Computer Software for Calculating Electron Mobility of Semiconductors Compounds; Case Study for N-Gan
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Computer Software for Calculating Electron Mobility of Semiconductors Compounds; Case Study for N-Gan

Authors: Emad A. Ahmed

Abstract:

Computer software to calculate electron mobility with respect to different scattering mechanism has been developed. This software is adopted completely Graphical User Interface (GUI) technique and its interface has been designed by Microsoft Visual basic 6.0. As a case study the electron mobility of n-GaN was performed using this software. The behavior of the mobility for n-GaN due to elastic scattering processes and its relation to temperature and doping concentration were discussed. The results agree with other available theoretical and experimental data.

Keywords: Electron mobility, relaxation time, GaN, Scattering, Computer software, computation physics.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1091532

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3871

References:


[1] C. M. Wolfe, N. Holonyak, Jr., and G. S. Stillman, Physical Properties of Semiconductors. Englewood Cliffs, N. J.: Prentice Hall, 1989.
[2] S. Adachi, GaAs and Related materials, "Bulk Semiconducting and Superlattice properties, "World Scientific, Singapore, 1994, Chap. 14.
[3] Z. Hongwei, Z. Yiping, W. Hongmei, D. Jianrong, Z. Zhanping, P. Liang and K. Meiying, "Growth and transport properties of InAs thin films on GaAs,”J. Crystal Growth 191, 1998, 361.
[4] M. Sotoodeh, A. H. Khalid and A. A. Rezazadeh, "Empirical low-field mobility model for III–V compounds applicable in device simulation codes,”J. Appl. Phys. 87, 2000, 2890.
[5] B. R. Nag, Electron Transport in Compound Semiconductors, Springer, New York, 1980.
[6] S. Dharand S. Ghosh, "Low field electron mobility in GaN,”Journal of Applied Physics, 86, 1999, 2668.
[7] S. Mallick, J. Kundu and C. K. Sarkar, "Calculation of ionized impurity scattering probability with scattering angles in GaN,”Can. J. Phys., 86, 2008, 8.
[8] C. Erginsoy, "Neutral impurity scattering in semi-conductors, "Physical Review, 79, 1950, 1013.
[9] R. Karthik, P. Uma Sathyakam, P. S. Mallick, "Effect of dislocation scattering on electron mobility in GaN,”Natural Science, Vol.3, No.9, 2011, 812-815.
[10] D. A. Anderson, N. Apsley, "The Hall effect in III-V semiconductors,”Semicond. Sci. Technol., 1, 1986, 187.
[11] P. Perlin, E.L. Staszewska and B. Suchanek, "Determination of the effective mass of GaN from infrared reflectivity and Hall Effect, "Applied Physical Letters, 68, 1996, 1114.
[12] V. Bougrov, M. E. Levinshtein, S. L. Rumyantsev and A. Zubrilov, Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe. Eds. Levinshtein M. E., Rumyantsev S. L., Shur M.S., John Wiley & Sons, Inc., New York,2001, 1-30.
[13] Y. J. Wang, R. Kaplan, H. K. Ng, K. Doverspike, D. K. Gaskil, T. Ikedo, H. Amano and I. Akasaki, "Magneto-optical studies of GaN and GaN/AlxGa1-xN: Donor zeeman spectroscopy and two dimensional electron gas cyclotron resonance,”Journal of Applied Physics, 79, 1996, 8007.
[14] H. Morkoç, Nitride Semiconductors and Devices, Springer–Verlag Berlin Heildelberg New York, 1999, 245.
[15] D. C. Look, J. R. Sizelove, S. Keller, Y. F. Wu, U. K. Mishra and S. P. Den Baars, "Accurate mobility and carrier concentration analysis for GaN,”Solid State Communications, 102, 1997, 297.
[16] D.K. Schroeder, Semiconductor material and device characterization. Wiley, New York, 1990.
[17] W. Shan, S. Schmidt, X.H. Yang, J.J. Song, and B. Golden-berg, "Optical properties of wurtziteGaN grown by low-pressure metal organic chemical-vapor deposition,”Journal of Applied Physics, 79, 1996, 3691.
[18] A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Q.C. Chen, and M.A. Khan, "Piezoelectric effect in wurtzite n-type GaN,”Applied Physical Letters, 68, 1996, 818.
[19] J. D. Albercht, R. P. Wang, P. P. Ruden, M. Farahmand, K. F. Brennan, "Electron transport characteristics of GaN for high temperature device modeling,” J. Appl. Phys., 83, 1998, 4777.
[20] K. Alfaramawi, "Numerical calculations of the electron mobility of n-GaN, J. Optoelectron,”Adv. M.-Rapid Comm., 4, 2010, 922.
[21] K. Alfaramawi and M.A. Alzamil, "Temperature-Dependent Scattering Processes of n-type Indium Antimonide,”Optoelectron. Adv. Matr.-Rapid Comm., 3, 2009, 569.
[22] H. Tang, W. Kim, A. Botchkarev, G. Popovici, F. Hamdani and H. Morkoç,"Analysis of carrier mobility and concentration in Si-doped GaN grown by reactive molecular beam epitaxy,”Solid-State Electronics, 42(5), 1998, 839-847
[23] S. Aydogu, M. Akarsu and Ö. Özba, "Numerical calculation of the electron mobility of GaN semiconductor compound,”Rom. Journ. Phys., Vol. 50, Nos. 9–10 ,Bucharest 2005, P. 1047–1053.
[24] J. Kundu, C. K. Sarkar and P. S Mallick, "Calculation of electron mobility and effect of dislocation scattering in GaN Semiconductor Physics,”Quantum Electronics & Optoelectronics, Vol. 10 Issue 12 ,2007, p1.
[25] D. Subhabrata and G. Subhasis, "Low Field Electron Mobility in GaN,”J. Appl. Phys.,86 (5), 1999, 2668.