Search results for: physics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 137

Search results for: physics

107 Students’ Perception of Vector Representation in the Context of Electric Force and the Role of Simulation in Developing an Understanding

Authors: S. Shubha, B. N. Meera

Abstract:

Physics Education Research (PER) results have shown that students do not achieve the expected level of competency in understanding the concepts of different domains of Physics learning when taught by the traditional teaching methods, the concepts of Electricity and Magnetism (E&M) being one among them. Simulation being one of the valuable instructional tools renders an opportunity to visualize varied experiences with such concepts. Considering the electric force concept which requires extensive use of vector representations, we report here the outcome of the research results pertaining to the student understanding of this concept and the role of simulation in using vector representation. The simulation platform provides a positive impact on the use of vector representation. The first stage of this study involves eliciting and analyzing student responses to questions that probe their understanding of the concept of electrostatic force and this is followed by four stages of student interviews as they use the interactive simulations of electric force in one dimension. Student responses to the questions are recorded in real time using electronic pad. A validation test interview is conducted to evaluate students' understanding of the electric force concept after using interactive simulation. Results indicate lack of procedural knowledge of the vector representation. The study emphasizes the need for the choice of appropriate simulation and mode of induction for learning.

Keywords: Electric Force, Interactive, Representation, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233
106 Increase of Organization in Complex Systems

Authors: Georgi Yordanov Georgiev, Michael Daly, Erin Gombos, Amrit Vinod, Gajinder Hoonjan

Abstract:

Measures of complexity and entropy have not converged to a single quantitative description of levels of organization of complex systems. The need for such a measure is increasingly necessary in all disciplines studying complex systems. To address this problem, starting from the most fundamental principle in Physics, here a new measure for quantity of organization and rate of self-organization in complex systems based on the principle of least (stationary) action is applied to a model system - the central processing unit (CPU) of computers. The quantity of organization for several generations of CPUs shows a double exponential rate of change of organization with time. The exact functional dependence has a fine, S-shaped structure, revealing some of the mechanisms of self-organization. The principle of least action helps to explain the mechanism of increase of organization through quantity accumulation and constraint and curvature minimization with an attractor, the least average sum of actions of all elements and for all motions. This approach can help describe, quantify, measure, manage, design and predict future behavior of complex systems to achieve the highest rates of self organization to improve their quality. It can be applied to other complex systems from Physics, Chemistry, Biology, Ecology, Economics, Cities, network theory and others where complex systems are present.

Keywords: Organization, self-organization, complex system, complexification, quantitative measure, principle of least action, principle of stationary action, attractor, progressive development, acceleration, stochastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
105 Optimization of Kinematics for Birds and UAVs Using Evolutionary Algorithms

Authors: Mohamed Hamdaoui, Jean-Baptiste Mouret, Stephane Doncieux, Pierre Sagaut

Abstract:

The aim of this work is to present a multi-objective optimization method to find maximum efficiency kinematics for a flapping wing unmanned aerial vehicle. We restrained our study to rectangular wings with the same profile along the span and to harmonic dihedral motion. It is assumed that the birdlike aerial vehicle (whose span and surface area were fixed respectively to 1m and 0.15m2) is in horizontal mechanically balanced motion at fixed speed. We used two flight physics models to describe the vehicle aerodynamic performances, namely DeLaurier-s model, which has been used in many studies dealing with flapping wings, and the model proposed by Dae-Kwan et al. Then, a constrained multi-objective optimization of the propulsive efficiency is performed using a recent evolutionary multi-objective algorithm called є-MOEA. Firstly, we show that feasible solutions (i.e. solutions that fulfil the imposed constraints) can be obtained using Dae-Kwan et al.-s model. Secondly, we highlight that a single objective optimization approach (weighted sum method for example) can also give optimal solutions as good as the multi-objective one which nevertheless offers the advantage of directly generating the set of the best trade-offs. Finally, we show that the DeLaurier-s model does not yield feasible solutions.

Keywords: Flight physics, evolutionary algorithm, optimization, Pareto surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
104 Purity Monitor Studies in Medium Liquid Argon TPC

Authors: I. Badhrees

Abstract:

This paper is an attempt to describe some of the results that had been found through a journey of study in the field of particle physics. This study consists of two parts, one about the measurement of the cross section of the decay of the Z particle in two electrons, and the other deals with the measurement of the cross section of the multi-photon absorption process using a beam of Laser in the Liquid Argon Time Projection Chamber.

The first part of the paper concerns the results based on the analysis of a data sample containing 8120 ee candidates to reconstruct the mass of the Z particle for each event where each event has an ee pair with PT(e) > 20GeV, and η(e) < 2.5. Monte Carlo templates of the reconstructed Z particle were produced as a function of the Z mass scale. The distribution of the reconstructed Z mass in the data was compared to the Monte Carlo templates, where the total cross section is calculated to be equal to 1432pb.

The second part concerns the Liquid Argon Time Projection Chamber, LAr TPC, the results of the interaction of the UV Laser, Nd-YAG with λ= 266mm, with LAr and through the study of the multi-photon ionization process as a part of the R&D at Bern University. The main result of this study was the cross section of the process of the multi-photon ionization process of the LAr, σe = 1.24±0.10stat±0.30sys.10 -56cm4.

Keywords: ATLAS, CERN, KACST, LArTPC, Particle Physics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
103 Predictions and Comparisons of Thermohydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer-Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings (GFBs) are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional (3D) fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.

Keywords: Fluid structure interaction multi-physics simulations, gas foil bearing, oil-free, transient thermohydrodynamic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 457
102 Validity of Universe Structure Conception as Nested Vortexes

Authors: Khaled M. Nabil

Abstract:

This paper introduces the Nested Vortexes conception of the universe structure and interprets all the physical phenomena according this conception. The paper first reviews recent physics theories, either in microscopic scale or macroscopic scale, to collect evidence that the space is not empty. But, these theories describe the property of the space medium without determining its structure. Determining the structure of space medium is essential to understand the mechanism that leads to its properties. Without determining the space medium structure, many phenomena; such as electric and magnetic fields, gravity, or wave-particle duality remain uninterpreted. Thus, this paper introduces a conception about the structure of the universe. It assumes that the universe is a medium of ultra-tiny homogeneous particles which are still undiscovered. Like any medium with certain movements, possibly because of a great asymmetric explosion, vortexes have occurred. A vortex condenses the ultra-tiny particles in its center forming a bigger particle, the bigger particles, in turn, could be trapped in a bigger vortex and condense in its center forming a much bigger particle and so on. This conception describes galaxies, stars, protons as particles at different levels. Existing of the particle’s vortexes make the consistency of the speed of light postulate is not true. This conception shows that the vortex motion dynamic agrees with the motion of all the universe particles at any level. An experiment has been carried out to detect the orbiting effect of aggregated vortexes of aligned atoms of a permanent magnet. Based on the described particle’s structure, the gravity force of a particle and attraction between particles as well as charge, electric and magnetic fields and quantum mechanics characteristics are interpreted. All augmented physics phenomena are solved.

Keywords: Astrophysics, cosmology, particles’ structure model, particles’ forces, vortex dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
101 Evaluating the Understanding of the University Students (Basic Sciences and Engineering) about the Numerical Representation of the Average Rate of Change

Authors: Saeid Haghjoo, Ebrahim Reyhani, Fahimeh Kolahdouz

Abstract:

The present study aimed to evaluate the understanding of the students in Tehran universities (Iran) about the numerical representation of the average rate of change based on the Structure of Observed Learning Outcomes (SOLO). In the present descriptive-survey research, the statistical population included undergraduate students (basic sciences and engineering) in the universities of Tehran. The samples were 604 students selected by random multi-stage clustering. The measurement tool was a task whose face and content validity was confirmed by math and mathematics education professors. Using Cronbach's Alpha criterion, the reliability coefficient of the task was obtained 0.95, which verified its reliability. The collected data were analyzed by descriptive statistics and inferential statistics (chi-squared and independent t-tests) under SPSS-24 software. According to the SOLO model in the prestructural, unistructural, and multistructural levels, basic science students had a higher percentage of understanding than that of engineering students, although the outcome was inverse at the relational level. However, there was no significant difference in the average understanding of both groups. The results indicated that students failed to have a proper understanding of the numerical representation of the average rate of change, in addition to missconceptions when using physics formulas in solving the problem. In addition, multiple solutions were derived along with their dominant methods during the qualitative analysis. The current research proposed to focus on the context problems with approximate calculations and numerical representation, using software and connection common relations between math and physics in the teaching process of teachers and professors.

Keywords: Average rate of change, context problems, derivative, numerical representation, SOLO taxonomy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761
100 Process Analysis through Length Consistency

Authors: James E. Ponder

Abstract:

The requirement for consistency in physics can sometimes offer a common ground between disciplines such that their fundamental equations share a common parameter set and mathematical method for equation extraction. The parameter set shared by Relativity and Quantum Wave Mechanics enables an analysis which will be seen to be very straightforward, primarily classical in nature using linear algebra concepts, yet deriving a theoretical estimate of the value of the Gravitational Constant along with dependencies never before known.

Keywords: Gravitational Constant, Physical Consistency, Quantum Mechanics, Relativity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
99 Parallel Algorithm for Numerical Solution of Three-Dimensional Poisson Equation

Authors: Alibek Issakhov

Abstract:

In this paper developed and realized absolutely new algorithm for solving three-dimensional Poisson equation. This equation used in research of turbulent mixing, computational fluid dynamics, atmospheric front, and ocean flows and so on. Moreover in the view of rising productivity of difficult calculation there was applied the most up-to-date and the most effective parallel programming technology - MPI in combination with OpenMP direction, that allows to realize problems with very large data content. Resulted products can be used in solving of important applications and fundamental problems in mathematics and physics.

Keywords: MPI, OpenMP, three dimensional Poisson equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
98 Computer Software for Calculating Electron Mobility of Semiconductors Compounds; Case Study for N-Gan

Authors: Emad A. Ahmed

Abstract:

Computer software to calculate electron mobility with respect to different scattering mechanism has been developed. This software is adopted completely Graphical User Interface (GUI) technique and its interface has been designed by Microsoft Visual basic 6.0. As a case study the electron mobility of n-GaN was performed using this software. The behavior of the mobility for n-GaN due to elastic scattering processes and its relation to temperature and doping concentration were discussed. The results agree with other available theoretical and experimental data.

Keywords: Electron mobility, relaxation time, GaN, Scattering, Computer software, computation physics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3862
97 The Role of Creative Thinking in Science Education

Authors: Jindriska Svobodova, Jan Novotny

Abstract:

A teacher’s attitude to creativity plays an essential role in the thinking development of his/her students. The purpose of this study is to understand if a science teacher's personal creativity can modify his/her ability to produce various kinds of questions. This research used an education activity based on cosmic sketches and pictures by K.E. Tsiolkovsky, the founder of astronautics, to explore if any relationship between individual creativity and the asking questions skill exists. As a screening instrument, which allows an assessment of the respondent's creative potential, a common test of creative thinking was used. The results of the creativity test and the diversity of the questions are mentioned.

Keywords: Science education, active learning, physics teaching, creativity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
96 Calculation of Wave Function at the Origin (WFO) for Heavy Mesons by Numerical Solving of the Schrodinger Equation

Authors: M. Momeni Feyli

Abstract:

Many recent high energy physics calculations involving charm and beauty invoke wave function at the origin (WFO) for the meson bound state. Uncertainties of charm and beauty quark masses and different models for potentials governing these bound states require a simple numerical algorithm for evaluation of the WFO's for these bound states. We present a simple algorithm for this propose which provides WFO's with high precision compared with similar ones already obtained in the literature.

Keywords: Mesons, Bound states, Schrodinger equation, Nonrelativistic quark model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
95 MRI Reconstruction Using Discrete Fourier Transform: A tutorial

Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb

Abstract:

The use of Inverse Discrete Fourier Transform (IDFT) implemented in the form of Inverse Fourier Transform (IFFT) is one of the standard method of reconstructing Magnetic Resonance Imaging (MRI) from uniformly sampled K-space data. In this tutorial, three of the major problems associated with the use of IFFT in MRI reconstruction are highlighted. The tutorial also gives brief introduction to MRI physics; MRI system from instrumentation point of view; K-space signal and the process of IDFT and IFFT for One and two dimensional (1D and 2D) data.

Keywords: Discrete Fourier Transform (DFT), K-space Data, Magnetic Resonance (MR), Spin, Windows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5111
94 Analysis of a Novel Strained Silicon RF LDMOS

Authors: V.Fathipour, M. A. Malakootian, S. Fathipour, M. Fathipour

Abstract:

In this paper we propose a novel RF LDMOS structure which employs a thin strained silicon layer at the top of the channel and the N-Drift region. The strain is induced by a relaxed Si0.8 Ge0.2 layer which is on top of a compositionally graded SiGe buffer. We explain the underlying physics of the device and compare the proposed device with a conventional LDMOS in terms of energy band diagram and carrier concentration. Numerical simulations of the proposed strained silicon laterally diffused MOS using a 2 dimensional device simulator indicate improvements in saturation and linear transconductance, current drivability, cut off frequency and on resistance. These improvements are however accompanied with a suppression in the break down voltage.

Keywords: High Frequency MOSFET, Design of RF LDMOS, Strained-Silicon, LDMOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
93 Hybrid Function Method for Solving Nonlinear Fredholm Integral Equations of the Second Kind

Authors: jianhua Hou, Changqing Yang, and Beibo Qin

Abstract:

A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm type equations which have many applications in mathematical physics are then considered. The method is based on hybrid function  approximations. The properties of hybrid of block-pulse functions and Chebyshev polynomials are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.

Keywords: Hybrid functions, Fredholm integral equation, Blockpulse, Chebyshev polynomials, product operational matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
92 Neural Network Learning Based on Chaos

Authors: Truong Quang Dang Khoa, Masahiro Nakagawa

Abstract:

Chaos and fractals are novel fields of physics and mathematics showing up a new way of universe viewpoint and creating many ideas to solve several present problems. In this paper, a novel algorithm based on the chaotic sequence generator with the highest ability to adapt and reach the global optima is proposed. The adaptive ability of proposal algorithm is flexible in 2 steps. The first one is a breadth-first search and the second one is a depth-first search. The proposal algorithm is examined by 2 functions, the Camel function and the Schaffer function. Furthermore, the proposal algorithm is applied to optimize training Multilayer Neural Networks.

Keywords: learning and evolutionary computing, Chaos Optimization Algorithm, Artificial Neural Networks, nonlinear optimization, intelligent computational technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
91 New Exact Three-Wave Solutions for the (2+1)-Dimensional Asymmetric Nizhnik-Novikov-Veselov System

Authors: Fadi Awawdeh, O. Alsayyed

Abstract:

New exact three-wave solutions including periodic two-solitary solutions and doubly periodic solitary solutions for the (2+1)-dimensional asymmetric Nizhnik-Novikov- Veselov (ANNV) system are obtained using Hirota's bilinear form and generalized three-wave type of ansatz approach. It is shown that the generalized three-wave method, with the help of symbolic computation, provides an e¤ective and powerful mathematical tool for solving high dimensional nonlinear evolution equations in mathematical physics.

Keywords: Soliton Solution, Hirota Bilinear Method, ANNV System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
90 Web Application to Profiling Scientific Institutions through Citation Mining

Authors: Hector D. Cortes, Jesus A. del Rio, Esther O. Garcia, Miguel Robles

Abstract:

Recently the use of data mining to scientific bibliographic data bases has been implemented to analyze the pathways of the knowledge or the core scientific relevances of a laureated novel or a country. This specific case of data mining has been named citation mining, and it is the integration of citation bibliometrics and text mining. In this paper we present an improved WEB implementation of statistical physics algorithms to perform the text mining component of citation mining. In particular we use an entropic like distance between the compression of text as an indicator of the similarity between them. Finally, we have included the recently proposed index h to characterize the scientific production. We have used this web implementation to identify users, applications and impact of the Mexican scientific institutions located in the State of Morelos.

Keywords: Citation Mining, Text Mining, Science Impact

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
89 A Numerical Method for Diffusion and Cahn-Hilliard Equations on Evolving Spherical Surfaces

Authors: Jyh-Yang Wu, Sheng-Gwo Chen

Abstract:

In this paper, we present a simple effective numerical geometric method to estimate the divergence of a vector field over a curved surface. The conservation law is an important principle in physics and mathematics. However, many well-known numerical methods for solving diffusion equations do not obey conservation laws. Our presented method in this paper combines the divergence theorem with a generalized finite difference method and obeys the conservation law on discrete closed surfaces. We use the similar method to solve the Cahn-Hilliard equations on evolving spherical surfaces and observe stability results in our numerical simulations.

Keywords: Conservation laws, diffusion equations, Cahn-Hilliard Equations, evolving surfaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
88 Study of Currents and Temperature of Induced Spur Gear using 2d Simulation

Authors: N. Barka, P. Bocher, A. Chebak, J. Brousseau, D. S. Ramdenee

Abstract:

This paper presents the study of induced currents and temperature distribution in gear heated by induction process using 2D finite element (FE) model. The model is developed by coupling Maxwell and heat transfer equations into a multi-physics model. The obtained results allow comparing the medium frequency (MF) and high frequency (HF) cases and the effect of machine parameters on the evolution of induced currents and temperature during heating. The sensitivity study of the temperature profile is conducted and the case hardness is predicted using the final temperature profile. These results are validated using tests and give a good understanding of phenomena during heating process.

Keywords: 2D model, induction heating, spur gear, induced currents, experimental validation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
87 Predictability Analysis on HIV/AIDS System using Hurst Exponents

Authors: K. Kamalanand, P. Mannar Jawahar

Abstract:

Methods of contemporary mathematical physics such as chaos theory are useful for analyzing and understanding the behavior of complex biological and physiological systems. The three dimensional model of HIV/AIDS is the basis of active research since it provides a complete characterization of disease dynamics and the interaction of HIV-1 with the immune system. In this work, the behavior of the HIV system is analyzed using the three dimensional HIV model and a chaotic measure known as the Hurst exponent. Results demonstrate that Hurst exponents of CD4, CD8 cells and viral load vary nonlinearly with respect to variations in system parameters. Further, it was observed that the three dimensional HIV model can accommodate both persistent (H>0.5) and anti-persistent (H<0.5) dynamics of HIV states. In this paper, the objectives of the study, methodology and significant observations are presented in detail.

Keywords: HIV/AIDS, mathematical model, chaos theory, Hurst exponent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
86 A Survey of IMRT and VMAT in UK

Authors: A. Taqaddas

Abstract:

Purpose: This E-survey was carried out to facilitate the implementation and Education of VMAT (Volumetric Modulated Arc Therapy) in Radiotherapy-RT departments and reasons for not using IMRT (Intensity Modulated Radiotherapy). VMAT Skills in demand were also identified. Method: E-Survey was distributed to NHS hospitals across UK by email. Thirty NHS and related centres in England, 21 in Scotland, 3 in Ireland and 1 in Wales were contacted. This Survey was intended for those working in RT and Medical Physics and who were responsible for Treatment Planning and training. Results: This E-survey have indicated pathways adopted by staff to acquire VMAT skills, strategies to efficiently implement VMAT in RT departments and for obtaining VMAT Education. Conclusion: Despite poor survey response this survey has managed to highlight requirements for education and implementation of VMAT that are also applicable to IMRT. Other RT centres in world can also find these results useful.

Keywords: IMRT, Radiotherapy, Treatment Planning, VMAT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
85 Application of Multi-objective Optimization Packages in Design of an Evaporator Coil

Authors: A.Mosavi

Abstract:

A novel methodology has been used to design an evaporator coil of a refrigerant. The methodology used is through a complete Computer Aided Design /Computer Aided Engineering approach, by means of a Computational Fluid Dynamic/Finite Element Analysis model which is executed many times for the thermal-fluid exploration of several designs' configuration by an commercial optimizer. Hence the design is carried out automatically by parallel computations, with an optimization package taking the decisions rather than the design engineer. The engineer instead takes decision regarding the physical settings and initializing of the computational models to employ, the number and the extension of the geometrical parameters of the coil fins and the optimization tools to be employed. The final design of the coil geometry found to be better than the initial design.

Keywords: Multi-objective shape optimization, Heat Transfer, multi-physics structures, modeFRONTIER

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
84 A Programmer’s Survey of the Quantum Computing Paradigm

Authors: Philippe Jorrand

Abstract:

Research in quantum computation is looking for the consequences of having information encoding, processing and communication exploit the laws of quantum physics, i.e. the laws which govern the ultimate knowledge that we have, today, of the foreign world of elementary particles, as described by quantum mechanics. This paper starts with a short survey of the principles which underlie quantum computing, and of some of the major breakthroughs brought by the first ten to fifteen years of research in this domain; quantum algorithms and quantum teleportation are very biefly presented. The next sections are devoted to one among the many directions of current research in the quantum computation paradigm, namely quantum programming languages and their semantics. A few other hot topics and open problems in quantum information processing and communication are mentionned in few words in the concluding remarks, the most difficult of them being the physical implementation of a quantum computer. The interested reader will find a list of useful references at the end of the paper.

Keywords: Quantum information processing, quantum algorithms, quantum programming languages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
83 Simulation of the Airflow Characteristic inside a Hard Disk Drive by Applying a Computational Fluid Dynamics Software

Authors: Chanchal Saha, Huynh Trung Luong, M. H. Aziz, Tharinan Rattanalert

Abstract:

Now-a-days, numbers of simulation software are being used all over the world to solve Computational Fluid Dynamics (CFD) related problems. In this present study, a commercial CFD simulation software namely STAR-CCM+ is applied to analyze the airflow characteristics inside a 2.5" hard disk drive. Each step of the software is described adequately to obtain the output and the data are verified with the theories to justify the robustness of the simulation outcome. This study gives an insight about the accuracy level of the CFD simulation software to compute CFD related problems although it largely depends upon the computer speed. Also this study will open avenues for further research.

Keywords: Computational fluid dynamics, Hard disk drive, Meshing, Recirculation filter, and Filter physics parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
82 Numerical Simulation of Fluid Structure Interaction Using Two-Way Method

Authors: Samira Laidaoui, Mohammed Djermane, Nazihe Terfaya

Abstract:

The fluid-structure coupling is a natural phenomenon which reflects the effects of two continuums: fluid and structure of different types in the reciprocal action on each other, involving knowledge of elasticity and fluid mechanics. The solution for such problems is based on the relations of continuum mechanics and is mostly solved with numerical methods. It is a computational challenge to solve such problems because of the complex geometries, intricate physics of fluids, and complicated fluid-structure interactions. The way in which the interaction between fluid and solid is described gives the largest opportunity for reducing the computational effort. In this paper, a problem of fluid structure interaction is investigated with two-way coupling method. The formulation Arbitrary Lagrangian-Eulerian (ALE) was used, by considering a dynamic grid, where the solid is described by a Lagrangian formulation and the fluid by a Eulerian formulation. The simulation was made on the ANSYS software.

Keywords: ALE, coupling, FEM, fluid-structure interaction, one-way method, two-way method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
81 Directed Approach and Resolution of Practical Cases as a Motivation Tool for Self-Learning and Cooperation

Authors: B. Montero, M. Rico, A. Ares, R. Bouza

Abstract:

The development of competences and practical capacities of students is getting an important incidence into the guidelines of the European Higher Education Area (EHEA). The methodology applied in this work is based on the education through directed resolution of practical cases. All cases are related to professional tasks that the students will have to develop in their future career. The method is intended to form the necessary competences of students of the Marine Engineering and Maritime Transport Degree in the matter of “Physics". The experience was applied in the course of 2011/2012. Students were grouped, and a practical task was assigned to them, that should be developed and solved within the team. The aim was to realize students learning by three ways: their own knowledge, the contribution of their teammates and the teacher's direction. The results of the evaluation were compared with those obtained previously by the traditional teaching method.

Keywords: Cooperation, Marine Engineering, Self-learning skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
80 The Effect of Combining Real Experimentation With Virtual Experimentation on Students-Success

Authors: I. Oral, E. Bozkurt, H. Guzel

Abstract:

The purpose of this study was to investigate the effect of combining Real Experimentation (RE) With Virtual Experimentation (VE) on students- conceptual understanding of photo electric effect. To achieve this, a pre–post comparison study design was used that involved 46 undergraduate students. Two groups were set up for this study. Participants in the control group used RE to learn photo electric effect, whereas, participants in the experimental group used RE in the first part of the curriculum and VE in another part. Achievement test was given to the groups before and after the application as pre-test and post test. The independent samples t- test, one way Anova and Tukey HSD test were used for testing the data obtained from the study. According to the results of analyzes, the experimental group was found more successful than the control group.

Keywords: Computer Based Teaching, Java, Physics Education, Virtual Laboratory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
79 MAS Simulations of Optical Antenna Structures

Authors: K.Tavzarashvili, G.Ghvedashili

Abstract:

A semi-analytic boundary discretization method, the Method of Auxiliary Sources (MAS) is used to analyze Optical Antennas consisting of metallic parts. In addition to standard dipoletype antennas, consisting of two pieces of metal, a new structure consisting of a single metal piece with a tiny groove in the center is analyzed. It is demonstrated that difficult numerical problems are caused because optical antennas exhibit strong material dispersion, loss, and plasmon-polariton effects that require a very accurate numerical simulation. This structure takes advantage of the Channel Plasmon-Polariton (CPP) effect and exhibits a strong enhancement of the electric field in the groove. Also primitive 3D antenna model with spherical nano particles is analyzed.

Keywords: optical antenna, channel plasmon-polariton, computational physics, Method of Auxiliary Sources

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
78 Modeling and Simulations of Complex Low- Dimensional systems: Testing the Efficiency of Parallelization

Authors: Ryszard Matysiak, Grzegorz Kamieniarz

Abstract:

The deterministic quantum transfer-matrix (QTM) technique and its mathematical background are presented. This important tool in computational physics can be applied to a class of the real physical low-dimensional magnetic systems described by the Heisenberg hamiltonian which includes the macroscopic molecularbased spin chains, small size magnetic clusters embedded in some supramolecules and other interesting compounds. Using QTM, the spin degrees of freedom are accurately taken into account, yielding the thermodynamical functions at finite temperatures. In order to test the application for the susceptibility calculations to run in the parallel environment, the speed-up and efficiency of parallelization are analyzed on our platform SGI Origin 3800 with p = 128 processor units. Using Message Parallel Interface (MPI) system libraries we find the efficiency of the code of 94% for p = 128 that makes our application highly scalable.

Keywords: Deterministic simulations, low-dimensional magnets, modeling of complex systems, parallelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613