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Existence and exponential stability of almost
periodic solution for recurrent neural networks on
time scales

Lili Wang and Meng Hu

Abstract—In this paper, a class of recurrent neural networks
(RNNs) with variable delays are studied on almost periodic time
scales, some sufficient conditions are established for the existence
and global exponential stability of the almost periodic solution. These
results have important leading significance in designs and applications
of RNNs. Finally, two examples and numerical simulations are
presented to illustrate the feasibility and effectiveness of the results.
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I. INTRODUCTION

T is well known that recurrent neural networks(RNNs)
Iinclude a lot of famous neural networks such as cellular
neural networks (CNNs), Hopfield neural networks (HNNs),
bidirectional associative memory (BAM) networks, etc. In past
few years, different classes of RNNs have been extensively
studied due to their promising potential for applications in the
areas of signal and image processing, associative memories
and pattern classification, parallel computation and optimiza-
tion problems, see [1-6] and references therein.

As is well known, the properties of periodic oscillatory
solutions are of great interest in many applications. For in-
stance, the human brain is in periodic oscillatory or chaos.
Hence, it is of fundamental importance to study periodic os-
cillatory and chaos phenomena of neural networks. However,
upon considering long-term dynamical behaviors, the periodic
parameters often turn out to experience certain perturbations,
that is, parameters become periodic up to a small error. Thus,
almost periodic oscillatory behavior is considered to be more
accordant with reality.

The theory of calculus on time scales (see [7] and references
cited therein) was initiated by Stefan Hilger in 1988 [8] in
order to unify continuous and discrete analysis, and it has a
tremendous potential for applications and has recently received
much attention since his foundational work [9-12]. Therefore,
it is practicable to study that on time scales which can unify
the continuous and discrete situations.

Motivated by the above, in this paper, we consider the
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following RNNs with variable delays on time scales:

bR 1) = —au(u(t) + X ey (t)gs (1)
+ 32 dyOf e = 7, (1) m

+I;(t), t € T+,
yl(s) = ¢Z(S)7 RS [77A—a0]T7 (S A7

where T is an almost periodic time scale, T™ = T N
(0,4+00), A ={1,2,...,n}, the integer n corresponds to the
number of units in (1); y;(¢) corresponds to the state of the
ith unit at time ¢; a;(t) > 0 represents the passive decay rate;
c;; and d;; weight the strength of jth unit on the 7th unit
at time ¢; [;(t) is the input to the ith unit at time ¢ from
outside the networks; g; and f; denote activation functions
of transmission; 7;;(t) corresponds to the signal transmission
delay along the axon of the jth unit which is nonnegative and
bounded, i.e., 0 < 7;(t) < 7.

II. PRELIMINARIES

In this section, we shall first recall some basic definitions,
lemmas which will be used in what follows.

Let T be a nonempty closed subset (time scale) of R. The
forward and backward jump operators o,p : T — T and the
graininess ;1 : T — RT are defined, respectively, by o(t) =
inf{s € T:s > t},p(t) =sup{s € T :s < t},ult) =
o(t) —t.

The basic theories of dynamic systems on time scales and
almost periodic differential equations, one can see [7,13,14].

Definition 2.1 (see [13]) Let € R™, and A(t) be an n x
n rd-continuous matrix on T, the linear system

2 (t) = A(t)z(t), t€T 2)
is said to admit an exponential dichotomy on T if there exist
positive constants k,«, projection P and the fundamental
solution matrix X (¢) of (2), satisfying

[ X()PXHo(s))lo < keaal(t,o(s)),
s,t € T, t > o(s),
[ X()I = P)X~H(o(5))lo < keaalo(s).t),
s, teT,t<o(s),
where | - | is a matrix norm on T.

Lemma 2.1 (see [14]) If the linear system (2) admits an
exponential dichotomy, —A is an M-matrix, then system

zB(t) = A(t)z(t) + f(t), t €T, 3)
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has a unique almost periodic solution z(t), and

t) :[ X(t)PX Ho(s))f(s)As

—+o0
[ XU~ PX o) ()
t
where X () is the fundamental solution matrix of (2), and
A= (Sup(aij(t)))an7 1< 7’7.] <n, te T.
Lemma 2.2 (see [13]) Let ¢;(¢) be an almost periodic
function on T, where c;(t) > 0, —c;(t) € RT,Vt e T
and

min {lnfcZ )}:ﬁl>07

1<i<n - teT

then the linear system
2B (t) = diag( —c1(t), —ca(t), -+,
admits an exponential dichotomy on T.
Lemma 2.3 (see [14]) If the following conditions satisfy:
(1) Drap(t) < Z aiz;(t) + Z bi;;(t), t € [to, +00)r,
i,j = 1,2,---,n, where aw > 0@ # j), bi; > 0,
Z.ﬁfl(to) > 0, IZ() =

i=1
is a constant;

(2) M = —(a;; + bij)nxn is an M-matrix;

then there exists constants v; > 0 and a > 0, such that the

solutions of inequality (1) satisfies

—Cn (t))x(t)

sup  x;(s), and 79 > 0

sE[t—T0,t]T

zi(t) < %(Zl’j(tooeea(i, to), Vt € (to, +oo)r,

where : =1,2,---,n.

III. EXISTENCE AND EXPONENTIAL STABILITY

In this section, we will study the existence and exponential
stability of almost periodic solution of (1). Hereafter, we will
use the norm ||z|| = max { sup |z;(t)|}, and let AP(T) as a

i€A T geT

set constructed by all almost periodic functions on an almost
time scale T.
Firstly, we make the following assumptions:

(H1) ai(t),cij(t),di;(t), i5(t), I;(t) are all almost periodic
functions defined on T, 4,5 € A.
The activation functions f;,g; € C(R,R) and satisfy
£;(0) =0, g;(0) =0, respectlvely Moreover, there ex-
ists positive numbers L , L7 such that | f;(z) — f;(y)| <
Lle—yl, loy(x) ~ 0,(0)] < Ll —y]. j € A
E%lkl{;gqfrai(t)} > 0, and 1 — p(t)a;(t) > 0, Vit €
T, i € A.

We know that all almost periodic functions are bounded.
For convenience, we denote h = iuql? |h(t)], h = %gqfr |h(t)]
for any h(t) € AP(T).

Theorem 3.1 Assume that (H;) — (Hs) hold, then system

(1) has exactly one almost periodic solution in the region ||z —
20| < if the following condition holds

(H2)

(H3)

1Q’
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where

{f e— a1 t U ))Il(s)ASV"afjoo

I, (s JAs}, W = max{I
€A

a;

T .
Proof: Let B = {z|z = (1/11,1/12, ) }, where z is
a continuous almost periodic function on T with the norm

211 = mapx { sup [x (1)},

e_q, (t,0(s)) x

then, B is a Banach space.
For any z € B, we consider the almost periodic solution
y»(t) of the nonlinear almost periodic differential equation

yi(t) = +Zd” () (W5t — 755(8)))
+> i (t)g; (1) + Li(t), i € A “)

j=1

Since min{ inf ai(t)} > 0, by Lemma 2.2, the linear
i€A “teT

system

y2(t) ay(t), —as(t), - -, —an(t))y(t)

admits an exponential dichotomy. Then, together with Lemma
2.1, the uniqueness solution of system (4) can be expressed as
the following form:

{/;e““t" {Zdlﬁ $)fi (Wi (s = m15(s)))
+X:C 5)9; (15 (s ))+11(s)}A5,...,
/t

37 g ()95 (s) + 1,@} AS}. )

j=1

= diag(—

e_ an t 0' |:Zdnj fj 1/’7 Tnj(s)))

8

Define a mapping ¢ : B — B by setting
O(2)(t) = y.(t), V z € B.

Set

. w
B* = {z|z €B, |z — 2| < 1Q_Q}.

Then B* is a closed convex subset of B. According to the
definition of the norm of the Banach space B, we have

t
loll = max{sup | cattotneas }
ieA teT —o00
T,
< max {} =W.
ieA | g,
Therefore,
21l < 1z = 2ol + llz0]| = —
z zZ — Z Z = —.
>~ 0 0 1 — Q
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First, we prove that the mapping @ is a self-mapping from d:
B* to B*, In fact, for any z € B*, we have Z‘ ” Hf] %( T”( )
[®(2) — 2ol —fj(%‘( = 7i5(s)))|
¢
moswp{| [ eoutoto) +§jww oy 3(6) — 05005 As |
¢
bﬁjﬁ% ~75(5))) gmm%/edw@
i€A 4eT oo
+ch 5)9; (¥;(s) )] } ><[Zdiy‘Lﬂ%(S—Tij(S))—¢j(5—7ij(5))|
j=1
t n _
<%¥gﬂ/§€w@dw +Z¥m€%@—w@ﬂA%
J:
t
|:Z|dzj ||f] 'l/J](S T’L](S)))‘ S maxsup{/ eiai(ug(s))
1€A teT oo
#3660 5 :{Z%ﬁ+z%@%%Wz|
i=1 i= j
t
< ) —z
mswp { [ eou(to(s) Slgy{a[EZQM +§j% 2] b
X{E:&ﬂ§WAsnﬂ@H = Qll=—=
j=1
+ZcijL?|¢j(s)|} As} This implies that the mapping ® is a contraction mapping
j ' since Q < 1. Hence, ® has exactly one fixed point z* in
t B* such that ®(z*) = z*. Otherwise, it is easy to verify that
< hax ilelTp { / €—a,(t,0(s)) z* satisfies system (1). Thus, system (1) has a unique almost
< periodic solution in B*. This completes the proof. ]
x {ZJUL; + ZCZ'J'L?] As}|z| Theorem 3.2 Assume that (H;) — (H3) and conditions
- - of Theorem 3.1 hold. Suppose that A — (CL9 4+ DL') is
an M-matrix, where A = diag(a;,as, *,a,)nxn, C =
< I}leaAX{a {Zde +Z%Lg} } gl (@) D = (g, L9 = ding(L{, L3, 18), L) =
- dlag(Ll,LQ,- , L), then the almost periodic solution of
= Q|lz]l < QW system (1) is globally exponentially stable.
T 1-Q Proof: From Theorem 3.1, we know that (1) has an almost
which implies that ®(z)(t) € B*. Therefore, the mapping ® periodic solution x*(t) = (Il( ), xz(ﬁ) an ()T Suppgse
is a self-mapping from B* to B*. that z(t) = (21(t), #2(t), ..., 2n(t))" be an arbitrary solution

Next, we prove that the mapping @ is a contraction mapping ~ Of (1).
of B*. In fact, in view of (Hy)— (H3), for any 2, z € B, where Let u(t) = x(t) — 2*(t), then for i € A, system (1) can be

z = (1/11,1/127"',1%)T, z= (’1/3171527"',1Zn)T, wtten as .
we have u (t) = —ai(t)us(t) + Zcij (t)pj(u;(t))
[®(z) — (2) . =
_ dz‘j t iUy t—Tij t ,t T+, (6)
%ﬁgﬂ/ea@a) 3 (00t =y ).t €
{Z% (s — 7 (5)) where p (15 (1)) = g (1) 0,2 (1)) 4, (uy (¢ —m35(1)) =
fi(xi(t = 7i;(1)) — fi(a5(t — Tz;( ))). The initial condition
—fJ(sz( —735(s)))] of system (6) is U(s) = ¢(s) — x*(s), s € [-7,0]r.
~ From (Hs), we can get
+Z% a5 ~ 9555060
. I (u)| < LYJugl, g (uj)| < LY fus], j € A
= r;leaji(i'lelg { /C>0 e-a;(t9(s)) Let V;(t) = Ju;(t)|, then the upper right derivative
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DT VA(t) along the solutions of system (6) is as follows:

DTVA) = sign(ui(t))u (1)

n

—a;|ui(8)] + D @i LJu; ()] + Y dis LT | (t)]
j=1

Jj=1

IN
y2
o

IN

—a,Vi(t) + > e LIVi(t) + > di LIV (1),
j=1

j=1
that is

DYVA(t) < (~A+CLYV(t) + DLV (t), t € TT.

For A — (CLY + DLY) is an M-matrix, by Lemma 2.3,
there exist constants a > 0, r > 0, such that

Vit) = [wi(®)| <7 sap  [1i(0) — 2"(d)|esa(t,0), i € A,
6€[—7,0]r
that is
lzi(t) =27 ()] < v sup  [¥i(6) — 27(d)|esal(t,0)
d€[—7,0]r
r
< — " = z*|emal(t,d), i € A.
= e@a((),é)”l/} x He@ ( ) (S
LetN:N(é):m ,then

|l — 2"l < Nl — a*[leca(t, d), t € T*.

Therefore, the almost periodic solution x* = (z7,z3,- -,
x5)T of system (1) is globally exponentially stable. This
completes the proof. [ ]

IV. EXAMPLES AND SIMULATIONS
Example 1. Assume that T = R, A = {1, 2}. Take

a;(t) = [ 2+()Sint 2—((:)05(15) } )
cij(t) = { O.S(S)int 0.5Si(1)l v ] ’
dij(t) = [ 0'4?% 0.551(1)1 V2t } :

fi(y;(t —7i;(t))) = tanh(y; — 7(1))),

1

95(;) = 5|y + 1] = ly; = 1)

in system (1). By a direct calculation, one can derive that
a; =1, N=1,LI=LI=1,4j€eA Q=09<1, and

—-0.5
0.5
is an M -matrix.
According to Theorems 3.1 and 3.2, system (1) has an
almost periodic solution, which is exponential stability, see
Fig.1.

0.6

A—(CLY +DLY) = [ 03
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Fig. 1. Transient response of states y1,y2 in example 1 with initial values

(0.01,0.01), (0.1,0.1) and (0.2, 0.2).
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Fig. 2. Transient response of states y1,y2 in example 2 with initial values

(0.1,0.1), (0.2,0.2) and (0.5, 0.5).

Example 2. Assume that T = Z, A = {1,2}. Take

ai(t) = { e 061 in gt 0.5 — 091 cos 5t } ’
cij(t) = [ O.OSOsint e Sé)n v } ’

dij () = [ 0.04Sin2t 0.05s?n\@t } ’

I(t) = [ O('f;icrgs‘gt } , 7(t) = sint

fily; (t = 735(t))) = tanh(y; — 7(t))),

9j(y;) = tanh(y;).
in system (1). By a direct calculation, one can derive that
a; =04, Ny =1, LI =L9=1,ij€A Q=0225<1,
and

0.36

A—(CLY +DLY) = [ 003 —0.05 ]

0.35

is an M -matrix.

According to Theorems 3.1 and 3.2, system (1) has an
almost periodic solution, which is exponential stability, see
Fig.2.
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