
 

 
Abstract—The direction of arrival (DoA) estimation is the 

crucial aspect of the radar technologies for detecting and dividing 
several signal sources. In this scenario, the antenna array output 
modeling involves numerous parameters including noise samples, 
signal waveform, signal directions, signal number, and signal to noise 
ratio (SNR), and thereby the methods of the DoA estimation rely 
heavily on the generalization characteristic for establishing a large 
number of the training data sets. Hence, we have analogously 
represented the two different optimization models of the DoA 
estimation; (1) the implementation of the decision directed acyclic 
graph (DDAG) for the multiclass least-squares support vector 
machine (LS-SVM), and (2) the optimization method of the deep 
neural network (DNN) radial basis function (RBF). We have 
rigorously verified that the LS-SVM DDAG algorithm is capable of 
accurately classifying DoAs for the three classes. However, the 
accuracy and robustness of the DoA estimation are still highly 
sensitive to technological imperfections of the antenna arrays such as 
non-ideal array design and manufacture, array implementation, 
mutual coupling effect, and background radiation and thereby the 
method may fail in representing high precision for the DoA 
estimation. Therefore, this work has a further contribution on 
developing the DNN-RBF model for the DoA estimation for 
overcoming the limitations of the non-parametric and data-driven 
methods in terms of array imperfection and generalization. The 
numerical results of implementing the DNN-RBF model have 
confirmed the better performance of the DoA estimation compared 
with the LS-SVM algorithm. Consequently, we have analogously 
evaluated the performance of utilizing the two aforementioned 
optimization methods for the DoA estimation using the concept of the 
mean squared error (MSE). 
 

Keywords—DoA estimation, adaptive antenna array, Deep 
Neural Network, LS-SVM optimization model, radial basis function, 
MSE.  

I. INTRODUCTION 

HE DoA estimation has recently received an increasing 
demand for its potential use in a variety of applications 

such as wireless communications, navigation, tracking of 
various targets, rescue and other emergency assistance 
devices, radio astronomy, sonar, and radars. In the radar 
applications, the DoA estimation is performed for the accurate 
localization of targets. In the applications of wireless 
communications, the DoA estimation provides the spatial 
diversity for the receiver in the multi-user technologies. The 
DoA estimation is very much affected by the parameters of the 
signal source and the propagation medium.  

Of various interesting and exciting solutions in the field of 
the DoA estimation, this work has a major contribution on 
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developing the array signal processing technique for the DoA 
estimation. Array signal processing allows processing and 
analyzing signals received by the antenna array for achieving 
the objectives of strengthening signals in the direction of 
interest, eradicating interference signals, and estimating some 
of signal parameters precisely. In this scenario, array signal 
processing algorithms ensure better resolution performance of 
signal reception as well as better performance in steering the 
mainbeam in the direction of interest and in suppressing 
interference signals.  

The conventional algorithms failed to recognize the 
distinction between signals rejected by the two scenarios of 
destructive combination of correlated signals and spatial nulls 
under jamming circumstances and multipath propagation. 
Neural network optimization methods have potential 
applications in modeling and forecasting for unseen scenarios 
[5], [6]. However, some practical challenges in performing the 
neural network optimization methods, including local minima 
and overfitting, have been reported by various research groups 
[7]-[9]. Then, based on Structural Risk Minimization (SRM) 
principle [7]-[10], SVM optimization methods were developed 
by Platt et al. [10], for overcoming the aforementioned 
limitations [7]-[10]. The main advantage of the SVM 
optimization methods consists of employing global optimum 
rather than a local optimum. Therefore, a drastic reduction of 
overfitting is achievable by choosing the maximum margin 
hyperplane in the feature space. However, the practical 
implications of performing the SVM optimization methods 
reside in the three main disadvantages; (1) the involved 
problems require solving a quadratic programing (QP) 
problem with a very low speed, especially, for a large-scale 
practical problem, (2) upper bound parameter and kernel 
parameters are not appropriately optimized in the SVM model, 
(3) relevant input features are not efficiently estimated. In this 
scenario, a feasible way for enhancing generalization 
performance and decreasing computational cost as well as for 
fostering degree of the accuracy in the DoA estimation 
consists of exploiting the LS-SVM optimization method. 

The LS-SVM optimization methods rely on data-driven 
computations without having any pre-assumption about 
antenna array geometries and antenna array calibration. 
However, under the aforementioned conditions, these methods 
may fail in representing high precision for the DoA 
estimation. Deep learning-based methods allow reconstructing 
complex propagation models, relying on training data sets, and 
then, estimating source directions and locations. The main 
advantage of the DNNs over the different available NNs 
resides in the fact that they represent a very high accurate and 
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robust performance, due to extra neuron layers added to their 
structures. Hence, this study has a major contribution for 
exploiting the DNN-RBF modeling of the DoA estimation. In 
this scenario, we have employed the gradient descent method 
for the supervised learning of the DNN-RBF method to 
minimize the MSE. In order to further boost the functionality 
of the 3D DoA estimation in terms of the resolution and 
accuracy, in addition to exploiting optimization modeling, we 
have proposed the hybrid antenna array geometry. Indeed, the 
mainbeam characteristics and beam scanning capability of the 
adaptive antenna array are very much affected by the array 
geometry. The geometry of the hybrid antenna array 
comprises of cylindrical subarrays, as shown in Fig. 1. Each 
cylindrical subarray is composed of two concentric circular 
subarrays positioned upon each other. The suggested 
configuration in Fig. 1 provides major advantages including a 
reduction in the number of elements, and size, which is 
comparable to that obtainable with an ideal case of spherical 
array [11].  

 

 

Fig. 1 The geometry of the hybrid antenna array comprising of 
cylindrical subarrays. Each cylindrical subarray is composed of two 

concentric circular subarrays positioned upon each other [14]. The 3D 
configuration of the proposed antenna array plotted with MATLAB 

codes. The design parameters of the hybrid antenna array are assigned 
in details in Table I. It is assumed that the source of each array element 

is an ideal isotropic antenna 
 

TABLE I 
DESIGN PARAMETERS OF THE PROPOSED ANTENNA ARRAY 

Parameters Definition Value 

N Number of elements of any circular loop N = 20 

Q Number of elements of any cylinder Q = 40 

M Total number of cylinders in the 
proposed array 

M = 3 

P Number of circular loops in the cylinder P = 2 

dv Vertical spacing between two 
consecutive circular loops 

dv = 0.5λ 

dr Horizontal spacing between two 
consecutive circular loops 

dr = 0.5λ 

φ, θ Maximum scanning angles φ 45°, θ 45° 

II. A BRIEF REVIEW OF THE RBF NEURAL NETWORK 

MODELING 

The discussion in this section focused on reviewing the NN-
RBF optimization method. The neural network model can 
adjust it to the data without having a priori knowledge about 
the form of the underlying function or distribution which is 
being estimated. Indeed, the data-driven neural network refers 
to the self-adaptive modeling. Since the involved problems of 
the neural network consist of some kind of non-linear 
optimizations, the neural network modeling is an excellent 
candidate for estimating complex real-world relationships.  

Based on the universal approximation theorem, the neural 
network model can estimate the underlying function with any 
arbitrary accuracy. Owing to the neural network is capable of 
estimating posterior probabilities; therefore it represents the 
basis for establishing classification rule and performing 
statistical analysis [3]-[5].  

The supervised learning algorithms are designed to learn by 
the training set, in which the correct values of outputs are 
paired with the correct values of outputs in the following form 
[12]: 

 

         𝜏 𝒙 , 𝑦 ,
,                     (1) 

 
The training set of the NN only specifies 𝑦  which involves 

the correct value of 𝑦  and a small amount of unknown noise. 
The training procedure in the hidden layer is unsupervised 

learning based on identifying commonalities. In other words, 
the RBF activation function in each hidden unit estimates the 
Euclidean distance between the input vector and the center of 
that unit using the Gaussian function [12].  

Estimating values for the weights of the NN can happen 
during the training procedure between the hidden layers and 
the output layer, which refers to the supervised learning. 
Moreover, the modification of the center of the activation 
function should be fulfilled during the training procedure. In 
this scenario, the adjustment of the weights and the center of 
activation functions are performed using the gradient descent 
method for minimizing non-linear the sum-squared-error. 

Mathematical Formulas of the Training Procedure: 

a) Unsupervised Learning: The model of 𝑓 is expressed as a 
linear combination of a set of the M fixed basis functions, 

 
𝑓 𝒙 ∑ 𝜔 ℎ 𝒙                (2) 

 
where M refers to the number of neurons. 𝜔  is the weights of 
neurons in the linear output. ℎ 𝒙  reflects the basis 
functions in the hidden units. 
 

ℎ 𝒙 𝜑 𝒙 𝒄             (3) 
 
where 𝒄  refers to the center vector of neurons. 

  

𝜑 𝑥 𝑎 ∗ exp (-
∗

)                        (4) 
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where a and 𝜇 indicate the height of the curve center and the 
horizontal position of the center of the curve peak, 
respectively. In addition, 𝜎 denotes the standard deviation.  
b) Supervised Learning: The least squares recipe is to 

minimize the sum squared error in the output in the 
formula: 
 

S=∑ 𝑦 𝑓 𝒙            (5) 
 

The gradient descent has been employed for minimizing the 
sum squared error in [3]-[6]: 
 

ω new ω old -𝜂             (6) 

 

where 𝜂 refers to the learning rate and E is defined as: 
 

E ω 𝑆 ω                    (7) 
 

 

Fig. 2 System structure of implementing the RBF-DNN model for the 
DoA estimation. The results of this algorithm have been obtained 

assuming the five layers are arranged in series 

III. A BRIEF REVIEW OF THE LS-SVM MODELING 

Suykens et al. [8], [12] introduced LS-SVM algorithm, 
which is defined by the following equations: 

Find 
 𝑓 𝑥 =sign 𝜔 Γ 𝑥 +b)          (8) 

• By minimizing 
 

   ℒ 𝜔, 𝜑 ‖𝜔‖ + 𝛾 ∑ 𝜑        (9) 
 

• Subject to constraints:  
 

 𝑦 𝜔 Γ  𝑥 𝑏 1 𝜑    for i=1, 2,…,n    (10) 
 

where the regularization parameter of 𝛾 is applied to the data 
in the feature space for regulating the complexity of the 
machine learning model [8], [12]. Moreover, the equation of 
 𝒘. Γ 𝒙 b 0 refers to the hyperplane definition with the 
largest margin. Furthermore, 𝒘 and b represent the weight 
vector perpendicular to the separating hyperplane and the bias 
value for shifting the hyperplane parallel to itself, respectively 
[8], [12].  

It is worth mentioning that the discriminative LS-SVM 
models exploit the exponential kernel transformation, Γ 𝒙 , 
for mapping the input data in the input space into the data in 
higher dimensional feature space. Indeed, kernel functions in 
machine learning algorithms, as a nonlinear mapping, generate 
the scalar dot products of the input/output pairs in the feature 
space. Since different kernel functions generate different 
SVMs, thereby, the performance of each LS-SVM is very 
much affected by choosing an appropriate kernel function. 
Hence, the non-linear mapping function of 𝚪 𝒙  is associated 
to the kernel of 𝕂 𝒙. 𝒙  in the following form [8], [12]: 

 
            Γ 𝑥 . 𝚪 𝒙 𝕂 𝒙. 𝒙            (11) 

 
There is a growing literature of presenting the LS-SVM 

optimization methods in the various applications; thereby, we 
have concisely reviewed the theoretical backgrounds of the 
one-vs-one DDAG LS-SVM modeling of the adaptive antenna 
array for the DoA estimation in the following procedures; 

A. Preprocessing Procedure  

A) Produce the D N training signal vector for the number of 
C classes of LS-SVM model.  It is worth mentioning that 
the training signal is not necessarily a vector.  

B) Produce C number of the sample covariance matrixes, U, 
in which M number of samples are from the D N training 
signal data. Eigen decomposition or subspace tracking 
technique allows achieving the desired vectors of 𝑤, 
which are eigenvectors of the covariance matrix of the 
input data signal. In this scenario, the maximum vectors 
of 𝑤 are associated with the largest eigenvalues of the 
covariance matrix. 

C) Calculate the eigenvectors, S, for each of the C sample 
covariance matrices for the aforementioned purpose in the 
part B. 

D) Calculate the projection vectors of U.S. 
E) Store the projection vectors for the training step and the 

eigenvectors for the testing step.  
1. Training procedure: Modeling 
1.1. Using the decision function and C projection vectors train 

𝑿𝟏         𝑿𝟐                                  𝑿𝑵 
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the   nodes in the one-vs-one LS-SVM algorithm.  

1.2. Calculate the LS-SVM variables, 𝛼  and b, using the 
decision function, which refers to the separating 
hyperplane in each of DDAG nodes. 

2. Testing procedure: Labeling 
2.1. The two sets of projection coefficients (D 1 projection 

vectors) at each of the ith/jth node of the DDAG are 
obtained by the products of the desired eigenvector 
covariance matrix and the ith and jth eigenvectors from 
the training procedure.  

2.2. The new set of projection vectors are tested using the ith/ 
jth hyperplane, which means performing the two separate 
LS-SVM testing cycles; one cycle is for the projection 
vector from the ith vector and another cycle is for the 
projection vector from the jth vector.  
 

𝒚 𝝎 𝚪 𝒙𝒊 𝑏                (12) 
 

2.3. Compute the mean values of the two LS-SVM output 
vectors or labels. Then, compare the recent mean values 
with the label definition at the node and choose the mean 
value with the smallest hit count. The hit count of the H  
is expressed by: 
 

  𝐇 =
1         |𝑦 𝑦 | 𝜀 

0           Otherwise  
              (13) 

 

𝑦 and 𝑦  refer to the predicted and observed (or seen) values, 
respectively. The value of 𝜀 denotes the difference between 
observed and predicted values.  
2.4. Repeat the same procedure for the next node of the 

DDAG path and determine the last DoA label.  
3. Error Control: The Error control procedure indeed 

provides a merit for classifying the labels into either an 
accurate DoA estimate, or noise. Furthermore, the DDAG 
path is evaluated by the obtained MSE values in the error 
control procedure [8], [12]. The validation in this step 
includes controlling the both empirical and theoretical 
MSEs and misclassification and gross errors [8], [12].    

 

 
Fig. 3 Three class DDAG for one-vs-one multiclass LS-SVM for the 

DOA estimation 
 

During the training procedure, the classification problems 

try to assign previously unseen patterns to their respective 
classes using the previous training set input-output pairs of 
each class. Therefore, the output of the learning algorithm 
consists of one of the discrete set of classes instead of the 
value of a continuous function of a non-parametric regression 
problem. Values of the training set outputs, whose numbers 
are identical to the number of classes, consist of the vectors of 
length.  

After training procedure, the supervised learning algorithm 
considers the new inputs and then it determines the label of the 
new outputs based on the prior training data. 

IV. THE DOA ESTIMATION 

We consider the number of K independently-narrowband 
plane waves propagating in the linear and isotropic medium, 
impinging on the M elements of the given antenna array. The 
kth narrowband waveform is supposed to be 𝑆 𝑡  for k = 1, 2, 
…, K, assuming M K. The array outputs are calculated at the 
samples of N uniquely-spaced time instants, 𝑡 , 𝑡 ,…., 𝑡 , for 
obtaining snapshots of 𝑿 𝑡 𝑥 𝑡   𝑥 𝑡 … 𝑥 𝑡 .  Hence, 
the antenna array outputs can be expanded in terms of the 
beam steering vector of the antenna array of 𝒂 𝜑 , 𝜃  
towards the direction of 𝜑 , 𝜃  [1]-[12] and the zero-mean 
Gaussian noise vector of 𝝊 𝑡  [1]-[12] in the following 
expression, 

 
𝑥 𝑡 ∑ 𝑎 𝜑 , 𝜃 𝑆 (𝑡 𝜈 𝑡  𝑖 𝑡  for n = 1, 2,…,N 

 (14) 
 

The elements of the antenna array are capable of 
performing a mapping from the DoA space, 
𝚯 𝜑 , 𝜃 ,  𝜑 , 𝜃 , … , 𝜑 , 𝜃 , to the space of the 

antenna array,      𝑿 𝑡 𝑥 𝑡   𝑥 𝑡 … 𝑥 𝑡 ; G: 𝑹 →
𝑪 . However, the NN modeling is exploited to perform the 
inverse mapping; G: 𝑪 → 𝑹 , Fig. 4. 

The received spatial correlation matrix (or the covariance 
matrix) of R is expressed by the following form [1]-[12]: 

 
𝐑 E 𝐗 t 𝐗 t 𝐀E 𝐒 t  𝐒 t 𝐀 E 𝐕 t  𝐕 t (15) 
 

Before implementing any optimization method, we aim at 
establishing the data using the minimum variance 
distortionless response (MVDR) beamformer [13]. Indeed, the 
adaptive beamforming algorithm allows achieving the high 
performance of the antenna array in terms of robustness 
against the imperfect, incomplete and erroneous information 
about the antenna array, the signal source, and propagation 
media.  

The primary goal of the MVDR beamforming technique is 
to minimize the signal to interference noise ratio (SINR) 
expressed by [13]: 

 

  SINR ≜
𝒘 𝑺

𝒘 𝒏 𝒌

𝒘  𝒂 ,

𝒘 𝑹 𝒘
    (16) 

 

in which 𝜎  ≜ 𝐸 |𝑠 𝑡 |  refers to the power of the signal of 

1 vs. 3 

2 vs. 3 1 vs. 2 

𝟛 𝟚 𝟙

Input 
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interest. The M M covariance matrix of the interference-

plus-noise of 𝑹  is defined in: 
 

𝑹 ≜ 𝐸 𝒊 𝑡 𝑽 𝑡 𝒊 𝑡 𝑽 𝑡   (17) 
 

 

Fig. 4 System structure of the DoA estimation 
 

 
Hence, the minimum SINR is achieved by the MVDR 

beamforming technique when the following condition is 
satisfied: 

     
min 𝒘 𝑹 𝒘            (18) 

 
Subjected to 𝒘 𝒂 𝜑 , 𝜃 =1       (19) 

 
Hence, the solution of the MVDR beamforming technique 

is expressed, 
 

 𝒘 𝛼𝑹 𝒏 𝒌
𝟏 𝒂 𝜑 , 𝜃                 (20) 

 

The normalized constant of 𝛼 in (22), which does not have 
any effect on the SINR and thereby it can be omitted, is given,  
 

𝛼 
,  ,

         (21) 

 
Fig. 5 has efficiently demonstrated the simulation results of 

deploying the LS-SVM optimization method and the proposed 
DNN-RBF optimization model for the proposed geometry of 
the hybrid antenna array for the DoA estimation at the 
frequency of 10 GHz. Since the simulation results have 
verified that Fig. 5 (c) has the narrowest picks, therefore the 
proposed DNN-RBF model allows achieving better 
performance in steering mainbeam as well as high-resolution 
capability in comparison with the LS-SVM model. However, 
this increased spatial spectral resolution does not always 
convey to more accurate DoA estimation. Therefore, in the 

following, we have analogously simulated the MSEs of the 
DoA estimation of the two aforementioned models for the 
hybrid antenna array in Fig. 1. Indeed, the accuracy and 
reliability of the two different models have been verified and 
compared using the concept of the MSEs in Fig. 6. The results 
of the proposed DNN-RBF model are about 103 times more 
accurate and robust than the LS-SVM optimization methods in 
the DoA estimation.  

 

 

(a) 
 

 

(b) 
 

 

(c) 

Fig. 5 Variation of normalized magnitude of DoAs at the frequency 
of 10 GHz using the hybrid antenna array consistent with Fig. 1, and 
(a) without performing any optimization method, (b) with performing 

the LS-SVM optimization method with three classes, and (c) with 
performing the DNN-RBF optimization method with the 5 hidden 

layers and 49 neurons and three classes 
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(a) 
 

 

(b) 

Fig. 6 Variation of MSEs of the DoA estimation by implementing the 
two different optimization methods for the hybrid antenna array in 

Fig. 1; (a) LS-SVM optimization methods, and (b) RBF-DNN 
optimization methods 

V. CONCLUSION 

To conclude, we have rigorously implemented the two 
optimization methods, the DNN-RBF and the LS-SVM, for 
the hybrid antenna array for the DoA estimation. Analogously, 
simulation results have been verified that the DNN-RBF 
optimization methods show better performance in terms of 
steering the mainbeam and thereby enhancing the resolution 
compared with the LS-SVM optimization methods. 
Furthermore, the high accuracy and robustness of deploying 
the DNN-RBF optimization methods for the hybrid antenna 
array have been efficiently validated and verified in analogous 
to the LS-SVM optimization methods. In this scenario, 
simulation results on the MSEs have been represented that the 
proposed DNN-RBF optimization methods enable estimating 
DoA with 10  times more accurate or precise than the LS-
SVM optimization methods.   
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