Search results for: Ground Penetrating Radar (GPR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 722

Search results for: Ground Penetrating Radar (GPR)

692 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX through Fusion of Vision and 3+1D Millimeter Wave Radar

Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma

Abstract:

Unmanned Surface Vehicles (USVs) hold significant value for their capacity to undertake hazardous and labor-intensive operations over aquatic environments. Object detection tasks are significant in these applications. Nonetheless, the efficacy of USVs in object detection is impeded by several intrinsic challenges, including the intricate dispersal of obstacles, reflections emanating from coastal structures, and the presence of fog over water surfaces, among others. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. The MMW radar is a complementary tool to vision sensors, offering reliable environmental data. This approach involves the conversion of the radar’s 3D point cloud into a 2D radar pseudo-image, thereby standardizing the format for radar and vision data by leveraging a point transformer. Furthermore, this paper proposes the development of a multi-source object detection network, named RV-YOLOX, which leverages radar-vision integration specifically tailored for inland waterway environments. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.

Keywords: Inland waterways, object detection, YOLO, sensor fusion, self-attention, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 310
691 Denoising based on Wavelets and Deblurring via Self-Organizing Map for Synthetic Aperture Radar Images

Authors: Mario Mastriani

Abstract:

This work deals with unsupervised image deblurring. We present a new deblurring procedure on images provided by lowresolution synthetic aperture radar (SAR) or simply by multimedia in presence of multiplicative (speckle) or additive noise, respectively. The method we propose is defined as a two-step process. First, we use an original technique for noise reduction in wavelet domain. Then, the learning of a Kohonen self-organizing map (SOM) is performed directly on the denoised image to take out it the blur. This technique has been successfully applied to real SAR images, and the simulation results are presented to demonstrate the effectiveness of the proposed algorithms.

Keywords: Blur, Kohonen self-organizing map, noise, speckle, synthetic aperture radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
690 Spherical Harmonic Based Monostatic Anisotropic Point Scatterer Model for RADAR Applications

Authors: Eric Huang, Coleman DeLude, Justin Romberg, Saibal Mukhopadhyay, Madhavan Swaminathan

Abstract:

High-performance computing (HPC) based emulators can be used to model the scattering from multiple stationary and moving targets for RADAR applications. These emulators rely on the RADAR Cross Section (RCS) of the targets being available in complex scenarios. Representing the RCS using tables generated from EM simulations is oftentimes cumbersome leading to large storage requirements. In this paper, we proposed a spherical harmonic based anisotropic scatterer model to represent the RCS of complex targets. The problem of finding the locations and reflection profiles of all scatterers can be formulated as a linear least square problem with a special sparsity constraint. We solve this problem using a modified Orthogonal Matching Pursuit algorithm. The results show that the spherical harmonic based scatterer model can effectively represent the RCS data of complex targets.

Keywords: RADAR, RCS, high performance computing, point scatterer model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 609
689 Cognitive SATP for Airborne Radar Based on Slow-Time Coding

Authors: Fanqiang Kong, Jindong Zhang, Daiyin Zhu

Abstract:

Space-time adaptive processing (STAP) techniques have been motivated as a key enabling technology for advanced airborne radar applications. In this paper, the notion of cognitive radar is extended to STAP technique, and cognitive STAP is discussed. The principle for improving signal-to-clutter ratio (SCNR) based on slow-time coding is given, and the corresponding optimization algorithm based on cyclic and power-like algorithms is presented. Numerical examples show the effectiveness of the proposed method.

Keywords: Space-time adaptive processing (STAP), signal-to-clutter ratio, slow-time coding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
688 Classification of Precipitation Types Detected in Malaysia

Authors: K. Badron, A. F. Ismail, A. L. Asnawi, N. F. A. Malik, S. Z. Abidin, S. Dzulkifly

Abstract:

The occurrences of precipitation, also commonly referred as rain, in the form of "convective" and "stratiform" have been identified to exist worldwide. In this study, the radar return echoes or known as reflectivity values acquired from radar scans have been exploited in the process of classifying the type of rain endured. The investigation use radar data from Malaysian Meteorology Department (MMD). It is possible to discriminate the types of rain experienced in tropical region by observing the vertical characteristics of the rain structure. .Heavy rain in tropical region profoundly affects radiowave signals, causing transmission interference and signal fading. Required wireless system fade margin depends on the type of rain. Information relating to the two mentioned types of rain is critical for the system engineers and researchers in their endeavour to improve the reliability of communication links. This paper highlights the quantification of percentage occurrences over one year period in 2009.

Keywords: Stratiform, convective, tropical region, attenuation radar reflectivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
687 An Effective Noise Resistant FM Continuous-Wave Radar Vital Sign Signal Detection Method

Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng

Abstract:

To address the problem that the FM continuous-wave (FMCW) radar extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a backpropagation (BP) neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise, accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal to-noise ratio of the sign signals.

Keywords: Frequency modulated continuous wave radar, ICEEMDAN, BP Neural Network, vital signs signal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 481
686 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity

Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle

Abstract:

The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.

Keywords: Complex-valued signal processing, synthetic aperture radar (SAR), 2-D radar imaging, compressive sensing, Sparse Bayesian learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
685 Exploiting Non Circularity for Angle Estimation in Bistatic MIMO Radar Systems

Authors: Ebregbe David, Deng Weibo

Abstract:

The traditional second order statistics approach of using only the hermitian covariance for non circular signals, does not take advantage of the information contained in the complementary covariance of these signals. Radar systems often use non circular signals such as Binary Phase Shift Keying (BPSK) signals. Their noncicular property can be exploited together with the dual centrosymmetry of the bistatic MIMO radar system to improve angle estimation performance. We construct an augmented matrix from the received data vectors using both the positive definite hermitian covariance matrix and the complementary covariance matrix. The Unitary ESPRIT technique is then applied to the signal subspace of the augmented covariance matrix for automatically paired Direction-of-arrival (DOA) and Direction-of-Departure (DOD) angle estimates. The number of targets that can be detected is twice that obtainable with the conventional ESPRIT approach. Simulation results show the effectiveness of this method in terms of increase in resolution and the number of targets that can be detected.

Keywords: Bistatic MIMO Radar, Unitary Esprit, Non circular signals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
684 Development of a Neural Network based Algorithm for Multi-Scale Roughness Parameters and Soil Moisture Retrieval

Authors: L. Bennaceur Farah, I. R. Farah, R. Bennaceur, Z. Belhadj, M. R. Boussema

Abstract:

The overall objective of this paper is to retrieve soil surfaces parameters namely, roughness and soil moisture related to the dielectric constant by inverting the radar backscattered signal from natural soil surfaces. Because the classical description of roughness using statistical parameters like the correlation length doesn't lead to satisfactory results to predict radar backscattering, we used a multi-scale roughness description using the wavelet transform and the Mallat algorithm. In this description, the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each having a spatial scale. A second step in this study consisted in adapting a direct model simulating radar backscattering namely the small perturbation model to this multi-scale surface description. We investigated the impact of this description on radar backscattering through a sensitivity analysis of backscattering coefficient to the multi-scale roughness parameters. To perform the inversion of the small perturbation multi-scale scattering model (MLS SPM) we used a multi-layer neural network architecture trained by backpropagation learning rule. The inversion leads to satisfactory results with a relative uncertainty of 8%.

Keywords: Remote sensing, rough surfaces, inverse problems, SAR, radar scattering, Neural networks and Fractals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
683 Performance Analysis of New Types of Reference Targets Based on Spaceborne and Airborne SAR Data

Authors: Y. S. Zhou, C. R. Li, L. L. Tang, C. X. Gao, D. J. Wang, Y. Y. Guo

Abstract:

Triangular trihedral corner reflector (CR) has been widely used as point target for synthetic aperture radar (SAR) calibration and image quality assessment. The additional “tip” of the triangular plate does not contribute to the reflector’s theoretical RCS and if it interacts with a perfectly reflecting ground plane, it will yield an increase of RCS at the radar bore-sight and decrease the accuracy of SAR calibration and image quality assessment. Regarding this problem, two types of CRs were manufactured. One was the hexagonal trihedral CR. It is a self-illuminating CR with relatively small plate edge length, while large edge length usually introduces unexpected edge diffraction error. The other was the triangular trihedral CR with extended bottom plate which considers the effect of ‘tip’ into the total RCS. In order to assess the performance of the two types of new CRs, flight campaign over the National Calibration and Validation Site for High Resolution Remote Sensors was carried out. Six hexagonal trihedral CRs and two bottom-extended trihedral CRs, as well as several traditional triangular trihedral CRs, were deployed. KOMPSAT-5 X-band SAR image was acquired for the performance analysis of the hexagonal trihedral CRs. C-band airborne SAR images were acquired for the performance analysis of the bottom-extended trihedral CRs. The analysis results showed that the impulse response function of both the hexagonal trihedral CRs and bottom-extended trihedral CRs were much closer to the ideal sinc-function than the traditional triangular trihedral CRs. The flight campaign results validated the advantages of new types of CRs and they might be useful in the future SAR calibration mission.

Keywords: Synthetic Aperture Radar, calibration, corner reflector, KOMPSAT-5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233
682 Adaptive Transient and CW RF Interference Mitigation in HF OTH Radar: Experimental Results

Authors: Pavel Turcaj, Yuri I. Abramovich, Gordon J. Frazer

Abstract:

We introduce an adaptive technique for the joint mitigation of transients and continuous-wave radio-frequency co-channel interference (CW RFI) in high-frequency (HF) over-the-horizon radars (OTHRs). The performance of this technique is illustrated using data from an operational surface-wave radar (SECAR) and from recent experimental trials with sky-wave (SW) and sky-wave–line-of-sight (SKYLOS) HF OTHRs.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
681 Human Fall Detection by FMCW Radar Based on Time-Varying Range-Doppler Features

Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou

Abstract:

The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.

Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-Doppler features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 526
680 Study on the Seismic Response of Slope under Pulse-Like Ground Motion

Authors: Peter Antwi Buah, Yingbin Zhang, Jianxian He, Chenlin Xiang, Delali Atsu Y. Bakah

Abstract:

Near-fault ground motions with velocity pulses are considered to cause significant damage to structures or slopes compared to ordinary ground motions without velocity pulses. The double pulsed pulse-like ground motion is well known to be stronger than the single pulse. This research has numerically justified this perspective by studying the dynamic response of a homogeneous rock slope subjected to four pulse-like and two non-pulse-like ground motions using the Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) software. Two of the pulse-like ground motions just have a single pulse. The results show that near-fault ground motions with velocity pulses can cause a higher dynamic response than regular ground motions. The amplification of the peak ground acceleration (PGA) in horizontal direction increases with the increase of the slope elevation. The seismic response of the slope under double pulse ground motion is stronger than that of the single pulse ground motion. The PGV amplification factor under the effect of the non-pulse-like records is also smaller than those under the pulse-like records. The velocity pulse strengthens the earthquake damage to the slope, which results in producing a stronger dynamic response.

Keywords: Velocity pulses, dynamic response, PGV magnification effect, elevation effect, double pulse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 441
679 Satellite Interferometric Investigations of Subsidence Events Associated with Groundwater Extraction in Sao Paulo, Brazil

Authors: B. Mendonça, D. Sandwell

Abstract:

The Metropolitan Region of Sao Paulo (MRSP) has suffered from serious water scarcity. Consequently, the most convenient solution has been building wells to extract groundwater from local aquifers. However, it requires constant vigilance to prevent over extraction and future events that can pose serious threat to the population, such as subsidence. Radar imaging techniques (InSAR) have allowed continuous investigation of such phenomena. The analysis of data in the present study consists of 23 SAR images dated from October 2007 to March 2011, obtained by the ALOS-1 spacecraft. Data processing was made with the software GMTSAR, by using the InSAR technique to create pairs of interferograms with ground displacement during different time spans. First results show a correlation between the location of 102 wells registered in 2009 and signals of ground displacement equal or lower than -90 millimeters (mm) in the region. The longest time span interferogram obtained dates from October 2007 to March 2010. As a result, from that interferogram, it was possible to detect the average velocity of displacement in millimeters per year (mm/y), and which areas strong signals have persisted in the MRSP. Four specific areas with signals of subsidence of 28 mm/y to 40 mm/y were chosen to investigate the phenomenon: Guarulhos (Sao Paulo International Airport), the Greater Sao Paulo, Itaquera and Sao Caetano do Sul. The coverage area of the signals was between 0.6 km and 1.65 km of length. All areas are located above a sedimentary type of aquifer. Itaquera and Sao Caetano do Sul showed signals varying from 28 mm/y to 32 mm/y. On the other hand, the places most likely to be suffering from stronger subsidence are the ones in the Greater Sao Paulo and Guarulhos, right beside the International Airport of Sao Paulo. The rate of displacement observed in both regions goes from 35 mm/y to 40 mm/y. Previous investigations of the water use at the International Airport highlight the risks of excessive water extraction that was being done through 9 deep wells. Therefore, it is affirmed that subsidence events are likely to occur and to cause serious damage in the area. This study could show a situation that has not been explored with proper importance in the city, given its social and economic consequences. Since the data were only available until 2011, the question that remains is if the situation still persists. It could be reaffirmed, however, a scenario of risk at the International Airport of Sao Paulo that needs further investigation.

Keywords: Ground subsidence, interferometric satellite aperture radar (InSAR), metropolitan region of Sao Paulo, water extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
678 Monitoring and Analysis of Bridge Crossing Ground Fissures

Authors: Zhiqing Zhang, Xiangong Zhou, Zihan Zhou

Abstract:

Ground fissures can be seen in some cities all over the world. As a special urban geological disaster, ground fissures in Xi'an have caused great harm to infrastructure. Chang'an Road Interchange in Xi'an City is a bridge across ground fissures. The damage to Chang'an Road interchange is the most serious and typical. To study the influence of ground fissures on the bridge, we established a bridge monitoring system. The main monitoring items include elevation monitoring, structural displacement monitoring, etc. The monitoring results show that the typical failure is mainly reflected in the bridge deck damage caused by horizontal tension and vertical dislocation. For the construction of urban interchange spanning ground fissures, the interchange should be divided reasonably, a simple support structure with less restriction should be adopted, and the monitoring of supports should be strengthened to prevent the occurrence of beam falling.

Keywords: Bridge monitoring, ground fissures, typical disease, structural displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 650
677 Studies on Race Car Aerodynamics at Wing in Ground Effect

Authors: Dharni Vasudhevan Venkatesan, Shanjay K E, Sujith Kumar H, Abhilash N A, Aswin Ram D, V.R.Sanal Kumar

Abstract:

Numerical studies on race car aerodynamics at wing in ground effect have been carried out using a steady 3d, double precision, pressure-based, and standard k-epsilon turbulence model. Through various parametric analytical studies we have observed that at a particular speed and ground clearance of the wings a favorable negative lift was found high at a particular angle of attack for all the physical models considered in this paper. The fact is that if the ground clearance height to chord length (h/c) is too small, the developing boundary layers from either side (the ground and the lower surface of the wing) can interact, leading to an altered variation of the aerodynamic characteristics at wing in ground effect. Therefore a suitable ground clearance must be predicted throughout the racing for a better performance of the race car, which obviously depends upon the coupled effects of the topography, wing orientation with respect to the ground, the incoming flow features and/or the race car speed. We have concluded that for the design of high performance and high speed race cars the adjustable wings capable to alter the ground clearance and the angles of attack is the best design option for any race car for racing safely with variable speeds.

Keywords: External aerodynamics, External Flow Choking, Race car aerodynamics, Wing in Ground Effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5800
676 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning

Authors: Y. A. Adla, R. Soubra, M. Kasab, M. O. Diab, A. Chkeir

Abstract:

Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals out of which 11 were chosen based on their Intraclass Correlation Coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, five features were introduced to the Linear Discriminant Analysis classifier and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90% respectively.

Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 456
675 Comparison of CPW Fed Microstrip Patch Antennas with Varied Ground Structures for Fixed Satellite Applications

Authors: Deepanshu Kaushal, T. Shanmuganantham

Abstract:

This paper draws a comparison between two microstrip patch antennas having different ground structures. The designs utilize 45 mm x 40 mm x 1.6 mm FR4 epoxy substrate (relative permittivity of 4.4 and dielectric loss tangent of 0.02) and CPW feeding technique. The design 1 uses conducting partial ground plates along the two sides of the radiating X’mas tree shaped patch. The design 2 utilizes an X’mas tree shaped slotted ground structure that features a circular radiating patch. A comparative analysis of results of both designs has been carried. The two designs are intended to serve the fixed satellite applications in X and Ku band respectively.

Keywords: CPW feed, partial ground structures, slotted ground structures, fixed satellite applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
674 Carbon Storage in Above-Ground Biomass of Tropical Deciduous Forest in Ratchaburi Province, Thailand

Authors: Ubonwan Chaiyo, Savitri Garivait, Kobsak Wanthongchai

Abstract:

The study site was located in Ratchaburi Province, Thailand. Four experimental plots in dry dipterocarp forest (DDF) and four plots in mixed deciduous forest (MDF) were set up to estimate the above-ground biomass of tree, sapling and bamboo. The allometry equations were used to investigate above-ground biomass of these vegetation. Seedling and other understory were determined using direct harvesting method. Carbon storage in above-ground biomass was calculated based on IPCC 2006. The results showed that the above-ground biomass of DDF at 20-40% slope, <20% slope and MDF at <20% slope were 91.96, 30.95 and 59.44 ton/ha, respectively. Bamboo covers about half of total aboveground biomass in MDF, which is a specific characteristic of this area. The carbon sequestration potential in above-ground biomass of plot slope range 20-40% DDF, <20% DDF and <20% MDF are 43.22, 14.55 and 27.94 ton C/ha, respectively.

Keywords: Carbon storage, aboveground biomass, tropical deciduous forest, dry dipterocarp forest, mixed deciduous forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2970
673 Preliminary Dosimetric Evaluation of a New Therapeutic 177Lu Complex for Human Based on Biodistribution Data in Rats

Authors: H. Yousefnia, S. Zolghadri, A. Golabi Dezfuli

Abstract:

Abstract—[Tris (1,10-phenanthroline) lanthanum(III)] trithiocyanate is a new compound that has shown high ability for stopping the synthesis of DNA and also acting as a photosensitizer. Nowadays, the radiation dose assessment resource (RADAR) method is known as the most common method for absorbed dose calculation. 177Lu was produced by (n, gamma) reaction in a research reactor. 177Lu-PL3 was prepared in the optimized condition. The radiochemical yield was checked by ITLC method. The biodistribution of the complex was investigated by intravenously injection to wild-type rats via their tail veins. In this study, the absorbed dose of 177Lu-PL3 to human organs was estimated by RADAR method. 177Lu was prepared with a specific activity of 2.6-3 GBq.mg-1 and radionuclide purity of 99.98 %. Final preparation of the radiolabelled complex showed high radiochemical purity of > 99%. The results show that liver and spleen have received the highest absorbed dose of 1.051 and 0.441 mSv/MBq, respectively. The absorbed dose values for these two dose-limiting tissues suggest more biological studies special in tumor-bearing animals.

Keywords: Internal dosimetry, Lutetium-177, radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
672 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: Collapsible soil, relative subsidence, dielectric permittivity, moisture content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
671 Comparison on Electrode and Ground Arrangements Effect on Heat Transfer under Electric Force in a Channel and a Cavity Flow

Authors: Suwimon Saneewong Na Ayuttaya, Chainarong Chaktranond, Phadungsak Rattanadecho

Abstract:

This study numerically investigates the effects of Electrohydrodynamic on flow patterns and heat transfer enhancement within a cavity which is on the lower wall of channel. In this simulation, effects of using ground wire and ground plate on the flow patterns are compared. Moreover, the positions of electrode wire respecting with ground are tested in the range of angles θ = 0 - 180o. High electrical voltage exposes to air is 20 kV. Bulk mean velocity and temperature of inlet air are controlled at 0.1 m/s and 60 OC, respectively. The result shows when electric field is applied, swirling flow is appeared in the channel. In addition, swirling flow patterns in the main flow of using ground plate are widely spreader than that of using ground wire. Moreover, direction of swirling flow also affects the flow pattern and heat transfer in a cavity. These cause the using ground wire to give the maximum temperature and heat transfer higher than using ground plate. Furthermore, when the angle is at θ = 60o, high shear flow effect is obtained. This results show high strength of swirling flow and effective heat transfer enhancement.

Keywords: Swirling Flow, Heat Transfer, Electrohydrodynamic, Numerical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
670 Finite Element Modelling of Ground Vibrations Due to Tunnelling Activities

Authors: Muhammad E. Rahman, Trevor Orr

Abstract:

This paper presents the use of three-dimensional finite elements coupled with infinite elements to investigate the ground vibrations at the surface in terms of the peak particle velocity (PPV) due to construction of the first bore of the Dublin Port Tunnel. This situation is analysed using a commercially available general-purpose finite element package ABAQUS. A series of parametric studies is carried out to examine the sensitivity of the predicted vibrations to variations in the various input parameters required by finite element method, including the stiffness and the damping of ground. The results of this study show that stiffness has a more significant effect on the PPV rather than the damping of the ground.

Keywords: Finite Elements, PPV, Tunnelling, Vibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3258
669 Application of the Neural Network to the Synthesis of Vertical Dipole Antenna over Imperfect Ground

Authors: Kais Hafsaoui

Abstract:

In this paper, we propose to study the synthesis of the vertical dipole antenna over imperfect ground. The synthesis implementation-s method for this type of antenna permits to approach the appropriated radiance-s diagram. The used approach is based on neural network. Our main contribution in this paper is the extension of a synthesis model of this vertical dipole antenna over imperfect ground.

Keywords: Vertical dipole antenna, imperfect ground, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
668 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies

Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi

Abstract:

Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.

Keywords: Bag of Visual Words, classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
667 The First Ground Track Maintenance Manoeuvre of THEOS Spacecraft

Authors: Pornthep Navakitkanok, Ammarin Pimnoo, Seksan Jaturat

Abstract:

THEOS is the first earth observation spacecraft of Thailand which was launched on the 1st October 2008 and is currently operated by GISTDA. The transfer phase has been performed by Astrium Flight Dynamics team leading to a hand over to GISTDA teams starting mid-October 2008. The THEOS spacecraft-s orbit is LEO and has the same repetitivity (14+5/26) as the SPOT spacecraft, i.e. the same altitude of 822 km but it has a different mean local solar time (LST). Ground track maintenance manoeuvres are performed to maintain the ground track within a predefined control band around the reference ground track and the band is ±40 km for THEOS spacecraft. This paper presents the first ground track maintenance manoeuvre of THEOS spacecraft and the detailed results. In addition, it also includes one and a half year of operation as seen by GISTDA operators. It finally describes the foreseenable activities for the next orbit control manoeuvre (OCM) preparation.

Keywords: Orbit Control Manoeuvre, Ground Track Error, Local Solar Time Error, LEO, THEOS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
666 A Comprehensive Approach in Calculating the Impact of the Ground on Radiated Electromagnetic Fields Due to Lightning

Authors: Lahcene Boukelkoul

Abstract:

The influence of finite ground conductivity is of great importance in calculating the induced voltages from the radiated electromagnetic fields due to lightning. In this paper, we try to give a comprehensive approach to calculate the impact of the ground on the radiated electromagnetic fields to lightning. The vertical component of lightning electric field is calculated with a reasonable approximation assuming a perfectly conducting ground in case the observation point does not exceed a few kilometers from the lightning channel. However, for distant observation points the radiated vertical component of lightning electric field is attenuated due finitely conducting ground. The attenuation is calculated using the expression elaborated for both low and high frequencies. The horizontal component of the electric field, however, is more affected by a finite conductivity of a ground. Besides, the contribution of the horizontal component of the electric field, to induced voltages on an overhead transmission line, is greater than that of the vertical component. Therefore, the calculation of the horizontal electric field is great concern for the simulation of lightning-induced voltages. For field to transmission lines coupling the ground impedance is calculated for early time behavior and for low frequency range.

Keywords: Ground impedance, horizontal electric field, lightning, transient propagation, vertical electric field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
665 Computational Investigation of the Combined Effects of Yaw, Rotation and Ground Proximity on the Aerodynamics of an Isolated Wheel

Authors: T. D. Kothalawala, A. Gatto, L. Wrobel

Abstract:

An exploratory computational investigation using RANS & URANS was carried out to understand the aerodynamics around an isolatedsingle rotating wheel with decreasing ground proximity. The wheel was initially modeled in free air conditions, then with decreasing ground proximity and increased yaw angle with rotational speeds. Three speeds of rotation were applied to the wheel so that the effect of different angular velocities can be investigated. In addition to rotation, three different yaw angles were applied to the rotating wheel in order to understand how these two variables combined affect the aerodynamic flow field around the wheel.

Keywords: Aerodynamics, CFD, Ground Proximity, Landing Gear, Wheel, Rotation, Yaw.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366
664 Performance of Air Gap Membrane Distillation for Desalination of Ground Water and Seawater

Authors: Bhausaheb L. Pangarkar, M.G. Sane

Abstract:

Membrane distillation (MD) is a rising technology for seawater or brine desalination process. In this work, an air gap membrane distillation (AGMD) performance was investigated for aqueous NaCl solution along with natural ground water and seawater. In order to enhance the performance of the AGMD process in desalination, that is, to get more flux, it is necessary to study the effect of operating parameters on the yield of distillate water. The influence of operational parameters such as feed flow rate, feed temperature, feed salt concentration, coolant temperature and air gap thickness on the membrane distillation (MD) permeation flux have been investigated for low and high salt solution. the natural application of ground water and seawater over 90 h continuous operation, scale deposits observed on the membrane surface and reduction in flux represents 23% for ground water and 60% for seawater, in 90 h. This reduction was eliminated (less than 14 %) by acidification of feed water. Hence, promote the research attention in apply of AGMD for the ground water as well as seawater desalination over today-s conventional RO operation.

Keywords: MD, ground water, seawater, AGMD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469
663 Apply Super-SVA to SAR Imaging with Both Aperture Gaps and Bandwidth Gaps

Authors: Wenshuai Zhai, Yunhua Zhang

Abstract:

Synthetic aperture radar (SAR) imaging usually requires echo data collected continuously pulse by pulse with certain bandwidth. However in real situation, data collection or part of signal spectrum can be interrupted due to various reasons, i.e. there will be gaps in spatial spectrum. In this case we need to find ways to fill out the resulted gaps and get image with defined resolution. In this paper we introduce our work on how to apply iterative spatially variant apodization (Super-SVA) technique to extrapolate the spatial spectrum in both azimuthal and range directions so as to fill out the gaps and get correct radar image.

Keywords: SAR imaging, Sparse aperture, Stepped frequencychirp signal, high resolution, Super-SVA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959