Search results for: stability equation method
9498 Exact Solutions of the Helmholtz equation via the Nikiforov-Uvarov Method
Authors: Said Laachir, Aziz Laaribi
Abstract:
The Helmholtz equation often arises in the study of physical problems involving partial differential equation. Many researchers have proposed numerous methods to find the analytic or approximate solutions for the proposed problems. In this work, the exact analytical solutions of the Helmholtz equation in spherical polar coordinates are presented using the Nikiforov-Uvarov (NU) method. It is found that the solution of the angular eigenfunction can be expressed by the associated-Legendre polynomial and radial eigenfunctions are obtained in terms of the Laguerre polynomials. The special case for k=0, which corresponds to the Laplace equation is also presented.
Keywords: Helmholtz equation, Nikiforov-Uvarov method, exact solutions, eigenfunctions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30199497 Lagrangian Method for Solving Unsteady Gas Equation
Authors: Amir Taghavi, kourosh Parand, Hosein Fani
Abstract:
In this paper we propose, a Lagrangian method to solve unsteady gas equation which is a nonlinear ordinary differential equation on semi-infnite interval. This approach is based on Modified generalized Laguerre functions. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare this work with some other numerical results. The findings show that the present solution is highly accurate.
Keywords: Unsteady gas equation, Generalized Laguerre functions, Lagrangian method, Nonlinear ODE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15399496 Extend Three-wave Method for the (3+1)-Dimensional Soliton Equation
Authors: Somayeh Arbabi Mohammad-Abadi, Maliheh Najafi
Abstract:
In this paper, we study (3+1)-dimensional Soliton equation. We employ the Hirota-s bilinear method to obtain the bilinear form of (3+1)-dimensional Soliton equation. Then by the idea of extended three-wave method, some exact soliton solutions including breather type solutions are presented.
Keywords: Three-wave method, (3+1)-dimensional Soliton equation, Hirota's bilinear form.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15729495 Stabilization of the Bernoulli-Euler Plate Equation: Numerical Analysis
Authors: Carla E. O. de Moraes, Gladson O. Antunes, Mauro A. Rincon
Abstract:
The aim of this paper is to study the internal stabilization of the Bernoulli-Euler equation numerically. For this, we consider a square plate subjected to a feedback/damping force distributed only in a subdomain. An algorithm for obtaining an approximate solution to this problem was proposed and implemented. The numerical method used was the Finite Difference Method. Numerical simulations were performed and showed the behavior of the solution, confirming the theoretical results that have already been proved in the literature. In addition, we studied the validation of the numerical scheme proposed, followed by an analysis of the numerical error; and we conducted a study on the decay of the energy associated.
Keywords: Bernoulli-Euler Plate Equation, Numerical Simulations, Stability, Energy Decay, Finite Difference Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20439494 Analytical Solutions of Kortweg-de Vries(KdV) Equation
Authors: Foad Saadi, M. Jalali Azizpour, S.A. Zahedi
Abstract:
The objective of this paper is to present a comparative study of Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM) and Homotopy Analysis Method (HAM) for the semi analytical solution of Kortweg-de Vries (KdV) type equation called KdV. The study have been highlighted the efficiency and capability of aforementioned methods in solving these nonlinear problems which has been arisen from a number of important physical phenomenon.Keywords: Variational Iteration Method (VIM), HomotopyPerturbation Method (HPM), Homotopy Analysis Method (HAM), KdV Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23829493 On the Robust Stability of Homogeneous Perturbed Large-Scale Bilinear Systems with Time Delays and Constrained Inputs
Authors: Chien-Hua Lee, Cheng-Yi Chen
Abstract:
The stability test problem for homogeneous large-scale perturbed bilinear time-delay systems subjected to constrained inputs is considered in this paper. Both nonlinear uncertainties and interval systems are discussed. By utilizing the Lyapunove equation approach associated with linear algebraic techniques, several delay-independent criteria are presented to guarantee the robust stability of the overall systems. The main feature of the presented results is that although the Lyapunov stability theorem is used, they do not involve any Lyapunov equation which may be unsolvable. Furthermore, it is seen the proposed schemes can be applied to solve the stability analysis problem of large-scale time-delay systems.
Keywords: homogeneous bilinear system, constrained input, time-delay, uncertainty, transient response, decay rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16119492 Performance of the Strong Stability Method in the Univariate Classical Risk Model
Authors: Safia Hocine, Zina Benouaret, Djamil A¨ıssani
Abstract:
In this paper, we study the performance of the strong stability method of the univariate classical risk model. We interest to the stability bounds established using two approaches. The first based on the strong stability method developed for a general Markov chains. The second approach based on the regenerative processes theory . By adopting an algorithmic procedure, we study the performance of the stability method in the case of exponential distribution claim amounts. After presenting numerically and graphically the stability bounds, an interpretation and comparison of the results have been done.Keywords: Markov Chain, regenerative processes, risk models, ruin probability, strong stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11479491 An Expansion Method for Schrödinger Equation of Quantum Billiards with Arbitrary Shapes
Authors: İnci M. Erhan
Abstract:
A numerical method for solving the time-independent Schrödinger equation of a particle moving freely in a three-dimensional axisymmetric region is developed. The boundary of the region is defined by an arbitrary analytic function. The method uses a coordinate transformation and an expansion in eigenfunctions. The effectiveness is checked and confirmed by applying the method to a particular example, which is a prolate spheroid.Keywords: Bessel functions, Eigenfunction expansion, Quantum billiard, Schrödinger equation, Spherical harmonics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52219490 Nonlinear Stability of Convection in a Thermally Modulated Anisotropic Porous Medium
Authors: M. Meenasaranya, S. Saravanan
Abstract:
Conditions corresponding to the unconditional stability of convection in a mechanically anisotropic fluid saturated porous medium of infinite horizontal extent are determined. The medium is heated from below and its bounding surfaces are subjected to temperature modulation which consists of a steady part and a time periodic oscillating part. The Brinkman model is employed in the momentum equation with the Bousinessq approximation. The stability region is found for arbitrary values of modulational frequency and amplitude using the energy method. Higher order numerical computations are carried out to find critical boundaries and subcritical instability regions more accurately.Keywords: Convection, porous medium, anisotropy, temperature modulation, nonlinear stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8789489 Haar Wavelet Method for Solving Fitz Hugh-Nagumo Equation
Authors: G.Hariharan, K.Kannan
Abstract:
In this paper, we develop an accurate and efficient Haar wavelet method for well-known FitzHugh-Nagumo equation. The proposed scheme can be used to a wide class of nonlinear reaction-diffusion equations. The power of this manageable method is confirmed. Moreover the use of Haar wavelets is found to be accurate, simple, fast, flexible, convenient, small computation costs and computationally attractive.
Keywords: FitzHugh-Nagumo equation, Haar wavelet method, adomain decomposition method, computationally attractive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27879488 Septic B-spline Collocation Method for Solving One-dimensional Hyperbolic Telegraph Equation
Authors: Marzieh Dosti, Alireza Nazemi
Abstract:
Recently, it is found that telegraph equation is more suitable than ordinary diffusion equation in modelling reaction diffusion for such branches of sciences. In this paper, a numerical solution for the one-dimensional hyperbolic telegraph equation by using the collocation method using the septic splines is proposed. The scheme works in a similar fashion as finite difference methods. Test problems are used to validate our scheme by calculate L2-norm and L∞-norm. The accuracy of the presented method is demonstrated by two test problems. The numerical results are found to be in good agreement with the exact solutions.
Keywords: B-spline, collocation method, second-order hyperbolic telegraph equation, difference schemes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18049487 Implicit Two Step Continuous Hybrid Block Methods with Four Off-Steps Points for Solving Stiff Ordinary Differential Equation
Authors: O. A. Akinfenwa, N.M. Yao, S. N. Jator
Abstract:
In this paper, a self starting two step continuous block hybrid formulae (CBHF) with four Off-step points is developed using collocation and interpolation procedures. The CBHF is then used to produce multiple numerical integrators which are of uniform order and are assembled into a single block matrix equation. These equations are simultaneously applied to provide the approximate solution for the stiff ordinary differential equations. The order of accuracy and stability of the block method is discussed and its accuracy is established numerically.Keywords: Collocation and Interpolation, Continuous HybridBlock Formulae, Off-Step Points, Stability, Stiff ODEs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21069486 Stability Analysis in a Fractional Order Delayed Predator-Prey Model
Authors: Changjin Xu, Peiluan Li
Abstract:
In this paper, we study the stability of a fractional order delayed predator-prey model. By using the Laplace transform, we introduce a characteristic equation for the above system. It is shown that if all roots of the characteristic equation have negative parts, then the equilibrium of the above fractional order predator-prey system is Lyapunov globally asymptotical stable. An example is given to show the effectiveness of the approach presented in this paper.
Keywords: Fractional predator-prey model, laplace transform, characteristic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25039485 Numerical Study of Some Coupled PDEs by using Differential Transformation Method
Authors: Reza Abazari, Rasool Abazari
Abstract:
In this paper, the two-dimension differential transformation method (DTM) is employed to obtain the closed form solutions of the three famous coupled partial differential equation with physical interest namely, the coupled Korteweg-de Vries(KdV) equations, the coupled Burgers equations and coupled nonlinear Schrödinger equation. We begin by showing that how the differential transformation method applies to a linear and non-linear part of any PDEs and apply on these coupled PDEs to illustrate the sufficiency of the method for this kind of nonlinear differential equations. The results obtained are in good agreement with the exact solution. These results show that the technique introduced here is accurate and easy to apply.
Keywords: Coupled Korteweg-de Vries(KdV) equation, Coupled Burgers equation, Coupled Schrödinger equation, differential transformation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30189484 Stability Analysis of Three-Lobe Journal Bearing Lubricated with a Micropolar Fluids
Authors: Boualem Chetti
Abstract:
In this paper, the dynamic characteristics of a threelobe journal bearing lubricated with micropolar fluids are determined by the linear stability theory. Lubricating oil containing additives and contaminants is modelled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory .The finite difference technique has been used to determine the solution of the modified Reynolds equation. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The computed results show that the three-lobe bearing lubricated with micropolar fluid exhibits better stability compared with that lubricated with Newtonian fluid. According to the results obtained, the effect of the parameter micropolar fluid is remarkable on the dynamic characteristics and stability of the three-lobe bearing.
Keywords: Three-lobe bearings, Micropolar fluid, Dynamic characteristics, Stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27179483 Stabilization of the Lorenz Chaotic Equations by Fuzzy Controller
Authors: Behrooz Rezaie, Zahra Rahmani Cherati, Mohammad Reza Jahed Motlagh, Mohammad Farrokhi
Abstract:
In this paper, a fuzzy controller is designed for stabilization of the Lorenz chaotic equations. A simple Mamdani inference method is used for this purpose. This method is very simple and applicable for complex chaotic systems and it can be implemented easily. The stability of close loop system is investigated by the Lyapunov stabilization criterion. A Lyapunov function is introduced and the global stability is proven. Finally, the effectiveness of this method is illustrated by simulation results and it is shown that the performance of the system is improved.Keywords: Chaotic system, Fuzzy control, Lorenz equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20359482 A Schur Method for Solving Projected Continuous-Time Sylvester Equations
Authors: Yiqin Lin, Liang Bao, Qinghua Wu, Liping Zhou
Abstract:
In this paper, we propose a direct method based on the real Schur factorization for solving the projected Sylvester equation with relatively small size. The algebraic formula of the solution of the projected continuous-time Sylvester equation is presented. The computational cost of the direct method is estimated. Numerical experiments show that this direct method has high accuracy.Keywords: Projected Sylvester equation, Schur factorization, Spectral projection, Direct method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18319481 Using Hermite Function for Solving Thomas-Fermi Equation
Authors: F. Bayatbabolghani, K. Parand
Abstract:
In this paper, we propose Hermite collocation method for solving Thomas-Fermi equation that is nonlinear ordinary differential equation on semi-infinite interval. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also present the comparison of this work with solution of other methods that shows the present solution is more accurate and faster convergence in this problem.
Keywords: Collocation method, Hermite function, Semi-infinite, Thomas-Fermi equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21559480 Direct Transient Stability Assessment of Stressed Power Systems
Authors: E. Popov, N. Yorino, Y. Zoka, Y. Sasaki, H. Sugihara
Abstract:
This paper discusses the performance of critical trajectory method (CTrj) for power system transient stability analysis under various loading settings and heavy fault condition. The method obtains Controlling Unstable Equilibrium Point (CUEP) which is essential for estimation of power system stability margins. The CUEP is computed by applying the CTrjto the boundary controlling unstable equilibrium point (BCU) method. The Proposed method computes a trajectory on the stability boundary that starts from the exit point and reaches CUEP under certain assumptions. The robustness and effectiveness of the method are demonstrated via six power system models and five loading conditions. As benchmark is used conventional simulation method whereas the performance is compared with and BCU Shadowing method.
Keywords: Power system, Transient stability, Critical trajectory method, Energy function method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21319479 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method
Authors: Emad K. Jaradat, Ala’a Al-Faqih
Abstract:
Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.
Keywords: Non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two- dimensional Schrodinger equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9149478 Exp-Function Method for Finding Some Exact Solutions of Rosenau Kawahara and Rosenau Korteweg-de Vries Equations
Authors: Ehsan Mahdavi
Abstract:
In this paper, we apply the Exp-function method to Rosenau-Kawahara and Rosenau-KdV equations. Rosenau-Kawahara equation is the combination of the Rosenau and standard Kawahara equations and Rosenau-KdV equation is the combination of the Rosenau and standard KdV equations. These equations are nonlinear partial differential equations (NPDE) which play an important role in mathematical physics. Exp-function method is easy, succinct and powerful to implement to nonlinear partial differential equations arising in mathematical physics. We mainly try to present an application of Exp-function method and offer solutions for common errors wich occur during some of the recent works.
Keywords: Exp-function method, Rosenau Kawahara equation, Rosenau Korteweg-de Vries equation, nonlinear partial differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20689477 The BGMRES Method for Generalized Sylvester Matrix Equation AXB − X = C and Preconditioning
Authors: Azita Tajaddini, Ramleh Shamsi
Abstract:
In this paper, we present the block generalized minimal residual (BGMRES) method in order to solve the generalized Sylvester matrix equation. However, this method may not be converged in some problems. We construct a polynomial preconditioner based on BGMRES which shows why polynomial preconditioner is superior to some block solvers. Finally, numerical experiments report the effectiveness of this method.Keywords: Linear matrix equation, Block GMRES, matrix Krylov subspace, polynomial preconditioner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8819476 Assessment of Hargreaves Equation for Estimating Monthly Reference Evapotranspiration in the South of Iran
Authors: Ali Dehgan Moroozeh, B. Farhadi Bansouleh
Abstract:
Evapotranspiration is one of the most important components of the hydrological cycle. Evapotranspiration (ETo) is an important variable in water and energy balances on the earth’s surface, and knowledge of the distribution of ET is a key factor in hydrology, climatology, agronomy and ecology studies. Many researchers have a valid relationship, which is a function of climate factors, to estimate the potential evapotranspiration presented to the plant water stress or water loss, prevent. The FAO-Penman method (PM) had been recommended as a standard method. This method requires many data and these data are not available in every area of world. So, other methods should be evaluated for these conditions. When sufficient or reliable data to solve the PM equation are not available then Hargreaves equation can be used. The Hargreaves equation (HG) requires only daily mean, maximum and minimum air temperature extraterrestrial radiation .In this study, Hargreaves method (HG) were evaluated in 12 stations in the North West region of Iran. Results of HG and M.HG methods were compared with results of PM method. Statistical analysis of this comparison showed that calibration process has had significant effect on efficiency of Hargreaves method.Keywords: Evapotranspiration, Hargreaves equation, FAOPenman method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19159475 Solution of The KdV Equation with Asymptotic Degeneracy
Authors: Tapas Kumar Sinha, Joseph Mathew
Abstract:
Recently T. C. Au-Yeung, C.Au, and P. C. W. Fung [2] have given the solution of the KdV equation [1] to the boundary condition , where b is a constant. We have further extended the method of [2] to find the solution of the KdV equation with asymptotic degeneracy. Via simulations we find both bright and dark Solitons (i.e. Solitons with opposite phases).
Keywords: KdV equation, Asymptotic Degeneracy, Solitons, Inverse Scattering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16319474 Derivation of Darcy’s Law using Homogenization Method
Authors: Kannanut Chamsri
Abstract:
Darcy’s Law is a well-known constitutive equation describing the flow of a fluid through a porous medium. The equation shows a relationship between the superficial or Darcy velocity and the pressure gradient which was first experimentally observed by Henry Darcy in 1855-1856. In this study, we apply homogenization method to Stokes equation in order to derive Darcy’s Law. The process of deriving the equation is complicated, especially in multidimensional domain. Thus, for the sake of simplicity, we use the indicial notation as well as the homogenization. This combination provides a smooth, simple and easy technique to derive Darcy’s Law.
Keywords: Darcy’s Law, Homogenization method, Indicial notation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50259473 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions
Authors: Mustafa Bayram Gücen, Coşkun Yakar
Abstract:
In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.Keywords: Fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11389472 On Symmetry Analysis and Exact Wave Solutions of New Modified Novikov Equation
Authors: Anupma Bansal, R. K. Gupta
Abstract:
In this paper, we study a new modified Novikov equation for its classical and nonclassical symmetries and use the symmetries to reduce it to a nonlinear ordinary differential equation (ODE). With the aid of solutions of the nonlinear ODE by using the modified (G/G)-expansion method proposed recently, multiple exact traveling wave solutions are obtained and the traveling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.
Keywords: New Modified Novikov Equation, Lie Classical Method, Nonclassical Method, Modified (G'/G)-Expansion Method, Traveling Wave Solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16319471 A Lagrangian Hamiltonian Computational Method for Hyper-Elastic Structural Dynamics
Authors: Hosein Falahaty, Hitoshi Gotoh, Abbas Khayyer
Abstract:
Performance of a Hamiltonian based particle method in simulation of nonlinear structural dynamics is subjected to investigation in terms of stability and accuracy. The governing equation of motion is derived based on Hamilton's principle of least action, while the deformation gradient is obtained according to Weighted Least Square method. The hyper-elasticity models of Saint Venant-Kirchhoff and a compressible version similar to Mooney- Rivlin are engaged for the calculation of second Piola-Kirchhoff stress tensor, respectively. Stability along with accuracy of numerical model is verified by reproducing critical stress fields in static and dynamic responses. As the results, although performance of Hamiltonian based model is evaluated as being acceptable in dealing with intense extensional stress fields, however kinds of instabilities reveal in the case of violent collision which can be most likely attributed to zero energy singular modes.
Keywords: Hamilton's principle of least action, particle based method, hyper-elasticity, analysis of stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16749470 Identifying an Unknown Source in the Poisson Equation by a Modified Tikhonov Regularization Method
Authors: Ou Xie, Zhenyu Zhao
Abstract:
In this paper, we consider the problem for identifying the unknown source in the Poisson equation. A modified Tikhonov regularization method is presented to deal with illposedness of the problem and error estimates are obtained with an a priori strategy and an a posteriori choice rule to find the regularization parameter. Numerical examples show that the proposed method is effective and stable.
Keywords: Ill-posed problem, Unknown source, Poisson equation, Tikhonov regularization method, Discrepancy principle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14579469 The Strict Stability of Impulsive Stochastic Functional Differential Equations with Markovian Switching
Authors: Dezhi Liu Guiyuan Yang Wei Zhang
Abstract:
Strict stability can present the rate of decay of the solution, so more and more investigators are beginning to study the topic and some results have been obtained. However, there are few results about strict stability of stochastic differential equations. In this paper, using Lyapunov functions and Razumikhin technique, we have gotten some criteria for the strict stability of impulsive stochastic functional differential equations with markovian switching.Keywords: Impulsive; Stochastic functional differential equation; Strict stability; Razumikhin technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297