Search results for: cladding materials
1662 Cladding of Al and Cu by Differential Speed Rolling
Authors: Tae Yun Chung, Jungho Moon, Tae Kwon Ha
Abstract:
Al/Cu clad sheet has been fabricated by using differential speed rolling (DSR) process, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Rolling was carried out at 100 and 150oC with speed ratios from 1.4 to 2.2, in which the total thickness reduction was in the range between 14 and 46%. Interfacial microstructure and mechanical properties of Al/Cu clad were investigated by scanning electron microscope equipped with energy dispersive X-ray detector, and tension tests. The DSR process was very effective to provide a good interface for atoms diffusion during subsequent annealing. The strength of bonding was higher with the increasing speed ratio. Post heat treatment enhanced the mechanical properties of clad sheet by forming intermetallic compounds in the interface area.
Keywords: Aluminum/Copper clad sheet, Differential speed rolling, Interface microstructure, Annealing, Tensile test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23501661 Obtaining of Nanocrystalline Ferrites and Other Complex Oxides by Sol–Gel Method with Participation of Auto–Combustion
Authors: V. S. Bushkova
Abstract:
It is well known that in recent years magnetic materials have received increased attention due to their properties. For this reason a significant number of patents that were published during the last decade are oriented towards synthesis and study of such materials. The aim of this work is to create and study ferrite nanocrystalline materials with spinel structure, using sol-gel technology with participation of auto-combustion. This method is perspective in that it is a cheap and low-temperature technique that allows for the fine control on the product’s chemical composition.
Keywords: Magnetic materials, ferrites, sol–gel technology, nanocrystalline powders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18961660 Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method
Authors: Nouby Ghazaly, Gamal Fouad, Ali Abd-El-Tawwab, K. A. Abd El-Gwwad
Abstract:
The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.
Keywords: Structure analysis, aluminum piston, MgZrO3, YTZ, mullite and alumina.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7841659 Lateral Torsional Buckling of Steel Thin-Walled Beams with Lateral Restraints
Authors: Ivan Balázs, Jindřich Melcher
Abstract:
Metal thin-walled members have been widely used in building industry. Usually they are utilized as purlins, girts or ceiling beams. Due to slenderness of thin-walled cross-sections these structural members are prone to stability problems (e.g. flexural buckling, lateral torsional buckling). If buckling is not constructionally prevented their resistance is limited by buckling strength. In practice planar members of roof or wall cladding can be attached to thin-walled members. These elements reduce displacement of thin-walled members and therefore increase their buckling strength. If this effect is taken into static assessment more economical sections of thin-walled members might be utilized and certain savings of material might be achieved. This paper focuses on problem of determination of critical load of steel thin-walled beams with lateral continuous restraint which is crucial for lateral torsional buckling assessment.Keywords: Beam, buckling, numerical analysis, stability, steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29141658 The Analysis of TRACE/FRAPTRAN in the Fuel Rods of Maanshan PWR for LBLOCA
Authors: J. R. Wang, W.Y. Li, H.T. Lin, J.H. Yang, C. Shih, S.W. Chen
Abstract:
Fuel rod analysis program transient (FRAPTRAN) code was used to study the fuel rod performance during a postulated large break loss of coolant accident (LBLOCA) in Maanshan nuclear power plant (NPP). Previous transient results from thermal hydraulic code, TRACE, with the same LBLOCA scenario, were used as input boundary conditions for FRAPTRAN. The simulation results showed that the peak cladding temperatures and the fuel centerline temperatures were all below the 10CFR50.46 LOCA criteria. In addition, the maximum hoop stress was 18 MPa and the oxide thickness was 0.003mm for the present simulation cases, which are all within the safety operation ranges. The present study confirms that this analysis method, the FRAPTRAN code combined with TRACE, is an appropriate approach to predict the fuel integrity under LBLOCA with operational ECCS.
Keywords: —FRAPTRAN, TRACE, LOCA, PWR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26781657 Two-Dimensional Modeling of Spent Nuclear Fuel Using FLUENT
Authors: Imane Khalil, Quinn Pratt
Abstract:
In a nuclear reactor, an array of fuel rods containing stacked uranium dioxide pellets clad with zircalloy is the heat source for a thermodynamic cycle of energy conversion from heat to electricity. After fuel is used in a nuclear reactor, the assemblies are stored underwater in a spent nuclear fuel pool at the nuclear power plant while heat generation and radioactive decay rates decrease before it is placed in packages for dry storage or transportation. A computational model of a Boiling Water Reactor spent fuel assembly is modeled using FLUENT, the computational fluid dynamics package. Heat transfer simulations were performed on the two-dimensional 9x9 spent fuel assembly to predict the maximum cladding temperature for different input to the FLUENT model. Uncertainty quantification is used to predict the heat transfer and the maximum temperature profile inside the assembly.Keywords: Spent nuclear fuel, conduction, heat transfer, uncertainty quantification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8561656 Numerical Analysis and Design of Dielectric to Plasmonic Waveguides Couplers
Authors: Emanuela Paranhos Lima, Vitaly Félix Rodríguez Esquerre
Abstract:
In this work, efficient directional coupler composed of dielectric waveguides and metallic film has been analyzed in details by simulations using finite element method (FEM). The structure consists of a step-index fiber with dielectric core, silica cladding, and a metal nanowire parallel to the core. The results show that an efficient conversion of optical dielectric modes to long range plasmonic is possible. Low insertion losses in conjunction with short coupling length and a broadband operation can be achieved under certain conditions. This kind of couplers has potential applications for the design of photonic integrated circuits for signal routing between dielectric/plasmonic waveguides, sensing, lithography, and optical storage systems. A high efficient focusing of light in a very small region can be obtained.Keywords: Directional coupler, finite element method, metallic nanowire, plasmonic, surface plasmon polariton.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8811655 Resources and Strategies towards the Development of a Sustainable Construction Materials Industry in Botswana
Authors: G. Malumbela, E. U. Masuku
Abstract:
The economy of Botswana has increased extensively since its independence. In contrast to this increase, the construction industry which is one of the key indicators of a developing nation continues to be highly dependent on imported building material products from the neighbouring countries of South Africa, Namibia, Zimbabwe, and Zambia. Only two companies in the country currently blend cement. Even then, the overwhelming majority of raw materials used in the blends are imported. Furthermore, there are no glass manufacturers in Botswana. The ceramic industry is limited to the manufacture of clay bricks notwithstanding a few studios on crockery and sanitary ware which nonetheless use imported clay. This paper presents natural resources and industrial waste products in Botswana that can be used for the development of sustainable building materials. It also investigates at the distribution and cost of other widely used building materials in the country. Finally, the present paper looks at projects and national strategies aimed at a country-wide development of a sustainable building materials industry together with their successes and hitches.Keywords: Botswana construction industry, construction materials, natural resources, sustainable materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19631654 Pilot Scale Production and Compatibility Criteria of New Self-Cleaning Materials
Authors: J. Ranogajec, O. Rudic, S. Pasalic, S. Vucetic, D. Cjepa
Abstract:
The paper involves a chain of activities from synthesis, establishment of the methodology for characterization and testing of novel protective materials through the pilot production and application on model supports. It summarizes the results regarding the development of the pilot production protocol for newly developed self-cleaning materials. The optimization of the production parameters was completed in order to improve the most important functional properties (mineralogy characteristics, particle size, self-cleaning properties and photocatalytic activity) of the newly designed nanocomposite material.
Keywords: Cultural heritage. Materials compatibility. Pilot production. Self-cleaning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23181653 Acoustic and Thermal Insulating Materials Based On Natural Fibres Used in Floor Construction
Authors: J. Hroudova, J. Zach
Abstract:
The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed.
Keywords: Green thermal and acoustic insulating materials, natural fibres, technical hemp, flax, floor construction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32081652 Friction Stir Welding of Dissimilar Materials: An Overview
Authors: Mukuna P. Mubiayi, Esther T. Akinlabi
Abstract:
Friction Stir Welding is a solid state welding technique which can be used to produce sound welds between similar and dissimilar materials. Dissimilar welds which include welds between the different series of aluminium alloys, aluminium to magnesium, steel and titanium has been successfully produced by many researchers. This review covers the work conducted in the above mentioned materials and further concludes by showing the need to fully understand the FSW process in order to expand the latter industrially.Keywords: aluminium, dissimilar materials, FSW, hardness, magnesium, microstructure, steel, tensile test, titanium
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74571651 Effect of Modeling of Hydraulic Form Loss Coefficient to Break on Emergency Core Coolant Bypass
Authors: Young S. Bang, Dong H. Yoon, Seung H. Yoo
Abstract:
Emergency Core Coolant Bypass (ECC Bypass) has been regarded as an important phenomenon to peak cladding temperature of large-break loss-of-coolant-accidents (LBLOCA) in nuclear power plants (NPP). A modeling scheme to address the ECC Bypass phenomena and the calculation of LBLOCA using that scheme are discussed in the present paper. A hydraulic form loss coefficient (HFLC) from the reactor vessel downcomer to the broken cold leg is predicted by the computational fluid dynamics (CFD) code with a variation of the void fraction incoming from the downcomer. The maximum, mean, and minimum values of FLC are derived from the CFD results and are incorporated into the LBLOCA calculation using a system thermal-hydraulic code, MARS-KS. As a relevant parameter addressing the ECC Bypass phenomena, the FLC to the break and its range are proposed.
Keywords: CFD analysis, ECC Bypass, hydraulic form loss coefficient, system thermal-hydraulic code.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8211650 A Study of Recycle Materials to Develop for Auto Part
Authors: Sittichai Kaewkuekool, Vanchai Laemlaksakul
Abstract:
At the present, auto part industries have become higher challenge in strategy market. As this consequence, manufacturers need to have better response to customers in terms of quality, cost, and delivery time. Moreover, they need to have a good management in factory to comply with international standard maximum capacity and lower cost. This would lead companies to have to order standard part from aboard and become the major cost of inventory. The development of auto part research by recycling materials experiment is to compare the auto parts from recycle materials to international auto parts (CKD). Factors studied in this research were the recycle material ratios of PU-foam, felt, and fabric. Results of recycling materials were considered in terms of qualities and properties on the parameters such as weight, sound absorption, water absorption, tensile strength, elongation, and heat resistance with the CKD. The results were showed that recycling materials would be used to replace for the CKD.
Keywords: International auto parts, recycling materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20731649 Adsorption of Phenol and 4-Hydroxybenzoic Acid onto Functional Materials
Authors: Mourad Makhlouf, Omar Bouchher, Messabih Sidi Mohamed, Benrachedi Khaled
Abstract:
The objective of this study was to investigate the removal of two organic pollutants; 4-hydroxybenzoic acid (p-hydroxybenzoic acid) and phenol from synthetic wastewater by the adsorption on mesoporous materials. In this context, the aim of this work is to study the adsorption of organic compounds phenol and 4AHB on MCM-41 and FSM-16 non-grafted (NG) and other grafted (G) by trimethylchlorosilane (TMCS). The results of phenol and 4AHB adsorption in aqueous solution show that the adsorption capacity tends to increase after grafting in relation to the increase in hydrophobicity. The materials are distinguished by a higher adsorption capacity to the other NG materials. The difference in the phenol is 14.43% (MCM-41), 14.55% (FSM-16), and 16.72% (MCM-41), 13.57% (FSM-16) in the 4AHB. Our adsorption results show that the grafted materials by TMCS are good adsorbent at 25 °C.
Keywords: MCM-41, FSM-16, TMCS, phenol, 4AHB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10581648 Design of a Grid for Preparation of high Density Granules from Dispersed Materials
Authors: Bogdan Il. Bogdanov, Dimitar R.Rusev, Yancho H. Hristov, Irena G. Markovska, Dimitar P.Georgiev
Abstract:
New design of a grid for preparation of high density granules with enhanced mechanical strength by granulation of dispersed materials is suggested. A method for hydrodynamic dimensioning of the grid depending on granulation conditions, hydrodynamic regime of the operation, dispersity and physicochemical characteristics of the materials to be granulated was suggested. The aim of the grid design is to solve the problems arising by the granulation of disperse materials.Keywords: fluidized bed reactor, granulation, porous silicatematerials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14071647 Supplementary Cementitious Materials as Sustainable Partial Replacement for Cement in the Building Industry
Authors: Nwakaego C. Onyenokporo
Abstract:
Cement is the most extensively used construction material due to its strength and versatility of use. However, the production of Portland cement has become unsustainable because of high energy usage, reduction of natural non-renewable resources and emissions of greenhouse gases. Production of cement contributes to anthropogenic greenhouse gases emissions annually. The growing concerns for the environment resulting from this constant and excessive use of cement has therefore raised the need for more green materials and technology. The use of supplementary cementitious materials (SCMs) is considered as one of the many alternatives suited to address this issue and serve as a sustainable partial replacement for cement in construction. This paper will examine the reuse of these waste materials to partially replace Portland cement. It provides a critical review of literature analysing various supplementary cementitious materials which are applicable in the building industry as either partial replacement for cement or aggregates. These materials have been grouped based on source into industrial wastes, domestic/general wastes, and agricultural wastes. The reuse of these waste materials could potentially reduce the negative effects of cement production and reduce landfills which constitute an environmental nuisance. This paper seeks to inform building industry professionals and researchers in the field on the applicability of these waste materials in construction.
Keywords: cement, greenhouse gases, landfills, sustainable, waste materials
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7411646 Supplementary Cementitious Materials as Sustainable Partial Replacement for Cement in the Building Industry
Authors: Nwakaego C. Onyenokporo
Abstract:
Cement is the most extensively used construction material due to its strength and versatility of use. However, the production of Portland cement has become unsustainable because of high energy usage, reduction of natural non-renewable resources and emissions of greenhouse gases. Production of cement contributes to anthropogenic greenhouse gases emissions annually. The growing concerns for the environment resulting from this constant and excessive use of cement has therefore raised the need for more green materials and technology. The use of supplementary cementitious materials (SCMs) is considered as one of the many alternatives suited to address this issue and serve as a sustainable partial replacement for cement in construction. This paper will examine the reuse of these waste materials to partially replace Portland cement. It provides a critical review of literature analysing various supplementary cementitious materials which are applicable in the building industry as either partial replacement for cement or aggregates. These materials have been grouped based on source into industrial wastes, domestic/general wastes, and agricultural wastes. The reuse of these waste materials could potentially reduce the negative effects of cement production and reduce landfills which constitute an environmental nuisance. This paper seeks to inform building industry professionals and researchers in the field on the applicability of these waste materials in construction.
Keywords: Cement, greenhouse gases, landfills, sustainable, waste materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6801645 Process Optimisation for Internal Cylindrical Rough Turning of Nickel Alloy 625 Weld Overlay
Authors: Lydia Chan, Islam Shyha, Dale Dreyer, John Hamilton, Phil Hackney
Abstract:
Nickel-based superalloys are generally known to be difficult to cut due to their strength, low thermal conductivity, and high work hardening tendency. Superalloy such as alloy 625 is often used in the oil and gas industry as a surfacing material to provide wear and corrosion resistance to components. The material is typically applied onto a metallic substrate through weld overlay cladding, an arc welding technique. Cladded surfaces are always rugged and carry a tough skin; this creates further difficulties to the machining process. The present work utilised design of experiment to optimise the internal cylindrical rough turning for weld overlay surfaces. An L27 orthogonal array was used to assess effects of the four selected key process variables: cutting insert, depth of cut, feed rate, and cutting speed. The optimal cutting conditions were determined based on productivity and the level of tool wear.Keywords: Cylindrical turning, nickel superalloy, turning of overlay, weld overlay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9261644 The Model Establishment and Analysis of TRACE/MELCOR for Kuosheng Nuclear Power Plant Spent Fuel Pool
Authors: W. S. Hsu, Y. Chiang, Y. S. Tseng, J. R. Wang, C. Shih, S. W. Chen
Abstract:
Kuosheng nuclear power plant (NPP) is a BWR/6 plant in Taiwan. There is more concern for the safety of NPPs in Taiwan after Japan Fukushima NPP disaster occurred. Hence, in order to estimate the safety of Kuosheng NPP spent fuel pool (SFP), by using TRACE, MELCOR, and SNAP codes, the safety analysis of Kuosheng NPP SFP was performed. There were two main steps in this research. First, the Kuosheng NPP SFP models were established. Second, the transient analysis of Kuosheng SFP was done by TRACE and MELCOR under the cooling system failure condition (Fukushima-like condition). The results showed that the calculations of MELCOR and TRACE were very similar in this case, and the fuel uncover happened roughly at 4th day after the failure of cooling system. The above results indicated that Kuosheng NPP SFP may be unsafe in the case of long-term SBO situation. In addition, future calculations were needed to be done by the other codes like FRAPTRAN for the cladding calculations.
Keywords: TRACE, MELCOR, SNAP, spent fuel pool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15841643 Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates
Authors: Djalal Hamed
Abstract:
The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study.Keywords: Buoyancy force, friction force, friction factor, MTR-type fuel, natural convection, vertical heated rectangular channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7731642 Kinetics of Cu (II) Transport through Bulk Liquid Membrane with Different Membrane Materials
Authors: Siu Hua Chang, Ayub Md Som, Jagannathan Krishnan
Abstract:
The kinetics of Cu(II) transport through a bulk liquid membrane with different membrane materials was investigated in this work. Three types of membrane materials were used: fresh cooking oil, waste cooking oil and kerosene, each of which was mixed with di-2-ethylhexylphosphoric acid (carrier) and tributylphosphate (modifier). Kinetic models derived from the kinetic laws of two consecutive irreversible first-order reactions were used to study the facilitated transport of Cu(II) across the source, membrane and receiving phases of bulk liquid membrane. It was found that the transport kinetics of Cu(II) across the source phase was not affected by different types of membrane materials but decreased considerably when the membrane materials changed from kerosene, waste cooking oil to fresh cooking oil. The rate constants of Cu(II) removal and recovery processes through the bulk liquid membrane were also determined.
Keywords: Transport kinetics, Cu(II), bulk liquid membrane, waste cooking oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16601641 Experimental and Theoretical Study on Hygrothermal Aging Effect on Mechanical Behavior of Fiber Reinforced Plastic Laminates
Authors: S. Larbi, R. Bensaada, S. Djebali, A. Bilek
Abstract:
The manufacture of composite parts is a major issue in many industrial domains. Polymer composite materials are ideal for structural applications where high strength-to-weight and stiffness-to-weight ratios are required. However, exposition to extreme environment conditions (temperature, humidity) affects mechanical properties of organic composite materials and lead to an undesirable degradation. Aging mechanisms in organic matrix are very diverse and vary according to the polymer and the aging conditions such as temperature, humidity etc. This paper studies the hygrothermal aging effect on the mechanical properties of fiber reinforced plastics laminates at 40 °C in different environment exposure. Two composite materials are used to conduct the study (carbon fiber/epoxy and glass fiber/vinyl ester with two stratifications for both the materials [904/04] and [454/04]). The experimental procedure includes a mechanical characterization of the materials in a virgin state and exposition of specimens to two environments (seawater and demineralized water). Absorption kinetics for the two materials and both the stratifications are determined. Three-point bending test is performed on the aged materials in order to determine the hygrothermal effect on the mechanical properties of the materials.
Keywords: FRP laminates, hygrothermal aging, mechanical properties, theory of laminates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12321640 Influence of Microstructural Features on Wear Resistance of Biomedical Titanium Materials
Authors: Mohsin T. Mohammed, Zahid A. Khan, Arshad N. Siddiquee
Abstract:
The field of biomedical materials plays an imperative requisite and a critical role in manufacturing a variety of biological artificial replacements in a modern world. Recently, titanium (Ti) materials are being used as biomaterials because of their superior corrosion resistance and tremendous specific strength, free- allergic problems and the greatest biocompatibility compared to other competing biomaterials such as stainless steel, Co-Cr alloys, ceramics, polymers, and composite materials. However, regardless of these excellent performance properties, Implantable Ti materials have poor shear strength and wear resistance which limited their applications as biomaterials. Even though the wear properties of Ti alloys has revealed some improvements, the crucial effectiveness of biomedical Ti alloys as wear components requires a comprehensive deep understanding of the wear reasons, mechanisms, and techniques that can be used to improve wear behavior. This review examines current information on the effect of thermal and thermomechanical processing of implantable Ti materials on the long-term prosthetic requirement which related with wear behavior. This paper focuses mainly on the evolution, evaluation and development of effective microstructural features that can improve wear properties of bio grade Ti materials using thermal and thermomechanical treatments.Keywords: Wear Resistance, Heat Treatment, Thermomechanical Processing, Biomedical Titanium Materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36631639 Thermal Hydraulic Analysis of the IAEA 10MW Benchmark Reactor under Normal Operating Condition
Authors: Hamed Djalal
Abstract:
The aim of this paper is to perform a thermal-hydraulic analysis of the IAEA 10 MW benchmark reactor solving analytically and numerically, by mean of the finite volume method, respectively the steady state and transient forced convection in rectangular narrow channel between two parallel MTR-type fuel plates, imposed under a cosine shape heat flux. A comparison between both solutions is presented to determine the minimal coolant velocity which can ensure a safe reactor core cooling, where the cladding temperature should not reach a specific safety limit 90 °C. For this purpose, a computer program is developed to determine the principal parameter related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the inlet coolant velocity. Finally, a good agreement is noticed between the both analytical and numerical solutions, where the obtained results are displayed graphically.
Keywords: Forced convection, friction factor pressure drop thermal hydraulic analysis, vertical heated rectangular channel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8661638 Revising the Student Experiment Materials and Practices at the National University of Laos
Authors: Syhalath Xaphakdy, Toshio Nagata, Saykham Phommathat, Pavy Souwannavong, Vilayvanh Srithilat, Phoxay Sengdala, Bounaom Phetarnousone, Boualay Siharath, Xaya Chemcheng
Abstract:
The National University of Laos (NUOL) invited a group of volunteers from the Japan International Cooperation Agency (JICA) to revise the physics experiments to utilize the materials that were already available to students. The intension was to review and revise the materials regularly utilized in physics class. The project had access to limited materials and a small budget for the class in the unit; however, by developing experimental textbooks related to mechanics, electricity, and wave and vibration, the group found a way to apply them in the classroom and enhance the students teaching activities. The aim was to introduce a way to incorporate the materials and practices in the classroom to enhance the students learning and teaching skills, particularly when they graduate and begin working as high school teachers.
Keywords: NUOL, JICA, physics experiment materials, small budget, mechanics, electricity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12461637 Dynamic Behavior of the Nanostructure of Load-bearing Biological Materials
Authors: M. Qwamizadeh, K. Zhou, Z. Zhang, YW. Zhang
Abstract:
Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories.Keywords: Load-bearing biological materials, nanostructure, staggered structure, stress wave decay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20801636 Material Selection for a Manual Winch Rope Drum
Authors: Moses F. Oduori, Enoch K. Musyoka, Thomas O. Mbuya
Abstract:
The selection of materials is an essential task in mechanical design processes. This paper sets out to demonstrate the application of analytical decision making during mechanical design and, particularly, in selecting a suitable material for a given application. Equations for the mechanical design of a manual winch rope drum are used to derive quantitative material performance indicators, which are then used in a multiple attribute decision making (MADM) model to rank the candidate materials. Thus, the processing of mechanical design considerations and material properties data into information that is suitable for use in a quantitative materials selection process is demonstrated for the case of a rope drum design. Moreover, Microsoft Excel®, a commonly available computer package, is used in the selection process. The results of the materials selection process are in agreement with current industry practice in rope drum design. The procedure that is demonstrated here should be adaptable to other design situations in which a need arises for the selection of engineering materials, and other engineering entities.
Keywords: Design Decisions, Materials Selection, Mechanical Design, Rope Drum Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37781635 ROSA/LSTF Separate Effect Test on Natural Circulation under High Core Power Condition of Pressurized Water Reactor
Authors: Takeshi Takeda
Abstract:
A separate effect test (SET) simulated natural circulation (NC) under high core power condition of a pressurized water reactor (PWR) utilizing the ROSA/LSTF (rig of safety assessment/large-scale test facility). The LSTF test results clarified the relationship between the primary loop mass inventory and the primary loop mass flow rate being dependent on the NC mode at a constant core power of 8% of the volumetric-scaled PWR nominal power. When the core power was 9% or more during reflux condensation, large-amplitude level oscillation in a form of slow fill and dump occurred in steam generator (SG) U-tubes. At 11% core power during reflux condensation, intermittent rise took place in the cladding surface temperature of simulated fuel rods. The RELAP5/MOD3.3 code indicated the insufficient prediction of the SG U-tube liquid level behavior during reflux condensation.Keywords: LSTF, natural circulation, core power, RELAP5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8511634 Evaluation of the Elastic Mechanical Properties of a Hybrid Adhesive Material
Authors: Moudar H. A. Zgoul, Amin Al Zamer
Abstract:
Adhesive materials and adhesion have been the focal point of multiple research works related to numerous applications, particularly, aerospace, and aviation industries. To enhance the properties of conventional adhesive materials, additives have been introduced to the mix in order to enhance their mechanical and physical properties by creating a hybrid adhesive material. The evaluation of the mechanical properties of such hybrid adhesive materials is thus of an essential requirement for the purpose of properly modeling their behavior accurately. This paper presents an approach/tool to simulate the behavior such hybrid adhesives in a way that will allow researchers to better understand their behavior while in service.
Keywords: Adhesive materials, analysis, hybrid adhesives, mechanical properties, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11141633 Characterization of 3D Printed Re-Entrant Chiral Auxetic Geometries
Authors: Tatheer Zahra
Abstract:
Auxetic materials have counteractive properties due to re-entrant geometry that enables them to possess Negative Poisson’s Ratio (NPR). These materials have better energy absorbing and shock resistance capabilities as compared to conventional positive Poisson’s ratio materials. The re-entrant geometry can be created through 3D printing for convenient application of these materials. This paper investigates the mechanical properties of 3D printed chiral auxetic geometries of various sizes. Small scale samples were printed using an ordinary 3D printer and were tested under compression and tension to ascertain their strength and deformation characteristics. A maximum NPR of -9 was obtained under compression and tension. The re-entrant chiral cell size has been shown to affect the mechanical properties of the re-entrant chiral auxetics.Keywords: Auxetic materials, 3D printing, Negative Poisson’s Ratio, re-entrant chiral auxetics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 693