Search results for: approximate solutions.
1642 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach
Authors: Sarisa Pinkham, Kanyarat Bussaban
Abstract:
The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.
Keywords: Daily rainfall, Image processing, Approximation, Pixel value data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17531641 Heat Transfer of an Impinging Jet on a Plane Surface
Authors: Jian-Jun Shu
Abstract:
A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.
Keywords: Flux, free impinging jet, solid-surface, uniform wall temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19841640 Numerical Analysis of the SIR-SI Differential Equations with Application to Dengue Disease Mapping in Kuala Lumpur, Malaysia
Authors: N. A. Samat, D. F. Percy
Abstract:
The main aim of this study is to describe and introduce a method of numerical analysis in obtaining approximate solutions for the SIR-SI differential equations (susceptible-infectiverecovered for human populations; susceptible-infective for vector populations) that represent a model for dengue disease transmission. Firstly, we describe the ordinary differential equations for the SIR-SI disease transmission models. Then, we introduce the numerical analysis of solutions of this continuous time, discrete space SIR-SI model by simplifying the continuous time scale to a densely populated, discrete time scale. This is followed by the application of this numerical analysis of solutions of the SIR-SI differential equations to the estimation of relative risk using continuous time, discrete space dengue data of Kuala Lumpur, Malaysia. Finally, we present the results of the analysis, comparing and displaying the results in graphs, table and maps. Results of the numerical analysis of solutions that we implemented offers a useful and potentially superior model for estimating relative risks based on continuous time, discrete space data for vector borne infectious diseases specifically for dengue disease.
Keywords: Dengue disease, disease mapping, numerical analysis, SIR-SI differential equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26831639 Application of He’s Parameter-Expansion Method to a Coupled Van Der Pol oscillators with Two Kinds of Time-delay Coupling
Authors: Mohammad Taghi Darvishi, Samad Kheybari
Abstract:
In this paper, the dynamics of a system of two van der Pol oscillators with delayed position and velocity is studied. We provide an approximate solution for this system using parameterexpansion method. Also, we obtain approximate values for frequencies of the system. The parameter-expansion method is more efficient than the perturbation method for this system because the method is independent of perturbation parameter assumption.
Keywords: Parameter-expansion method, coupled van der pol oscillator, time-delay system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13711638 Using Interval Trees for Approximate Indexing of Instances
Authors: Khalil el Hindi
Abstract:
This paper presents a simple and effective method for approximate indexing of instances for instance based learning. The method uses an interval tree to determine a good starting search point for the nearest neighbor. The search stops when an early stopping criterion is met. The method proved to be very effective especially when only the first nearest neighbor is required.
Keywords: Instance based learning, interval trees, the knn algorithm, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15081637 Continuity of Defuzzification and Its Application to Fuzzy Control
Authors: Takashi Mitsuishi, Kiyoshi Sawada, Yasunari Shidama
Abstract:
The mathematical framework for studying of a fuzzy approximate reasoning is presented in this paper. Two important defuzzification methods (Area defuzzification and Height defuzzification) besides the center of gravity method which is the best well known defuzzification method are described. The continuity of the defuzzification methods and its application to a fuzzy feedback control are discussed.
Keywords: Fuzzy approximate reasoning, defuzzification, area method, height method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16731636 Commercializing Technology Solutions- Moving from Products to Solutions
Authors: Anand Dass, Hiroaki Murakami
Abstract:
The paper outlines the drivers behind the movement from products to solutions in the Hi-Tech Business-to-Business markets. The paper lists out the challenges in enabling the transformation from products to solutions and also attempts to explore strategic and operational recommendations based on the authors- factual experiences with Japanese Hi-tech manufacturing organizations. Organizations in the Hi-Tech Business-to-Business markets are increasingly being compelled to move to a solutions model from the conventional products model. Despite the added complexity of solutions, successful technology commercialization can be achieved by making prudent choices in defining a relevant solutions model, by backing the solution model through appropriate organizational design, and by overhauling the new product development process and supporting infrastructure.Keywords: Technology commercialization, Solutions, Hi-Tech companies, Japan, Management of technology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13561635 Trajectory-Based Modified Policy Iteration
Abstract:
This paper presents a new problem solving approach that is able to generate optimal policy solution for finite-state stochastic sequential decision-making problems with high data efficiency. The proposed algorithm iteratively builds and improves an approximate Markov Decision Process (MDP) model along with cost-to-go value approximates by generating finite length trajectories through the state-space. The approach creates a synergy between an approximate evolving model and approximate cost-to-go values to produce a sequence of improving policies finally converging to the optimal policy through an intelligent and structured search of the policy space. The approach modifies the policy update step of the policy iteration so as to result in a speedy and stable convergence to the optimal policy. We apply the algorithm to a non-holonomic mobile robot control problem and compare its performance with other Reinforcement Learning (RL) approaches, e.g., a) Q-learning, b) Watkins Q(λ), c) SARSA(λ).Keywords: Markov Decision Process (MDP), Mobile robot, Policy iteration, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14431634 Approximate Solutions to Large Stein Matrix Equations
Authors: Khalide Jbilou
Abstract:
In the present paper, we propose numerical methods for solving the Stein equation AXC - X - D = 0 where the matrix A is large and sparse. Such problems appear in discrete-time control problems, filtering and image restoration. We consider the case where the matrix D is of full rank and the case where D is factored as a product of two matrices. The proposed methods are Krylov subspace methods based on the block Arnoldi algorithm. We give theoretical results and we report some numerical experiments.
Keywords: IEEEtran, journal, LATEX, paper, template.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18991633 Approximate Solution of Some Mixed Boundary Value Problems of the Generalized Theory of Couple-Stress Thermo-Elasticity
Authors: M. Chumburidze, D. Lekveishvili
Abstract:
We have considered the harmonic oscillations and general dynamic (pseudo oscillations) systems of theory generalized Green-Lindsay of couple-stress thermo-elasticity for isotropic, homogeneous elastic media. Approximate solution of some mixed boundary value problems for finite domain, bounded by the some closed surface are constructed.
Keywords: The couple-stress thermo-elasticity, boundary value problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20261632 Investigation of a Transition from Steady Convection to Chaos in Porous Media Using Piecewise Variational Iteration Method
Authors: Mohamed M. Mousa, Aidarkhan Kaltayev Shahwar F. Ragab
Abstract:
In this paper, a new dependable algorithm based on an adaptation of the standard variational iteration method (VIM) is used for analyzing the transition from steady convection to chaos for lowto-intermediate Rayleigh numbers convection in porous media. The solution trajectories show the transition from steady convection to chaos that occurs at a slightly subcritical value of Rayleigh number, the critical value being associated with the loss of linear stability of the steady convection solution. The VIM is treated as an algorithm in a sequence of intervals for finding accurate approximate solutions to the considered model and other dynamical systems. We shall call this technique as the piecewise VIM. Numerical comparisons between the piecewise VIM and the classical fourth-order Runge–Kutta (RK4) numerical solutions reveal that the proposed technique is a promising tool for the nonlinear chaotic and nonchaotic systems.
Keywords: Variational iteration method, free convection, Chaos, Lorenz equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15311631 Exact Pfaffian and N-Soliton Solutions to a (3+1)-Dimensional Generalized Integrable Nonlinear Partial Differential Equations
Authors: Magdy G. Asaad
Abstract:
The objective of this paper is to use the Pfaffian technique to construct different classes of exact Pfaffian solutions and N-soliton solutions to some of the generalized integrable nonlinear partial differential equations in (3+1) dimensions. In this paper, I will show that the Pfaffian solutions to the nonlinear PDEs are nothing but Pfaffian identities. Solitons are among the most beneficial solutions for science and technology, from ocean waves to transmission of information through optical fibers or energy transport along protein molecules. The existence of multi-solitons, especially three-soliton solutions, is essential for information technology: it makes possible undisturbed simultaneous propagation of many pulses in both directions.Keywords: Bilinear operator, G-BKP equation, Integrable nonlinear PDEs, Jimbo-Miwa equation, Ma-Fan equation, N-soliton solutions, Pfaffian solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20911630 Optimal Control Problem, Quasi-Assignment Problem and Genetic Algorithm
Authors: Omid S. Fard, Akbar H. Borzabadi
Abstract:
In this paper we apply one of approaches in category of heuristic methods as Genetic Algorithms for obtaining approximate solution of optimal control problems. The firs we convert optimal control problem to a quasi Assignment Problem by defining some usual characters as defined in Genetic algorithm applications. Then we obtain approximate optimal control function as an piecewise constant function. Finally the numerical examples are given.Keywords: Optimal control, Integer programming, Genetic algorithm, Discrete approximation, Linear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12881629 An Application of the Sinc-Collocation Method to a Three-Dimensional Oceanography Model
Authors: Y. Mohseniahouei, K. Abdella, M. Pollanen
Abstract:
In this paper, we explore the applicability of the Sinc- Collocation method to a three-dimensional (3D) oceanography model. The model describes a wind-driven current with depth-dependent eddy viscosity in the complex-velocity system. In general, the Sinc-based methods excel over other traditional numerical methods due to their exponentially decaying errors, rapid convergence and handling problems in the presence of singularities in end-points. Together with these advantages, the Sinc-Collocation approach that we utilize exploits first derivative interpolation, whose integration is much less sensitive to numerical errors. We bring up several model problems to prove the accuracy, stability, and computational efficiency of the method. The approximate solutions determined by the Sinc-Collocation technique are compared to exact solutions and those obtained by the Sinc-Galerkin approach in earlier studies. Our findings indicate that the Sinc-Collocation method outperforms other Sinc-based methods in past studies.Keywords: Boundary Value Problems, Differential Equations, Sinc Numerical Methods, Wind-Driven Currents
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18471628 On Constructing Approximate Convex Hull
Authors: M. Zahid Hossain, M. Ashraful Amin
Abstract:
The algorithms of convex hull have been extensively studied in literature, principally because of their wide range of applications in different areas. This article presents an efficient algorithm to construct approximate convex hull from a set of n points in the plane in O(n + k) time, where k is the approximation error control parameter. The proposed algorithm is suitable for applications preferred to reduce the computation time in exchange of accuracy level such as animation and interaction in computer graphics where rapid and real-time graphics rendering is indispensable.
Keywords: Convex hull, Approximation algorithm, Computational geometry, Linear time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22971627 Image Dehazing Using Dark Channel Prior and Fast Guided Filter in Daubechies Lifting Wavelet Transform Domain
Authors: Harpreet Kaur, Sudipta Majumdar
Abstract:
In this paper a method for image dehazing is proposed in lifting wavelet transform domain. Lifting Daubechies (D4) wavelet has been used to obtain the approximate image and detail images. As the haze is contained in low frequency part, only the approximate image is used for further processing. This region is processed by dehazing algorithm based on dark channel prior (DCP). The dehazed approximate image is then recombined with the detail images using inverse lifting wavelet transform. Implementation of lifting wavelet transform has the advantage of auxiliary memory saving, fast implementation and simplicity. Also, the proposed method deals with near white scene problem, blue horizon issue and localized light sources in a way to enhance image quality and makes the algorithm robust. Simulation results present improvement in terms of visual quality, parameters such as root mean square (RMS) contrast, structural similarity index (SSIM), entropy and execution time.
Keywords: Dark channel prior, image dehazing, lifting wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11171626 More on Gaussian Quadratures for Fuzzy Functions
Authors: Shu-Xin Miao
Abstract:
In this paper, the Gaussian type quadrature rules for fuzzy functions are discussed. The errors representation and convergence theorems are given. Moreover, four kinds of Gaussian type quadrature rules with error terms for approximate of fuzzy integrals are presented. The present paper complements the theoretical results of the paper by T. Allahviranloo and M. Otadi [T. Allahviranloo, M. Otadi, Gaussian quadratures for approximate of fuzzy integrals, Applied Mathematics and Computation 170 (2005) 874-885]. The obtained results are illustrated by solving some numerical examples.
Keywords: Guassian quadrature rules, fuzzy number, fuzzy integral, fuzzy solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14351625 A New Approximate Procedure Based On He’s Variational Iteration Method for Solving Nonlinear Hyperbolic Wave Equations
Authors: Jinfeng Wang, Yang Liu, Hong Li
Abstract:
In this article, we propose a new approximate procedure based on He’s variational iteration method for solving nonlinear hyperbolic equations. We introduce two transformations q = ut and σ = ux and formulate a first-order system of equations. We can obtain the approximation solution for the scalar unknown u, time derivative q = ut and space derivative σ = ux, simultaneously. Finally, some examples are provided to illustrate the effectiveness of our method.
Keywords: Hyperbolic wave equation, Nonlinear, He’s variational iteration method, Transformations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21331624 New Newton's Method with Third-order Convergence for Solving Nonlinear Equations
Authors: Osama Yusuf Ababneh
Abstract:
For the last years, the variants of the Newton-s method with cubic convergence have become popular iterative methods to find approximate solutions to the roots of non-linear equations. These methods both enjoy cubic convergence at simple roots and do not require the evaluation of second order derivatives. In this paper, we present a new Newton-s method based on contra harmonic mean with cubically convergent. Numerical examples show that the new method can compete with the classical Newton's method.
Keywords: Third-order convergence, non-linear equations, root finding, iterative method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29601623 A Hybridization of Constructive Beam Search with Local Search for Far From Most Strings Problem
Authors: Sayyed R Mousavi
Abstract:
The Far From Most Strings Problem (FFMSP) is to obtain a string which is far from as many as possible of a given set of strings. All the input and the output strings are of the same length, and two strings are said to be far if their hamming distance is greater than or equal to a given positive integer. FFMSP belongs to the class of sequences consensus problems which have applications in molecular biology. The problem is NP-hard; it does not admit a constant-ratio approximation either, unless P = NP. Therefore, in addition to exact and approximate algorithms, (meta)heuristic algorithms have been proposed for the problem in recent years. On the other hand, in the recent years, hybrid algorithms have been proposed and successfully used for many hard problems in a variety of domains. In this paper, a new metaheuristic algorithm, called Constructive Beam and Local Search (CBLS), is investigated for the problem, which is a hybridization of constructive beam search and local search algorithms. More specifically, the proposed algorithm consists of two phases, the first phase is to obtain several candidate solutions via the constructive beam search and the second phase is to apply local search to the candidate solutions obtained by the first phase. The best solution found is returned as the final solution to the problem. The proposed algorithm is also similar to memetic algorithms in the sense that both use local search to further improve individual solutions. The CBLS algorithm is compared with the most recent published algorithm for the problem, GRASP, with significantly positive results; the improvement is by order of magnitudes in most cases.
Keywords: Bioinformatics, Far From Most Strings Problem, Hybrid metaheuristics, Matheuristics, Sequences consensus problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17371622 Exploring Solutions in Extended Horava-Lifshitz Gravity
Authors: Aziza Altaibayeva, Ertan Gudekli, Ratbay Myrzakulov
Abstract:
In this letter, we explore exact solutions for the Horava-Lifshitz gravity. We use of an extension of this theory with first order dynamical lapse function. The equations of motion have been derived in a fully consistent scenario. We assume that there are some spherically symmetric families of exact solutions of this extended theory of gravity. We obtain exact solutions and investigate the singularity structures of these solutions. Specially, an exact solution with the regular horizon is found.
Keywords: Quantum gravity, Horava-Lifshitz gravity, black hole, spherically symmetric space times.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22411621 The Approximate Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind by Using Iterative Interpolation
Authors: N. Parandin, M. A. Fariborzi Araghi
Abstract:
in this paper, we propose a numerical method for the approximate solution of fuzzy Fredholm functional integral equations of the second kind by using an iterative interpolation. For this purpose, we convert the linear fuzzy Fredholm integral equations to a crisp linear system of integral equations. The proposed method is illustrated by some fuzzy integral equations in numerical examples.Keywords: Fuzzy function integral equations, Iterative method, Linear systems, Parametric form of fuzzy number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14041620 Bifurcation Method for Solving Positive Solutions to a Class of Semilinear Elliptic Equations and Stability Analysis of Solutions
Authors: Hailong Zhu, Zhaoxiang Li
Abstract:
Semilinear elliptic equations are ubiquitous in natural sciences. They give rise to a variety of important phenomena in quantum mechanics, nonlinear optics, astrophysics, etc because they have rich multiple solutions. But the nontrivial solutions of semilinear equations are hard to be solved for the lack of stabilities, such as Lane-Emden equation, Henon equation and Chandrasekhar equation. In this paper, bifurcation method is applied to solving semilinear elliptic equations which are with homogeneous Dirichlet boundary conditions in 2D. Using this method, nontrivial numerical solutions will be computed and visualized in many different domains (such as square, disk, annulus, dumbbell, etc).
Keywords: Semilinear elliptic equations, positive solutions, bifurcation method, isotropy subgroups.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16451619 Traveling Wave Solutions for Shallow Water Wave Equation by (G'/G)-Expansion Method
Authors: Anjali Verma, Ram Jiwari, Jitender Kumar
Abstract:
This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the (G'/G)-expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic solutions, trigonometric solutions and rational solutions.
Keywords: Shallow water wave equation, Exact solutions, (G'/G) expansion method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18351618 The Pell Equation x2 − (k2 − k)y2 = 2t
Authors: Ahmet Tekcan
Abstract:
Let k, t, d be arbitrary integers with k ≥ 2, t ≥ 0 and d = k2 - k. In the first section we give some preliminaries from Pell equations x2 - dy2 = 1 and x2 - dy2 = N, where N be any fixed positive integer. In the second section, we consider the integer solutions of Pell equations x2 - dy2 = 1 and x2 - dy2 = 2t. We give a method for the solutions of these equations. Further we derive recurrence relations on the solutions of these equationsKeywords: Pell equation, solutions of Pell equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14701617 Multiple Soliton Solutions of (2+1)-dimensional Potential Kadomtsev-Petviashvili Equation
Authors: Mohammad Najafi, Ali Jamshidi
Abstract:
We employ the idea of Hirota-s bilinear method, to obtain some new exact soliton solutions for high nonlinear form of (2+1)-dimensional potential Kadomtsev-Petviashvili equation. Multiple singular soliton solutions were obtained by this method. Moreover, multiple singular soliton solutions were also derived.
Keywords: Hirota bilinear method, potential Kadomtsev-Petviashvili equation, multiple soliton solutions, multiple singular soliton solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13691616 Approximate Tension Buckling Capacity of Thin Edge-Cracked Web Plate Subjected to Pure Bending
Authors: Sebastian B. Mendes
Abstract:
The presence of a vertical edge-crack within a web plate subjected to pure bending induces local compressive stresses about the crack which may cause tension buckling. Approximate theoretical expressions were derived for the critical far-field tensile stress and bending moment capacity of an edge-cracked web plate associated with tension buckling. These expressions were validated with finite element analyses and used to investigate the possibility of tension buckling in web-cracked trial girders. It was found that tension buckling is an unlikely occurrence unless the web is relatively thin or the crack is very long.Keywords: Fatigue crack, tension buckling, Rayleigh-Ritz, structural stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20091615 Periodic Solutions for a Delayed Population Model on Time Scales
Authors: Kejun Zhuang, Zhaohui Wen
Abstract:
This paper deals with a delayed single population model on time scales. With the assistance of coincidence degree theory, sufficient conditions for existence of periodic solutions are obtained. Furthermore, the better estimations for bounds of periodic solutions are established.
Keywords: Coincidence degree, continuation theorem, periodic solutions, time scales
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13451614 Positive Solutions for a Class of Semipositone Discrete Boundary Value Problems with Two Parameters
Authors: Benshi Zhu
Abstract:
In this paper, the existence, multiplicity and noexistence of positive solutions for a class of semipositone discrete boundary value problems with two parameters is studied by applying nonsmooth critical point theory and sub-super solutions method.Keywords: Discrete boundary value problems, nonsmoothcritical point theory, positive solutions, semipositone, sub-super solutions method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13391613 Comparison Results of Two-point Fuzzy Boundary Value Problems
Authors: Hsuan-Ku Liu
Abstract:
This paper investigates the solutions of two-point fuzzy boundary value problems as the form x = f(t, x(t)), x(0) = A and x(l) = B, where A and B are fuzzy numbers. There are four different solutions for the problems when the lateral type of H-derivative is employed to solve the problems. As f(t, x) is a monotone function of x, these four solutions are reduced to two different solutions. As f(t, x(t)) = λx(t) or f(t, x(t)) = -λx(t), solutions and several comparison results are presented to indicate advantages of each solution.
Keywords: Fuzzy derivative, lateral type of H-derivative, fuzzy differential equations, fuzzy boundary value problems, boundary value problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528