
 

 

 
Abstract—In this paper, we propose a Perceptually Optimized 

Foveation based Embedded ZeroTree Image Coder (POEFIC) that 
introduces a perceptual weighting to wavelet coefficients prior to 
control SPIHT encoding algorithm in order to reach a targeted bit 
rate with a perceptual quality improvement with respect to a given bit 
rate a fixation point which determines the region of interest ROI.  
 The paper also, introduces a new objective quality metric based on 
a Psychovisual model that integrates the properties of the HVS that 
plays an important role in our POEFIC quality assessment. 

Our POEFIC coder is based on a vision model that incorporates 
various masking effects of human visual system HVS perception. 
Thus, our coder weights the wavelet coefficients based on that model 
and attempts to increase the perceptual quality for a given bit rate 
and observation distance. The perceptual weights for all wavelet 
subbands are computed based on 1) foveation masking to remove or 
reduce considerable high frequencies from peripheral regions 2) 
luminance and Contrast masking, 3) the contrast sensitivity function 
CSF to achieve the perceptual decomposition weighting.  

The new perceptually optimized codec has the same complexity as 
the original SPIHT techniques. However, the experiments results 
show that our coder demonstrates very good performance in terms of 
quality measurement. 
 

Keywords—DWT, linear-phase 9/7 filter, Foveation Filtering, 
CSF implementation approaches, 9/7 Wavelet JND Thresholds and 
Wavelet Error Sensitivity WES, Luminance and Contrast masking, 
standard SPIHT, Objective Quality Measure, Probability Score PS. 

I. INTRODUCTION 
HE psychovisual experiments demonstrates that spatially, 
the resolution, or sampling density, has the highest value 

at the point of the fovea and drops rapidly away from that 
point as a function of eccentricity. As a result, when a human 
observer gazes at a point in a real-world image, the region 
around the point of fixation is projected into the fovea, 
sampled with the highest density and perceived with the 
highest contrast sensitivity. In conclusion the sampling density 
and contrast sensitivity decrease dramatically with increasing 
the viewing angle namely called eccentricity with respect of 
that point of fixation.  

The motivation behind foveation image compression 
scheme is that there exists considerable high-frequency 
information redundancy in the peripheral regions, so much 
more efficient representation of images can be obtained by 
removing or reducing such information redundancy, based on 
the foveation point(s) and the viewing distances [1]-[3]. The 
first aim of that scheme is foveation filtering, which foveate a 
uniform resolution image, such that when the human eyes 

gaze at the point of fixation, they cannot distinguish between 
the original and the foveated versions of that image. In Fig. 7 
we show an illustrated example of the original “Lena” image 
and its foveated version. If attention is focussed at the central 
foveation point, both images will have the same appearance.  

In practice, different methods approximate perfect foveation 
filter. In [4], a pyramid structure is suggested to foveate 
images. In [5]–[6] foveation filter consists of a bank of low-
pass filters having variable cutoff frequencies. In [7], the 
structure of foveation filter is based on Laplacian pyramid 
architecture. In [8]–[10], the proposed wavelet based 
foveation method applies a nonuniform weighting model.  

Great success has been obtained recently by a class of 
wavelet image coding algorithms oriented region of interest 
(ROI), such as the standard JPEG2000 [11] and the Embedded 
Foveation Image Coding (EFIC) algorithms [12]. The former 
scheme didn’t incorporate the optimal quantization model 
proposed by Watson. This model is based on a psychovisual 
experiments of the 9/7 wavelets [19] to measure the visibility 
[20] of wavelet coefficients noise threshold, and determinate 
an optimal quantization matrix which yields a perceptually 
lossless compression quality. In the latter scheme the 
integration of interesting HVS features are not considered, 
like Luminance and Contrast Masking or threshold elevation 
[15]-[17] and Contrast Sensitivity Function CSF [18] whose 
particular feature is to filter spatially all imperceptible 
frequencies by the human visual cortex. Exploiting this fact, 
we can adapt image contrast (contrast masking: see section 
IV), and remove considerable invisible frequencies (CSF: see 
section V) and still quantize efficiently with a perceptually 
improved quality in the region of interest. 

In this paper, we propose an optimized foveation based 
image coding quality (POEFIC) algorithm, which exploit 
various Psychovisual quality models exploiting the human 
visual system quality criteria (HVS), to optimize foveated 
image wavelets coefficients weighting and improve the visual 
quality of its coded version. This point will be detailed in 
section III with illustrative figures. An objective metric for  
foveation based image namely, quality wavelet index metric 
FWQI, plays an important role in our system, which yields a 
quality scale called Foveated probability scale FPS: section 
VII, whose experiment results demonstrates very good 
performance in terms of quality measurement. 
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II. DISCRETE WAVELET PYRAMID DECOMPOSITION 
Our coder is a combination of 5 function stages respectively 

Wavelet transformation, Perceptual Model SetUp (Luminance 
Making and Contrast Masking based on Wavelet JND 
Thresholds CSF weighting), Foveation Mask SetUp, 
Foveation Weighting, and finally SPIHT Embedded coding.  

 

 
 

 

Fig. 1 POEFIC: A Perceptually Optimized Embedded ZeroTree 
Image Coding & Decoding Algorithm 

 
A brief introduction of our scheme can be described as 

follow. First we decompose the original image with a discrete 
wavelet to perform a spatial-frequency representation [14] 
using a 9/7 linear-phase wavelets filter [19]. This wavelet is 
characterized with special mathematics features [21] which 
ensure a perfect reconstruction. It is recommended by the 
image standard compression JPEG2000 and is the most useful 
wavelet filter in image vision [11].  

In the second step we compute the perceptual model SetUp 
which is based on the following algorithm. First, we compute 
the luminance masking and wavelet JND thresholds required 
for the contrast masking calculation (Section III). Second,  we 
weight, in the DWT domain using the contrast sensitivity 
function [18], the image spectrum in order to keep only the 
frequencies that are visible by the human visual cortex. 

Then perceptual mask is used to weight subband wavelet 
coefficients which removes all imperceptible frequencies with 
respect to the human visual system HVS perception. 

As the human visual system (HVS) is highly space-variant 
in sampling, coding, processing, and understanding, and 
because the spatial resolution of the HVS is highest around the 
point of fixation, and decreases rapidly with increasing 
eccentricity (viewing angle), we compute in the third step the 
foveation filter mask. By exploiting advantage of this fact, it is 
possible to reduce or remove considerable high frequency 
information redundancy from the peripheral regions and still 
reconstruct a perceptually good quality image coding. 

The final step is embedded coding of the modified wavelet 
coefficients for a given target rate. Here we adopt the standard 
SPIHT [22] coding algorithm which belongs to the family of 
embedded ZeroTree [23] coding started first Val by Shapiro’s 
EZW algorithm and improved next by Pearlman. 

 

III. FOVEATION MASK WEIGHTING SETUP 
In this operation we have to locate the foveation point to 

determine the foveation mask to weight the decomposed 
image; as a result all frequencies around the region of interest 
will be either reduced or removed from the image spectrum 
[8]-[10]. The foveation filter mask is shown in Fig. 2. 

 

 

Fig. 2 Foveation filter mask in the DWT domain 
 

The border’s foveation filtering shape determinates the 
region of interest in the DWT domain. This region with 
respect to DWT decomposition level and orientations limits 
the frequencies located around the fixation point that will be 
weighted by the filter mask. In first levels, a great amount of 
frequencies are removed, but approximately the whole low 
frequencies are kept and taken into account in coding. The 
best parameters can be obtained in [30]-[31]. 

This foveation filter mask depends on many essential 
parameters like the display Nyquist and cut-off Frequencies. 
The first one express the visible frequencies towards the 
fixation region of interest, the second one show the limits of 
visible frequencies without a display aliasing in the human 
visual cortex. The minimum of them determinates the final 
visible frequency spectrum in the area of interest. Other 
feature of the foveation filter is it’s modification of the 
spectrum occupation depending on the viewing observation 
distance. This shape eliminates progressively higher 
frequencies with observation distance increase Fig. 3. As a 
result, observer is progressively unable to detect high 
frequencies in image when distance increases [8]-[10].   

   

   

Fig. 3 Foveation Filter error sensitivity mask in the DWT domain. 
The top-left, top-right, bottom-left, & bottom-right figures: viewing 

distance V = 1, 3, 6 & 10 
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IV. LUMINANCE AND CONTRAST MASKING 
In this work, three visual phenomena are modeled to 

compute the perceptual Weighting Model SetUp matrix: the 
JND thresholds or Just Noticeable Difference [5], Luminance 
Masking [11] (also known as light adaptation), Contrast 
Masking [15-17] and the Contrast Sensitivity Function CSF 
(detailed in section IV). This model correlates well with the 
famous cortical decomposition (Human Visual Cortex field).  

The JND thresholds are thus computed from the base 
detection threshold for a subband. The mathematical model 
for the JND threshold is obtained from the psychophysical 
experiments adopted by Watson corresponding to the 9/7 
biorthogonale wavelet basis [19-21]. 

In image coding, the detection thresholds will depend on 
the mean luminance of the local image region and, therefore, a 
luminance masking correction factor must be derived and 
applied to the contrast sensitivity profile to account for this 
variation. In this work, the luminance masking adjustment is 
approximated using a power function [11], here we adopt the 
model used in JPEG200 with a factor exponent of 0.649 [11]. 

Another factor that will affect the detection threshold is the 
contrast masking also known as threshold elevation, which 
takes into account the fact that the visibility of one image 
component (the target) changes with the presence of other 
image components (the masker) [15-17]. Contrast masking 
measures the variation of the detection threshold of a target 
signal as a function of the contrast of the masker. The 
resulting masking sensitivity profiles are referred to as target 
threshold versus masker contrast functions. In our case, the 
masker signal is represented by the wavelet coefficients of the 
input image to be coded while the target signal is represented 
by the quantization distortion.  

The final perceptual model is shown in Fig. 4, where the 
computation algorithm corresponding to JND thresholds, 
Luminance Masking, Contrast Masking & CSF are well done 
for just a short 3D illustration especially with Lena wavelet 
coefficients with respect to a given observation distance of 4. 

 

 

         

          
Fig. 4 Perceptual masking model SetUp 

 
 

V. CSF WEIGHTING IMPLEMENTATION APPROACHES 
To optimize wavelets coefficients weighting and improve 

the visual quality of the reconstructed image we take benefits 
of the contrast sensitivity function CSF [18]. The CSF 
function describes in quantitative terms how good the human 
visual system HVS perceives a signal at a given spatial 
frequency. It sets the contrast perception in relation with the 
spatial frequency usually measured in cycles per optical 
degree, which gives the CSF a shape that is independent of the 
viewing distance. A typical CSF shape is shown in Fig. 5. 

Common to all compression techniques is the fact that they 
focus on an improved coding efficiency, which is not 
necessarily equivalent to an improved visual quality. The CSF 
function transforms the wavelet decomposed image on an 
image which is perceptible and remove all imperceptible 
frequencies that are invisible by the human visual cortex. 

The viewing conditions (r: spatial resolution and v: 
observation distance) were assumed as being fixed. This may 
not be realistic, as an observer can look at the images from 
any distance. Nevertheless, fixing r and v is necessary to apply 
a frequency weighting. Therefore it is shown, that with a 
slight modification of the CSF shape and the assumption of 
”worst case viewing conditions” a CSF weighting that works 
properly for all different viewing distances and typical display 
media resolutions is the JPEG2000 model of Fig. 5 (right). 

In the compression applications, the CSF can basically be 
exploited to modify the wavelet-coefficients before and after 
quantization, it shapes directly the spectrum of the 
quantization noise. This strategy is opposed to the direct 
algorithm that classically codes the detectable frequencies plus 
some redundant ones, which will additional coding bits.  
 

 
Fig. 5 CSF function models: Mannos (left), Daly (right) 

 
Conventional CSF-implementations into wavelet-based 

codec are based on a single invariant weighting factor per 
subband [18]. The first one called Invariant Single Factor 
weighting (ISF). The basic idea of the ISF-weighting is to 
assign a single frequency weighting factor per wavelet 
subband corresponding to the fixation point. This approach is 
simple and stills an efficient perceptual weighting. The second 
approach weighting represents the DWT filtering which 
matches exactly the shape of the CSF. It keeps the possibility 
of an orientation dependent weighting inside the subband and 
is adapted to the local signal properties. The third approach is 
the mixed strategy which combines the fixed and filtering 
algorithm, the former is compatible with low frequencies and 
the latter is ideal for higher frequencies.  
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VI. EMBEDDED ZEROTREE WAVELET CODING 
Embedded ZeroTree wavelet coding [22] is a very effective 

and computationally inexpensive technique for image 
compression. Its principles of computation algorithm are (1) 
wavelet pyramid decomposition of the image, (2) partial 
ordering of the transform coefficients by the highest bit plane 
of the magnitude, with the ordering information encoded by 
means of a set partitioning algorithm that is reproduced at the 
decoder, (3) ordered bit plane transmission of refinement bits, 
and (4) exploitation of the self-similarity of the image wavelet 
pyramid decomposition across different scales.  

The wavelet tree rooted at a coefficient in a subband. The 
resulting code is fully embedded. This means the reception of 
code bits can be stopped at any point, and the image can be 
decompressed and reconstructed. Although the SPIHT [23] 
coding does not minimize the MSE for a given rate, it is 
known to have excellent performance at all rates. 

VII. QUALITY MEASURE AND EXPERIMENTAL RESULTS 
DISCUSS 

In order to evaluate or compare image compression 
techniques we need to reliably measure the quality of coded 
images by taking into account the famous observer mean 
opinion score (MOS). Many mathematical measures are often 
used such as mean squared error (MSE) and peak signal to 
noise ratio (PSNR). However, these measures often have a 
poor correlation with MOS and functions, that take advantage 
of the human visual system (HVS) properties, are often 
incorporated to improve their performance. Recently, 
techniques based on multiple channel models of the HVS have 
been shown to improve correlation with the MOS. From these 
HVS models it is possible to predict, on a pixel by pixel basis, 
if the noise introduced in the compressed image will be visible 
to a human observer [24-25]. The VDP [26] map inspired on 
HVS criteria provides an indication of the degree of visual 
error as a function of image location. The wavelet transform is 
one of the most powerful techniques for image compression, 
because of its similarities to the multiple channel models of 
the HVS. The DWT decomposes the image into a limited 
number of spatial frequency channels, with respect to the 
cortical decomposition. Despite this limitation the quality 
measure still a goal of the wavelet visible difference predictor 
WVDP [27] to visually optimize image coding scheme. 

A wavelet based image quality metric, namely, foveation 
wavelet Quality Index FQWI predict visible differences 
between the original and degraded image, which yields a 
quality measure scale called the Probability Scale PS, plays an 
important role in our CODEC in terms of image Quality 
Measurement. This factor means the ability of detecting a 
distortion in a subband ),( θλ at location ),( ji in the DWT 
field. This probability as well known can be expressed as 
follow: ( )βθλθλθλ ),,,().,,,(.exp1),,,( jiDjiWESROIjip −−=  
Where ),,,( jiD θλ denotes the quantization distortion detection 
at location ( ) ,,, jiθλ , ),,,( jiWES θλ denotes the Watson Error 
Sensitivity, ROI denotes the DWT region of interest, and β is 

a parameter chosen to maximize the correspondence of 
),,,( jip θλ and the probability summation [28-29]. Finally we 

calculate the probability score by summing, as the Minkowski 
summation does, all probabilities within all wavelet subbands 
[30-31]. As a result the probability score PS is expressed as 
follow: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

β

θλ

θλ
/1

),,,(

),,,(exp
ji

jipPS  

The greater this factor is the best the decoded image quality is 
compared to the original or full reference image. We test the 
POEFIC algorithm using 8 bits per pixel gray scale images 
and compare it with the SPIHT algorithm.  

Figs. 6-7 show the 512 x 512 “Boat” and “Mandrill” images 
encoded with both SPIHT and POEFIC algorithms, both first 
with respect to a varying targeted bit rate in bpp for a given 
and fixed viewing distance. At a very low bit-rate of 0.0625 
bpp, the main region of fixation is hardly recognizable in the 
SPIHT coded image, whereas that gazed region in the 
POEFIC coded image exhibit detailed visual information.  

At a low bit-rate of 0.125 bpp, SPIHT still decodes a very 
blurred image, while POEFIC begins to give acceptable 
quality over the main region of fixation. Increasing the bit-rate 
to 0.25 bpp and 0.5 bpp, the visual quality of the POEFIC 
coded images is still superior to the SPIHT coded images. 
When the bit-rate of 0.5 bpp is reached, the POEFIC coded 
image approaches uniform resolution and the decoded SPIHT 
and POEFIC images are almost indistinguishable.  

Figs. 8-9 shows the FWQI comparisons of the POEFIC and 
SPIHT compressed “Boat” and “Mandrill” images with 
respect to a varying observation distance V for a given and 
fixed targeted bit rate such 0.015625 bpp, 0.06125 bpp and 
0.25 bpp. The foveation probability score FPS is given as a 
function of the viewing distance, instead of just one fixed 
value. In comparison with SPIHT, significant quality gain is 
achieved by POEFIC through the entire range of viewing 
distances. This is consistent with the subjective quality. 

In Fig. 10, we show how the FPS value increases with the 
bit-rate. It shows the POEFIC compression of the “Zelda” 
image with multiple targeted bit rate for viewing distance of 
V=4. At low bit-rates such as 0.03125 bpp and 0.0625 bpp, 
POEFIC maintains acceptable and good quality at the gazed 
point in the image versus the standard SPIHT coder. Again, a 
visually high-quality uniform resolution image is obtained 
from the same bit stream with a sufficient bit-rate of 0.25 bpp. 
The wavelet quality measure results values (FPS) of both 
compressed “Zelda” images (Visually Optimized Version 
POEFIC “Right” and Standard SPIHT “Left”) are well 
mentioned above each coded image.  

The performances obtained by our coder are resumed in 
Tables I-II which show the quality gain with both varying 
viewing condition and targeted bit rate for the test images 
“Goldhill”, “Barbara”, “Mandrill” and “Boat”.  
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Fig. 6 Foveation Wavelet Quality Index of POEFIC vs SPIHT BOAT   
 
 

 

Fig. 7 Foveation Wavelet Quality Index of POEFIC vs SPIHT 
Mandrill  

 
 

 

Fig. 8 Foveation Wavelet Quality Index FQWI of POEFIC vs SPIHT 
BOAT image at 0.015625 bpp, 0.0625 bpp and 0.25 bpp. 

 
 

 

Fig. 9 Foveation Wavelet Quality Index FQWI of POEFIC vs SPIHT 
Mandrill image at 0.015625 bpp, 0.0625 bpp and 0.25 bpp. 

 
 
 
 
 

 

PS = 0.56555                       PS = 0.64677 

   
 

PS = 0.6952                        PS = 0.7620 

   
 

PS = 0.7812                       PS = 0.8892 

   

Fig. 10 “Zelda” image compression results. The images of the left 
column that follow are for SPIHT ONLY coded images. The images 
of the right column that follow are for the visually optimized SPIHT 
POEFIC coded images. The bit rates from top to bottom are 0.03125 
bpp, 0.0625 bpp and 0.25 bpp respectively, at observation distance of 

V = 4 
 
 

TABLE I 
FOVEATION WAVELET QUALITY GAIN OF THE POEFIC VS SPIHT FOR 

VARYING VIEWING CONDITION: V = 1, 3, 6, AND 10 

 
 

 
TABLE II 

FOVEATION WAVELET QUALITY GAIN OF THE POEFIC VS SPIHT FOR 
VARYING BIT RATES: BPP = 0.015625, 0.0625 AND 0.25 
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VIII. CONCLUSION 
In this paper, we propose a Perceptually Optimized 

Embedded Foveation based ZeroTree Image Coder algorithm 
named POEFIC, which exploit a various Human Visual 
System HVS model to achieve the aim of improving the 
perceptual quality of the reconstructed images versus the 
quality obtained by the traditional embedded coders especially 
standard SPIHT in this paper. The proposed perceptual model 
contains Luminance masking, Contrast masking and Contrast 
Sensitivity function CSF with an optimal implementation. By 
exploiting features of the human visual system quality criteria 
(HVS), we finally optimize the image wavelets coefficients by 
weighting them using the perceptual model mask, and then we 
improve the visual quality of the decoded version. A wavelet 
quality Index FQWI yields a quality scale called probability 
scale PS to measure the quality between the original image 
and decoded version. The factor computation is based on the 
Minkowski summation of the psychometric function 
probabilities within all wavelet subbands. It predicts the visual 
differences between the original and degraded image. Note 
that the greatest this factor the best the coding quality is. This 
metric plays an important role in our coder, whose experiment 
results demonstrates very good performance in terms of 
quality measurement which reach the goal of our aim. 

To achieve this paper, note that our compression, coding 
and quality evaluation systems make a great part of a great 
project concerning the real time video coding and quality 
assessing in a wireless GSM networks infrastructure. These 
systems will be incorporated to build the final scheme. 

The perceptual model introduced in our POEFIC algorithm 
can be applied to other embedded coders such EZW, EBCOT 
and JPEG2000. Also, it can be employed to improve the 
perceptual quality of the predicted frames in wavelet based 
video coding which makes an interest focus in wavelet video 
coding based on Human Visual System Quality Criteria. 
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