Search results for: Estimation of Parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4514

Search results for: Estimation of Parameters

4484 An Estimation of Variance Components in Linear Mixed Model

Authors: Shuimiao Wan, Chao Yuan, Baoguang Tian

Abstract:

In this paper, a linear mixed model which has two random effects is broken up into two models. This thesis gets the parameter estimation of the original model and an estimation’s statistical qualities based on these two models. Then many important properties are given by comparing this estimation with other general estimations. At the same time, this paper proves the analysis of variance estimate (ANOVAE) about σ2 of the original model is equal to the least-squares estimation (LSE) about σ2 of these two models. Finally, it also proves that this estimation is better than ANOVAE under Stein function and special condition in some degree.

Keywords: Linear mixed model, Random effects, Parameter estimation, Stein function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
4483 AC Signals Estimation from Irregular Samples

Authors: Predrag B. Petrović

Abstract:

The paper deals with the estimation of amplitude and phase of an analogue multi-harmonic band-limited signal from irregularly spaced sampling values. To this end, assuming the signal fundamental frequency is known in advance (i.e., estimated at an independent stage), a complexity-reduced algorithm for signal reconstruction in time domain is proposed. The reduction in complexity is achieved owing to completely new analytical and summarized expressions that enable a quick estimation at a low numerical error. The proposed algorithm for the calculation of the unknown parameters requires O((2M+1)2) flops, while the straightforward solution of the obtained equations takes O((2M+1)3) flops (M is the number of the harmonic components). It is applied in signal reconstruction, spectral estimation, system identification, as well as in other important signal processing problems. The proposed method of processing can be used for precise RMS measurements (for power and energy) of a periodic signal based on the presented signal reconstruction. The paper investigates the errors related to the signal parameter estimation, and there is a computer simulation that demonstrates the accuracy of these algorithms.

Keywords: Band-limited signals, Fourier coefficient estimation, analytical solutions, signal reconstruction, time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
4482 Alternative Robust Estimators for the Shape Parameters of the Burr XII Distribution

Authors: F. Z. Doğru, O. Arslan

Abstract:

In general, classical methods such as maximum likelihood (ML) and least squares (LS) estimation methods are used to estimate the shape parameters of the Burr XII distribution. However, these estimators are very sensitive to the outliers. To overcome this problem we propose alternative robust estimators based on the M-estimation method for the shape parameters of the Burr XII distribution. We provide a small simulation study and a real data example to illustrate the performance of the proposed estimators over the ML and the LS estimators. The simulation results show that the proposed robust estimators generally outperform the classical estimators in terms of bias and root mean square errors when there are outliers in data.

Keywords: Burr XII distribution, robust estimator, M-estimator, maximum likelihood, least squares.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2659
4481 Estimating Regression Effects in Com Poisson Generalized Linear Model

Authors: Vandna Jowaheer, Naushad A. Mamode Khan

Abstract:

Com Poisson distribution is capable of modeling the count responses irrespective of their mean variance relation and the parameters of this distribution when fitted to a simple cross sectional data can be efficiently estimated using maximum likelihood (ML) method. In the regression setup, however, ML estimation of the parameters of the Com Poisson based generalized linear model is computationally intensive. In this paper, we propose to use quasilikelihood (QL) approach to estimate the effect of the covariates on the Com Poisson counts and investigate the performance of this method with respect to the ML method. QL estimates are consistent and almost as efficient as ML estimates. The simulation studies show that the efficiency loss in the estimation of all the parameters using QL approach as compared to ML approach is quite negligible, whereas QL approach is lesser involving than ML approach.

Keywords: Com Poisson, Cross-sectional, Maximum Likelihood, Quasi likelihood

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
4480 Effect of Soil Corrosion in Failures of Buried Gas Pipelines

Authors: Saima Ali, Pathamanathan Rajeev, Imteaz A. Monzur

Abstract:

In this paper, a brief review of the corrosion mechanism in buried pipe and modes of failure is provided together with the available corrosion models. Moreover, the sensitivity analysis is performed to understand the influence of corrosion model parameters on the remaining life estimation. Further, the probabilistic analysis is performed to propagate the uncertainty in the corrosion model on the estimation of the renaming life of the pipe. Finally, the comparison among the corrosion models on the basis of the remaining life estimation will be provided to improve the renewal plan.

Keywords: Corrosion, pit depth, sensitivity analysis, exposure period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
4479 Estimation of the Spent Fuel Pool Water Temperature at a Loss-of-Pool-Cooling Accident

Authors: Chan Hee Park, Arim Lee, Jung Min Lee, Joo Hyun Moon

Abstract:

Accident in spent fuel pool (SFP) of Fukushima Daiichi Unit 4 showed the importance of continuous monitoring of the key environmental parameters such as water temperature, water level, and radiation level in the SFP at accident conditions. Because the SFP water temperature is one of the key parameters indicating SFP conditions, its behavior at accident conditions shall be understood to prepare appropriate measures. This study estimated temporal change in the SFP water temperature at Kori Unit 1 with 587 MWe for 1 hour after initiation of a loss-of-pool-cooling accident. For the estimation, ANSYS CFX 13.0 code was used. The estimation showed that the increasing rate of the water temperature was 3.90C per hour and the SFP water temperature could reach 1000C in 25.6 hours after the initiation of loss-of-pool-cooling accident.

Keywords: Spent fuel pool, water temperature, Kori Unit 1, a loss-of-pool-cooling accident.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
4478 Confidence Intervals for the Coefficients of Variation with Bounded Parameters

Authors: Jeerapa Sappakitkamjorn, Sa-aat Niwitpong

Abstract:

In many practical applications in various areas, such as engineering, science and social science, it is known that there exist bounds on the values of unknown parameters. For example, values of some measurements for controlling machines in an industrial process, weight or height of subjects, blood pressures of patients and retirement ages of public servants. When interval estimation is considered in a situation where the parameter to be estimated is bounded, it has been argued that the classical Neyman procedure for setting confidence intervals is unsatisfactory. This is due to the fact that the information regarding the restriction is simply ignored. It is, therefore, of significant interest to construct confidence intervals for the parameters that include the additional information on parameter values being bounded to enhance the accuracy of the interval estimation. Therefore in this paper, we propose a new confidence interval for the coefficient of variance where the population mean and standard deviation are bounded. The proposed interval is evaluated in terms of coverage probability and expected length via Monte Carlo simulation.  

Keywords: Bounded parameters, coefficient of variation, confidence interval, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4227
4477 A Discrete Filtering Algorithm for Impulse Wave Parameter Estimation

Authors: Khaled M. EL-Naggar

Abstract:

This paper presents a new method for estimating the mean curve of impulse voltage waveforms that are recorded during impulse tests. In practice, these waveforms are distorted by noise, oscillations and overshoot. The problem is formulated as an estimation problem. Estimation of the current signal parameters is achieved using a fast and accurate technique. The method is based on discrete dynamic filtering algorithm (DDF). The main advantage of the proposed technique is its ability in producing the estimates in a very short time and at a very high degree of accuracy. The algorithm uses sets of digital samples of the recorded impulse waveform. The proposed technique has been tested using simulated data of practical waveforms. Effects of number of samples and data window size are studied. Results are reported and discussed.

Keywords: Digital Filtering, Estimation, Impulse wave, Stochastic filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
4476 Estimation of Load Impedance in Presence of Harmonics

Authors: Khaled M. EL-Naggar

Abstract:

This paper presents a fast and efficient on-line technique for estimating impedance of unbalanced loads in power systems. The proposed technique is an application of a discrete timedynamic filter based on stochastic estimation theory which is suitable for estimating parameters in noisy environment. The algorithm uses sets of digital samples of the distorted voltage and current waveforms of the non-linear load to estimate the harmonic contents of these two signal. The non-linear load impedance is then calculated from these contents. The method is tested using practical data. Results are reported and compared with those obtained using the conventional least error squares technique. In addition to the very accurate results obtained, the method can detect and reject bad measurements. This can be considered as a very important advantage over the conventional static estimation methods such as the least error square method.

Keywords: Estimation, identification, Harmonics, Dynamic Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
4475 Numerical Optimization within Vector of Parameters Estimation in Volatility Models

Authors: J. Arneric, A. Rozga

Abstract:

In this paper usefulness of quasi-Newton iteration procedure in parameters estimation of the conditional variance equation within BHHH algorithm is presented. Analytical solution of maximization of the likelihood function using first and second derivatives is too complex when the variance is time-varying. The advantage of BHHH algorithm in comparison to the other optimization algorithms is that requires no third derivatives with assured convergence. To simplify optimization procedure BHHH algorithm uses the approximation of the matrix of second derivatives according to information identity. However, parameters estimation in a/symmetric GARCH(1,1) model assuming normal distribution of returns is not that simple, i.e. it is difficult to solve it analytically. Maximum of the likelihood function can be founded by iteration procedure until no further increase can be found. Because the solutions of the numerical optimization are very sensitive to the initial values, GARCH(1,1) model starting parameters are defined. The number of iterations can be reduced using starting values close to the global maximum. Optimization procedure will be illustrated in framework of modeling volatility on daily basis of the most liquid stocks on Croatian capital market: Podravka stocks (food industry), Petrokemija stocks (fertilizer industry) and Ericsson Nikola Tesla stocks (information-s-communications industry).

Keywords: Heteroscedasticity, Log-likelihood Maximization, Quasi-Newton iteration procedure, Volatility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2650
4474 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation

Authors: Somayeh Komeylian

Abstract:

The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).

Keywords: DoA estimation, adaptive antenna array, Deep Neural Network, LS-SVM optimization model, radial basis function, MSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539
4473 Performance Enhancement of Motion Estimation Using SSE2 Technology

Authors: Trung Hieu Tran, Hyo-Moon Cho, Sang-Bock Cho

Abstract:

Motion estimation is the most computationally intensive part in video processing. Many fast motion estimation algorithms have been proposed to decrease the computational complexity by reducing the number of candidate motion vectors. However, these studies are for fast search algorithms themselves while almost image and video compressions are operated with software based. Therefore, the timing constraints for running these motion estimation algorithms not only challenge for the video codec but also overwhelm for some of processors. In this paper, the performance of motion estimation is enhanced by using Intel's Streaming SIMD Extension 2 (SSE2) technology with Intel Pentium 4 processor.

Keywords: Motion Estimation, Full Search, Three StepSearch, MMX/SSE/SSE2 Technologies, SIMD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
4472 EML-Estimation of Multivariate t Copulas with Heuristic Optimization

Authors: Jin Zhang, Wing Lon Ng

Abstract:

In recent years, copulas have become very popular in financial research and actuarial science as they are more flexible in modelling the co-movements and relationships of risk factors as compared to the conventional linear correlation coefficient by Pearson. However, a precise estimation of the copula parameters is vital in order to correctly capture the (possibly nonlinear) dependence structure and joint tail events. In this study, we employ two optimization heuristics, namely Differential Evolution and Threshold Accepting to tackle the parameter estimation of multivariate t distribution models in the EML approach. Since the evolutionary optimizer does not rely on gradient search, the EML approach can be applied to estimation of more complicated copula models such as high-dimensional copulas. Our experimental study shows that the proposed method provides more robust and more accurate estimates as compared to the IFM approach.

Keywords: Copula Models, Student t Copula, Parameter Inference, Differential Evolution, Threshold Accepting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
4471 Development of a Catchment Water Quality Model for Continuous Simulations of Pollutants Build-up and Wash-off

Authors: Iqbal Hossain, Dr. Monzur Imteaz, Dr. Shirley Gato-Trinidad, Prof. Abdallah Shanableh

Abstract:

Estimation of runoff water quality parameters is required to determine appropriate water quality management options. Various models are used to estimate runoff water quality parameters. However, most models provide event-based estimates of water quality parameters for specific sites. The work presented in this paper describes the development of a model that continuously simulates the accumulation and wash-off of water quality pollutants in a catchment. The model allows estimation of pollutants build-up during dry periods and pollutants wash-off during storm events. The model was developed by integrating two individual models; rainfall-runoff model, and catchment water quality model. The rainfall-runoff model is based on the time-area runoff estimation method. The model allows users to estimate the time of concentration using a range of established methods. The model also allows estimation of the continuing runoff losses using any of the available estimation methods (i.e., constant, linearly varying or exponentially varying). Pollutants build-up in a catchment was represented by one of three pre-defined functions; power, exponential, or saturation. Similarly, pollutants wash-off was represented by one of three different functions; power, rating-curve, or exponential. The developed runoff water quality model was set-up to simulate the build-up and wash-off of total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). The application of the model was demonstrated using available runoff and TSS field data from road and roof surfaces in the Gold Coast, Australia. The model provided excellent representation of the field data demonstrating the simplicity yet effectiveness of the proposed model.

Keywords: Catchment, continuous pollutants build-up, pollutants wash-off, runoff, runoff water quality model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3135
4470 Efficient Block Matching Algorithm for Motion Estimation

Authors: Zong Chen

Abstract:

Motion estimation is a key problem in video processing and computer vision. Optical flow motion estimation can achieve high estimation accuracy when motion vector is small. Three-step search algorithm can handle large motion vector but not very accurate. A joint algorithm was proposed in this paper to achieve high estimation accuracy disregarding whether the motion vector is small or large, and keep the computation cost much lower than full search.

Keywords: Motion estimation, Block Matching, Optical flow, Three step search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167
4469 A Self Configuring System for Object Recognition in Color Images

Authors: Michela Lecca

Abstract:

System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a highly user-friendly tool.

Keywords: Automatic object recognition, clustering, content based image retrieval system, image segmentation, region adjacency graph, region grouping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
4468 Lithium-Ion Battery State of Charge Estimation Using One State Hysteresis Model with Nonlinear Estimation Strategies

Authors: Mohammed Farag, Mina Attari, S. Andrew Gadsden, Saeid R. Habibi

Abstract:

Battery state of charge (SOC) estimation is an important parameter as it measures the total amount of electrical energy stored at a current time. The SOC percentage acts as a fuel gauge if it is compared with a conventional vehicle. Estimating the SOC is, therefore, essential for monitoring the amount of useful life remaining in the battery system. This paper looks at the implementation of three nonlinear estimation strategies for Li-Ion battery SOC estimation. One of the most common behavioral battery models is the one state hysteresis (OSH) model. The extended Kalman filter (EKF), the smooth variable structure filter (SVSF), and the time-varying smoothing boundary layer SVSF are applied on this model, and the results are compared.

Keywords: State of charge estimation, battery modeling, one-state hysteresis, filtering and estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
4467 Object Recognition in Color Images by the Self Configuring System MEMORI

Authors: Michela Lecca

Abstract:

System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a self configuring and highly user-friendly tool.

Keywords: Automatic Object Recognition, Clustering, Contentbased Image Retrieval System, Image Segmentation, Region Adjacency Graph, Region Grouping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
4466 Frequency Offset Estimation Schemes Based On ML for OFDM Systems in Non-Gaussian Noise Environments

Authors: Keunhong Chae, Seokho Yoon

Abstract:

In this paper, frequency offset (FO) estimation schemes robust to the non-Gaussian noise environments are proposed for orthogonal frequency division multiplexing (OFDM) systems. First, a maximum-likelihood (ML) estimation scheme in non-Gaussian noise environments is proposed, and then, the complexity of the ML estimation scheme is reduced by employing a reduced set of candidate values. In numerical results, it is demonstrated that the proposed schemes provide a significant performance improvement over the conventional estimation scheme in non-Gaussian noise environments while maintaining the performance similar to the estimation performance in Gaussian noise environments.

Keywords: Frequency offset estimation, maximum-likelihood, non-Gaussian noise environment, OFDM, training symbol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
4465 Object Speed Estimation by using Fuzzy Set

Authors: Hossein Pazhoumand-Dar, Amir Mohsen Toliyat Abolhassani, Ehsan Saeedi

Abstract:

Speed estimation is one of the important and practical tasks in machine vision, Robotic and Mechatronic. the availability of high quality and inexpensive video cameras, and the increasing need for automated video analysis has generated a great deal of interest in machine vision algorithms. Numerous approaches for speed estimation have been proposed. So classification and survey of the proposed methods can be very useful. The goal of this paper is first to review and verify these methods. Then we will propose a novel algorithm to estimate the speed of moving object by using fuzzy concept. There is a direct relation between motion blur parameters and object speed. In our new approach we will use Radon transform to find direction of blurred image, and Fuzzy sets to estimate motion blur length. The most benefit of this algorithm is its robustness and precision in noisy images. Our method was tested on many images with different range of SNR and is satisfiable.

Keywords: Blur Analysis, Fuzzy sets, Speed estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
4464 Influence of the Line Parameters in Transmission Line Fault Location

Authors: Marian Dragomir, Alin Dragomir

Abstract:

In the paper, two fault location algorithms are presented for transmission lines which use the line parameters to estimate the distance to the fault. The first algorithm uses only the measurements from one end of the line and the positive and zero sequence parameters of the line, while the second one uses the measurements from both ends of the line and only the positive sequence parameters of the line. The algorithms were tested using a transmission grid transposed in MATLAB. In a first stage it was established a fault location base line, where the algorithms mentioned above estimate the fault locations using the exact line parameters. After that, the positive and zero sequence resistance and reactance of the line were calculated again for different ground resistivity values and then the fault locations were estimated again in order to compare the results with the base line results. The results show that the algorithm which uses the zero sequence impedance of the line is the most sensitive to the line parameters modifications. The other algorithm is less sensitive to the line parameters modification.

Keywords: Estimation algorithms, fault location, line parameters, simulation tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
4463 Model Based Monitoring Using Integrated Data Validation, Simulation and Parameter Estimation

Authors: Reza Hayati, Maryam Sadi, Saeid Shokri, Mehdi Ahmadi Marvast, Saeid Hassan Boroojerdi, Amin Hamzavi Abedi

Abstract:

Efficient and safe plant operation can only be achieved if the operators are able to monitor all key process parameters. Instrumentation is used to measure many process variables, like temperatures, pressures, flow rates, compositions or other product properties. Therefore Performance monitoring is a suitable tool for operators. In this paper, we integrate rigorous simulation model, data reconciliation and parameter estimation to monitor process equipments and determine key performance indicator (KPI) of them. The applied method here has been implemented in two case studies.

Keywords: Data Reconciliation, Measurement, Optimization, Parameter Estimation, Performance Monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
4462 Density Estimation using Generalized Linear Model and a Linear Combination of Gaussians

Authors: Aly Farag, Ayman El-Baz, Refaat Mohamed

Abstract:

In this paper we present a novel approach for density estimation. The proposed approach is based on using the logistic regression model to get initial density estimation for the given empirical density. The empirical data does not exactly follow the logistic regression model, so, there will be a deviation between the empirical density and the density estimated using logistic regression model. This deviation may be positive and/or negative. In this paper we use a linear combination of Gaussian (LCG) with positive and negative components as a model for this deviation. Also, we will use the expectation maximization (EM) algorithm to estimate the parameters of LCG. Experiments on real images demonstrate the accuracy of our approach.

Keywords: Logistic regression model, Expectationmaximization, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
4461 Functional Decomposition Based Effort Estimation Model for Software-Intensive Systems

Authors: Nermin Sökmen

Abstract:

An effort estimation model is needed for softwareintensive projects that consist of hardware, embedded software or some combination of the two, as well as high level software solutions. This paper first focuses on functional decomposition techniques to measure functional complexity of a computer system and investigates its impact on system development effort. Later, it examines effects of technical difficulty and design team capability factors in order to construct the best effort estimation model. With using traditional regression analysis technique, the study develops a system development effort estimation model which takes functional complexity, technical difficulty and design team capability factors as input parameters. Finally, the assumptions of the model are tested.

Keywords: Functional complexity, functional decomposition, development effort, technical difficulty, design team capability, regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
4460 Vehicle Velocity Estimation for Traffic Surveillance System

Authors: H. A. Rahim, U. U. Sheikh, R. B. Ahmad, A. S. M. Zain

Abstract:

This paper describes an algorithm to estimate realtime vehicle velocity using image processing technique from the known camera calibration parameters. The presented algorithm involves several main steps. First, the moving object is extracted by utilizing frame differencing technique. Second, the object tracking method is applied and the speed is estimated based on the displacement of the object-s centroid. Several assumptions are listed to simplify the transformation of 2D images from 3D real-world images. The results obtained from the experiment have been compared to the estimated ground truth. From this experiment, it exhibits that the proposed algorithm has achieved the velocity accuracy estimation of about ± 1.7 km/h.

Keywords: camera calibration, object tracking, velocity estimation, video image processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4456
4459 Kalman Filter Design in Structural Identification with Unknown Excitation

Authors: Z. Masoumi, B. Moaveni

Abstract:

This article is about first step of structural health monitoring by identifying structural system in the presence of unknown input. In the structural system identification, identification of structural parameters such as stiffness and damping are considered. In this study, the Kalman filter (KF) design for structural systems with unknown excitation is expressed. External excitations, such as earthquakes, wind or any other forces are not measured or not available. The purpose of this filter is its strengths to estimate the state variables of the system in the presence of unknown input. Also least squares estimation (LSE) method with unknown input is studied. Estimates of parameters have been adopted. Finally, using two examples advantages and drawbacks of both methods are studied.

Keywords: Structural health monitoring, Kalman filter, Least square estimation, structural system identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
4458 IMM based Kalman Filter for Channel Estimation in MB OFDM Systems

Authors: C.Ramesh, V.Vaidehi

Abstract:

Ultra-wide band (UWB) communication is one of the most promising technologies for high data rate wireless networks for short range applications. This paper proposes a blind channel estimation method namely IMM (Interactive Multiple Model) Based Kalman algorithm for UWB OFDM systems. IMM based Kalman filter is proposed to estimate frequency selective time varying channel. In the proposed method, two Kalman filters are concurrently estimate the channel parameters. The first Kalman filter namely Static Model Filter (SMF) gives accurate result when the user is static while the second Kalman filter namely the Dynamic Model Filter (DMF) gives accurate result when the receiver is in moving state. The static transition matrix in SMF is assumed as an Identity matrix where as in DMF, it is computed using Yule-Walker equations. The resultant filter estimate is computed as a weighted sum of individual filter estimates. The proposed method is compared with other existing channel estimation methods.

Keywords: Channel estimation, Kalman filter, UWB, Channel model, AR model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
4457 Optimization Parameters of Rotary Positioner Controller using CDM

Authors: Meemongkol A., Tipsuwanporn V., Numsomran A.

Abstract:

The authors present optimization parameters of rotary positioner controller in hard disk drive servo track writing process using coefficient diagram method; CDM. Due to estimation parameters in PI Positioning Control System by expected ratio method cannot meet the required specification of response effectively, we suggest coefficient diagram method for defining controller parameters under the requirement of the system. Finally, the simulation results show that our proposed method can improve the problem in tuning parameter of rotary positioner controller. It is satisfied specification of performance of control system. Furthermore, it is very convenient as a fast adjustment damping ratio as well as a high speed response.

Keywords: Optimization Parameters, Rotary Positioner, CDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
4456 Statistical Estimation of Spring-back Degree Using Texture Database

Authors: Takashi Sakai, Shinsaku Kikuta, Jun-ichi Koyama

Abstract:

Using a texture database, a statistical estimation of spring-back was conducted in this study on the basis of statistical analysis. Both spring-back in bending deformation and experimental data related to the crystal orientation show significant dispersion. Therefore, a probabilistic statistical approach was established for the proper quantification of these values. Correlation was examined among the parameters F(x) of spring-back, F(x) of the buildup fraction to three orientations after 92° bending, and F(x) at an as-received part on the basis of the three-parameter Weibull distribution. Consequent spring-back estimation using a texture database yielded excellent estimates compared with experimental values.

Keywords: Bending, Spring-back, Database, Crystallographic Orientation, Texture, SEM-EBSD, Weibull distribution, Statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
4455 Depth Estimation in DNN Using Stereo Thermal Image Pairs

Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge

Abstract:

Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.

Keywords: thermal stereo matching, depth estimation, deep neural networks, CNN

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695