy PI-like controller and fuzzy PD-like controller. Both of fuzzy PI-like and PD-like controllers are weighted through adaptive gain scheduling, which are also determined by fuzzy logic inference. A modified genetic algorithm called accumulated genetic algorithm is designed to learn the parameters of fuzzy inference system. In order to learn the number of fuzzy rules required for the TSK model, the fuzzy rules are learned in an accumulated way. In other words, the parameters learned in the previous rules are accumulated and updated along with the parameters in the current rule. It will be shown that the proposed GS_FPID controllers learned by the accumulated GA perform well for not only the regular linear systems but also the higher order and time-delayed systems.
Keywords: Gain scheduling, fuzzy PID controller, adaptive control, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40611756 Medical Image Edge Detection Based on Neuro-Fuzzy Approach
Authors: J. Mehena, M. C. Adhikary
Abstract:
Edge detection is one of the most important tasks in image processing. Medical image edge detection plays an important role in segmentation and object recognition of the human organs. It refers to the process of identifying and locating sharp discontinuities in medical images. In this paper, a neuro-fuzzy based approach is introduced to detect the edges for noisy medical images. This approach uses desired number of neuro-fuzzy subdetectors with a postprocessor for detecting the edges of medical images. The internal parameters of the approach are optimized by training pattern using artificial images. The performance of the approach is evaluated on different medical images and compared with popular edge detection algorithm. From the experimental results, it is clear that this approach has better performance than those of other competing edge detection algorithms for noisy medical images.Keywords: Edge detection, neuro-fuzzy, image segmentation, artificial image, object recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12821755 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures
Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad
Abstract:
Keywords: Structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames.}
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424