Search results for: Exponential smoothing method
8238 Spike Sorting Method Using Exponential Autoregressive Modeling of Action Potentials
Authors: Sajjad Farashi
Abstract:
Neurons in the nervous system communicate with each other by producing electrical signals called spikes. To investigate the physiological function of nervous system it is essential to study the activity of neurons by detecting and sorting spikes in the recorded signal. In this paper a method is proposed for considering the spike sorting problem which is based on the nonlinear modeling of spikes using exponential autoregressive model. The genetic algorithm is utilized for model parameter estimation. In this regard some selected model coefficients are used as features for sorting purposes. For optimal selection of model coefficients, self-organizing feature map is used. The results show that modeling of spikes with nonlinear autoregressive model outperforms its linear counterpart. Also the extracted features based on the coefficients of exponential autoregressive model are better than wavelet based extracted features and get more compact and well-separated clusters. In the case of spikes different in small-scale structures where principal component analysis fails to get separated clouds in the feature space, the proposed method can obtain well-separated cluster which removes the necessity of applying complex classifiers.
Keywords: Exponential autoregressive model, Neural data, spike sorting, time series modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17708237 Forecasting Malaria Cases in Bujumbura
Authors: Hermenegilde Nkurunziza, Albrecht Gebhardt, Juergen Pilz
Abstract:
The focus in this work is to assess which method allows a better forecasting of malaria cases in Bujumbura ( Burundi) when taking into account association between climatic factors and the disease. For the period 1996-2007, real monthly data on both malaria epidemiology and climate in Bujumbura are described and analyzed. We propose a hierarchical approach to achieve our objective. We first fit a Generalized Additive Model to malaria cases to obtain an accurate predictor, which is then used to predict future observations. Various well-known forecasting methods are compared leading to different results. Based on in-sample mean average percentage error (MAPE), the multiplicative exponential smoothing state space model with multiplicative error and seasonality performed better.Keywords: Burundi, Forecasting, Malaria, Regressionmodel, State space model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19848236 A Mixture Model of Two Different Distributions Approach to the Analysis of Heterogeneous Survival Data
Authors: Ülkü Erişoğlu, Murat Erişoğlu, Hamza Erol
Abstract:
In this paper we propose a mixture of two different distributions such as Exponential-Gamma, Exponential-Weibull and Gamma-Weibull to model heterogeneous survival data. Various properties of the proposed mixture of two different distributions are discussed. Maximum likelihood estimations of the parameters are obtained by using the EM algorithm. Illustrative example based on real data are also given.Keywords: Exponential-Gamma, Exponential-Weibull, Gamma-Weibull, EM Algorithm, Survival Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40658235 Exponential Stability of Linear Systems under a Class of Unbounded Perturbations
Authors: Safae El Alaoui, Mohamed Ouzahra
Abstract:
In this work, we investigate the exponential stability of a linear system described by x˙ (t) = Ax(t) − ρBx(t). Here, A generates a semigroup S(t) on a Hilbert space, the operator B is supposed to be of Desch-Schappacher type, which makes the investigation more interesting in many applications. The case of Miyadera-Voigt perturbations is also considered. Sufficient conditions are formulated in terms of admissibility and observability inequalities and the approach is based on some energy estimates. Finally, the obtained results are applied to prove the uniform exponential stabilization of bilinear partial differential equations.
Keywords: Exponential stabilization, unbounded operator, Desch-Schappacher, Miyadera-Voigt operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3688234 pth Moment Exponential Synchronization of a Class of Chaotic Neural Networks with Mixed Delays
Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye
Abstract:
This paper studies the pth moment exponential synchronization of a class of stochastic neural networks with mixed delays. Based on Lyapunov stability theory, by establishing a new integrodifferential inequality with mixed delays, several sufficient conditions have been derived to ensure the pth moment exponential stability for the error system. The criteria extend and improve some earlier results. One numerical example is presented to illustrate the validity of the main results.
Keywords: pth Moment Exponential synchronization, Stochastic, Neural networks, Mixed time delays
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15798233 Delay-range-Dependent Exponential Synchronization of Lur-e Systems with Markovian Switching
Authors: Xia Zhou, Shouming Zhong
Abstract:
The problem of delay-range-dependent exponential synchronization is investigated for Lur-e master-slave systems with delay feedback control and Markovian switching. Using Lyapunov- Krasovskii functional and nonsingular M-matrix method, novel delayrange- dependent exponential synchronization in mean square criterions are established. The systems discussed in this paper is advanced system, and takes all the features of interval systems, Itˆo equations, Markovian switching, time-varying delay, as well as the environmental noise, into account. Finally, an example is given to show the validity of the main result.
Keywords: Synchronization, delay-range-dependent, Markov chain, generalized Itō's formula, brownian motion, M-matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15688232 Spatial Time Series Models for Rice and Cassava Yields Based On Bayesian Linear Mixed Models
Authors: Panudet Saengseedam, Nanthachai Kantanantha
Abstract:
This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.
Keywords: Bayesian method, Linear mixed model, Multivariate conditional autoregressive model, Spatial time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22478231 Existence and Global Exponential Stability of Periodic Solutions of Cellular Neural Networks with Distributed Delays and Impulses on Time Scales
Authors: Daiming Wang
Abstract:
In this paper, by using Mawhin-s continuation theorem of coincidence degree and a method based on delay differential inequality, some sufficient conditions are obtained for the existence and global exponential stability of periodic solutions of cellular neural networks with distributed delays and impulses on time scales. The results of this paper generalized previously known results.
Keywords: Periodic solutions, global exponential stability, coincidence degree, M-matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14658230 Modeling Exponential Growth Activity Using Technology: A Research with Bachelor of Business Administration Students
Authors: V. Vargas-Alejo, L. E. Montero-Moguel
Abstract:
Understanding the concept of function has been important in mathematics education for many years. In this study, the models built by a group of five business administration and accounting undergraduate students when carrying out a population growth activity are analyzed. The theoretical framework is the Models and Modeling Perspective. The results show how the students included tables, graphics, and algebraic representations in their models. Using technology was useful to interpret, describe, and predict the situation. The first model, the students built to describe the situation, was linear. After that, they modified and refined their ways of thinking; finally, they created exponential growth. Modeling the activity was useful to deep on mathematical concepts such as covariation, rate of change, and exponential function also to differentiate between linear and exponential growth.Keywords: Covariation reasoning, exponential function, modeling, representations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5038229 Fast Calculation for Particle Interactions in SPH Simulations: Outlined Sub-domain Technique
Authors: Buntara Sthenly Gan, Naohiro Kawada
Abstract:
A simple and easy algorithm is presented for a fast calculation of kernel functions which required in fluid simulations using the Smoothed Particle Hydrodynamic (SPH) method. Present proposed algorithm improves the Linked-list algorithm and adopts the Pair-Wise Interaction technique, which are widely used for evaluating kernel functions in fluid simulations using the SPH method. The algorithm is easy to be implemented without any complexities in programming. Some benchmark examples are used to show the simulation time saved by using the proposed algorithm. Parametric studies on the number of divisions for sub-domains, smoothing length and total amount of particles are conducted to show the effectiveness of the present technique. A compact formulation is proposed for practical usage.
Keywords: Technique, fluid simulation, smoothing particle hydrodynamic (SPH), particle interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16308228 A Comparison of the Sum of Squares in Linear and Partial Linear Regression Models
Authors: Dursun Aydın
Abstract:
In this paper, estimation of the linear regression model is made by ordinary least squares method and the partially linear regression model is estimated by penalized least squares method using smoothing spline. Then, it is investigated that differences and similarity in the sum of squares related for linear regression and partial linear regression models (semi-parametric regression models). It is denoted that the sum of squares in linear regression is reduced to sum of squares in partial linear regression models. Furthermore, we indicated that various sums of squares in the linear regression are similar to different deviance statements in partial linear regression. In addition to, coefficient of the determination derived in linear regression model is easily generalized to coefficient of the determination of the partial linear regression model. For this aim, it is made two different applications. A simulated and a real data set are considered to prove the claim mentioned here. In this way, this study is supported with a simulation and a real data example.Keywords: Partial Linear Regression Model, Linear RegressionModel, Residuals, Deviance, Smoothing Spline.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18738227 Switching Rule for the Exponential Stability and Stabilization of Switched Linear Systems with Interval Time-varying Delays
Authors: Kreangkri Ratchagit
Abstract:
This paper is concerned with exponential stability and stabilization of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton-s formula, a switching rule for the exponential stability and stabilization of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability and stabilization of the systems are first established in terms of LMIs. Numerical examples are included to illustrate the effectiveness of the results.
Keywords: Switching design, exponential stability and stabilization, switched linear systems, interval delay, Lyapunov function, linear matrix inequalities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15268226 Stochastic Comparisons of Heterogeneous Samples with Homogeneous Exponential Samples
Authors: Nitin Gupta, Rakesh Kumar Bajaj
Abstract:
In the present communication, stochastic comparison of a series (parallel) system having heterogeneous components with random lifetimes and series (parallel) system having homogeneous exponential components with random lifetimes has been studied. Further, conditions under which such a comparison is possible has been established.Keywords: Exponential distribution, Order statistics, Star ordering, Stochastic ordering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15658225 Exponential Particle Swarm Optimization Approach for Improving Data Clustering
Authors: Neveen I. Ghali, Nahed El-Dessouki, Mervat A. N., Lamiaa Bakrawi
Abstract:
In this paper we use exponential particle swarm optimization (EPSO) to cluster data. Then we compare between (EPSO) clustering algorithm which depends on exponential variation for the inertia weight and particle swarm optimization (PSO) clustering algorithm which depends on linear inertia weight. This comparison is evaluated on five data sets. The experimental results show that EPSO clustering algorithm increases the possibility to find the optimal positions as it decrease the number of failure. Also show that (EPSO) clustering algorithm has a smaller quantization error than (PSO) clustering algorithm, i.e. (EPSO) clustering algorithm more accurate than (PSO) clustering algorithm.Keywords: Particle swarm optimization, data clustering, exponential PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16918224 A Review on Higher Order Spline Techniques for Solving Burgers Equation Using B-Spline Methods and Variation of B-Spline Techniques
Authors: Maryam Khazaei Pool, Lori Lewis
Abstract:
This is a summary of articles based on higher order B-splines methods and the variation of B-spline methods such as Quadratic B-spline Finite Elements Method, Exponential Cubic B-Spline Method Septic B-spline Technique, Quintic B-spline Galerkin Method, and B-spline Galerkin Method based on the Quadratic B-spline Galerkin method (QBGM) and Cubic B-spline Galerkin method (CBGM). In this paper we study the B-spline methods and variations of B-spline techniques to find a numerical solution to the Burgers’ equation. A set of fundamental definitions including Burgers equation, spline functions, and B-spline functions are provided. For each method, the main technique is discussed as well as the discretization and stability analysis. A summary of the numerical results is provided and the efficiency of each method presented is discussed. A general conclusion is provided where we look at a comparison between the computational results of all the presented schemes. We describe the effectiveness and advantages of these methods.
Keywords: Burgers’ Equation, Septic B-spline, Modified Cubic B-Spline Differential Quadrature Method, Exponential Cubic B-Spline Technique, B-Spline Galerkin Method, and Quintic B-Spline Galerkin Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3638223 A Novel Prostate Segmentation Algorithm in TRUS Images
Authors: Ali Rafiee, Ahad Salimi, Ali Reza Roosta
Abstract:
Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound (TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a novel method for automatic prostate segmentation in TRUS images is presented. This method involves preprocessing (edge preserving noise reduction and smoothing) and prostate segmentation. The speckle reduction has been achieved by using stick filter and top-hat transform has been implemented for smoothing. A feed forward neural network and local binary pattern together have been use to find a point inside prostate object. Finally the boundary of prostate is extracted by the inside point and an active contour algorithm. A numbers of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with MSE less than 4.6% relative to boundary provided manually by physicians.
Keywords: Prostate segmentation, stick filter, neural network, active contour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19698222 Confidence Intervals for Double Exponential Distribution: A Simulation Approach
Authors: M. Alrasheedi
Abstract:
The double exponential model (DEM), or Laplace distribution, is used in various disciplines. However, there are issues related to the construction of confidence intervals (CI), when using the distribution.In this paper, the properties of DEM are considered with intention of constructing CI based on simulated data. The analysis of pivotal equations for the models here in comparisons with pivotal equations for normal distribution are performed, and the results obtained from simulation data are presented.Keywords: Confidence intervals, double exponential model, pivotal equations, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35538221 Existence and Exponential Stability of Almost Periodic Solution for Cohen-Grossberg SICNNs with Impulses
Abstract:
In this paper, based on the estimation of the Cauchy matrix of linear impulsive differential equations, by using Banach fixed point theorem and Gronwall-Bellman-s inequality, some sufficient conditions are obtained for the existence and exponential stability of almost periodic solution for Cohen-Grossberg shunting inhibitory cellular neural networks (SICNNs) with continuously distributed delays and impulses. An example is given to illustrate the main results.
Keywords: Almost periodic solution, exponential stability, neural networks, impulses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143338220 Exponential Stability of Periodic Solutions in Inertial Neural Networks with Unbounded Delay
Authors: Yunquan Ke, Chunfang Miao
Abstract:
In this paper, the exponential stability of periodic solutions in inertial neural networks with unbounded delay are investigated. First, using variable substitution the system is transformed to first order differential equation. Second, by the fixed-point theorem and constructing suitable Lyapunov function, some sufficient conditions guaranteeing the existence and exponential stability of periodic solutions of the system are obtained. Finally, two examples are given to illustrate the effectiveness of the results.
Keywords: Inertial neural networks, unbounded delay, fixed-point theorem, Lyapunov function, periodic solutions, exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15328219 Mean Square Exponential Synchronization of Stochastic Neutral Type Chaotic Neural Networks with Mixed Delay
Authors: Zixin Liu, Huawei Yang, Fangwei Chen
Abstract:
This paper studies the mean square exponential synchronization problem of a class of stochastic neutral type chaotic neural networks with mixed delay. On the Basis of Lyapunov stability theory, some sufficient conditions ensuring the mean square exponential synchronization of two identical chaotic neural networks are obtained by using stochastic analysis and inequality technique. These conditions are expressed in the form of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. The feedback controller used in this paper is more general than those used in previous literatures. One simulation example is presented to demonstrate the effectiveness of the derived results.
Keywords: Exponential synchronization, stochastic analysis, chaotic neural networks, neutral type system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15608218 Medical Image Segmentation Based On Vigorous Smoothing and Edge Detection Ideology
Authors: Jagadish H. Pujar, Pallavi S. Gurjal, Shambhavi D. S, Kiran S. Kunnur
Abstract:
Medical image segmentation based on image smoothing followed by edge detection assumes a great degree of importance in the field of Image Processing. In this regard, this paper proposes a novel algorithm for medical image segmentation based on vigorous smoothening by identifying the type of noise and edge diction ideology which seems to be a boom in medical image diagnosis. The main objective of this algorithm is to consider a particular medical image as input and make the preprocessing to remove the noise content by employing suitable filter after identifying the type of noise and finally carrying out edge detection for image segmentation. The algorithm consists of three parts. First, identifying the type of noise present in the medical image as additive, multiplicative or impulsive by analysis of local histograms and denoising it by employing Median, Gaussian or Frost filter. Second, edge detection of the filtered medical image is carried out using Canny edge detection technique. And third part is about the segmentation of edge detected medical image by the method of Normalized Cut Eigen Vectors. The method is validated through experiments on real images. The proposed algorithm has been simulated on MATLAB platform. The results obtained by the simulation shows that the proposed algorithm is very effective which can deal with low quality or marginal vague images which has high spatial redundancy, low contrast and biggish noise, and has a potential of certain practical use of medical image diagnosis.
Keywords: Image Segmentation, Image smoothing, Edge Detection, Impulsive noise, Gaussian noise, Median filter, Canny edge, Eigen values, Eigen vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19158217 Permanence and Exponential Stability of a Predator-prey Model with HV-Holling Functional Response
Authors: Kai Wang, Yanling Zu
Abstract:
In this paper, a delayed predator-prey system with Hassell-Varley-Holling type functional response is studied. A sufficient criterion for the permanence of the system is presented, and further some sufficient conditions for the global attractivity and exponential stability of the system are established. And an example is to show the feasibility of the results by simulation.
Keywords: Predator-prey system, Hassell-Varley-Holling, delay, permanence, exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15848216 Global Exponential Stability of Impulsive BAM Fuzzy Cellular Neural Networks with Time Delays in the Leakage Terms
Authors: Liping Zhang, Kelin Li
Abstract:
In this paper, a class of impulsive BAM fuzzy cellular neural networks with time delays in the leakage terms is formulated and investigated. By establishing a delay differential inequality and M-matrix theory, some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with time delays in the leakage terms are obtained. In particular, a precise estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive perturbation intention. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.
Keywords: Global exponential stability, bidirectional associative memory, fuzzy cellular neural networks, leakage delays, impulses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13318215 Existence and Exponential Stability of Almost Periodic Solution for Recurrent Neural Networks on Time Scales
Abstract:
In this paper, a class of recurrent neural networks (RNNs) with variable delays are studied on almost periodic time scales, some sufficient conditions are established for the existence and global exponential stability of the almost periodic solution. These results have important leading significance in designs and applications of RNNs. Finally, two examples and numerical simulations are presented to illustrate the feasibility and effectiveness of the results.
Keywords: Recurrent neural network, Almost periodic solution, Global exponential stability, Time scale.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14108214 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem
Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães
Abstract:
This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.Keywords: Path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8988213 Framework for Spare Inventory Management
Authors: Eman M. Wahba, Noha M. Galal, Khaled S. El-Kilany
Abstract:
Spare parts inventory management is one of the major areas of inventory research. Analysis of recent literature showed that an approach integrating spare parts classification, demand forecasting, and stock control policies is essential; however, adapting this integrated approach is limited. This work presents an integrated framework for spare part inventory management and an Excel based application developed for the implementation of the proposed framework. A multi-criteria analysis has been used for spare classification. Forecasting of spare parts- intermittent demand has been incorporated into the application using three different forecasting models; namely, normal distribution, exponential smoothing, and Croston method. The application is also capable of running with different inventory control policies. To illustrate the performance of the proposed framework and the developed application; the framework is applied to different items at a service organization. The results achieved are presented and possible areas for future work are highlighted.Keywords: Demand forecasting, intermittent demand, inventory management, integrated approach, spare parts, spare part classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65748212 Exponential State Estimation for Neural Networks with Leakage, Discrete and Distributed Delays
Authors: Liyuan Wang, Shouming Zhong
Abstract:
In this paper, the design problem of state estimator for neural networks with the mixed time-varying delays are investigated by constructing appropriate Lyapunov-Krasovskii functionals and using some effective mathematical techniques. In order to derive several conditions to guarantee the estimation error systems to be globally exponential stable, we transform the considered systems into the neural-type time-delay systems. Then with a set of linear inequalities(LMIs), we can obtain the stable criteria. Finally, three numerical examples are given to show the effectiveness and less conservatism of the proposed criterion.
Keywords: State estimator, Neural networks, Globally exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16658211 Exponential Stability Analysis for Switched Cellular Neural Networks with Time-varying Delays and Impulsive Effects
Authors: Zixin Liu, Fangwei Chen
Abstract:
In this Letter, a class of impulsive switched cellular neural networks with time-varying delays is investigated. At the same time, parametric uncertainties assumed to be norm bounded are considered. By dividing the network state variables into subgroups according to the characters of the neural networks, some sufficient conditions guaranteeing exponential stability for all admissible parametric uncertainties are derived via constructing appropriate Lyapunov functional. One numerical example is provided to illustrate the validity of the main results obtained in this paper.
Keywords: Switched systems, exponential stability, cellular neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14188210 A New Sufficient Conditions of Stability for Discrete Time Non-autonomous Delayed Hopfield Neural Networks
Authors: Adnene Arbi, Chaouki Aouiti, Abderrahmane Touati
Abstract:
In this paper, we consider the uniform asymptotic stability, global asymptotic stability and global exponential stability of the equilibrium point of discrete Hopfield neural networks with delays. Some new stability criteria for system are derived by using the Lyapunov functional method and the linear matrix inequality approach, for estimating the upper bound of Lyapunov functional derivative.
Keywords: Hopfield neural networks, uniform asymptotic stability, global asymptotic stability, exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19708209 Simulating a Single-Server Queue using the Q – Simulator
Authors: Irene K. Amponsah, Bennony K. Gordor, Francis Dogbey
Abstract:
This paper introduces a technique for simulating a single-server exponential queuing system. The technique called the Q-Simulator is a computer program which can simulate the effect of traffic intensity on all system average quantities given the arrival and/or service rates. The Q-Simulator has three phases namely: the formula based method, the uncontrolled simulation, and the controlled simulation. The Q-Simulator generates graphs (crystal solutions) for all results of the simulation or calculation and can be used to estimate desirable average quantities such as waiting times, queue lengths, etc.Keywords: Automation system-Simulator, Simulation, Singleserver exponential system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299