Search results for: Bilinear thickness
602 CNC Wire-Cut Parameter Optimized Determination of the Stair Shape Workpiece
Authors: Chana Raksiri, Pornchai Chatchaikulsiri
Abstract:
The objective of this research is parameters optimized of the stair shape workpiece which is cut by CNC Wire-Cut EDM (WEDW). The experiment material is SKD-11 steel of stair-shaped with variable height workpiece 10, 20, 30 and 40 mm. with the same 10 mm. thickness are cut by Sodick's CNC Wire-Cut EDM model AD325L. The experiments are designed by 3k full factorial experimental design at 3 level 2 factors and 9 experiments with 2 replicate. The selected two factor are servo voltage (SV) and servo feed rate (SF) and the response is cutting thickness error. The experiment is divided in two experiments. The first experiment determines the significant effective factor at confidential interval 95%. The SV factor is the significant effective factor from first result. In order to result smallest cutting thickness error of workpieces is 17 micron with the SV value is 46 volt. Also show that the lower SV value, the smaller different thickness error of workpiece. Then the second experiment is done to reduce different cutting thickness error of workpiece as small as possible by lower SV. The second experiment result show the significant effective factor at confidential interval 95% is the SV factor and the smallest cutting thickness error of workpieces reduce to 11 micron with the experiment SV value is 36 volt.Keywords: CNC Wire-Cut, Variable Thickness Workpiece, Design of Experiments, Full Factorial Design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4821601 A High-Frequency Low-Power Low-Pass-Filter-Based All-Current-Mirror Sinusoidal Quadrature Oscillator
Authors: A. Leelasantitham, B. Srisuchinwong
Abstract:
A high-frequency low-power sinusoidal quadrature oscillator is presented through the use of two 2nd-order low-pass current-mirror (CM)-based filters, a 1st-order CM low-pass filter and a CM bilinear transfer function. The technique is relatively simple based on (i) inherent time constants of current mirrors, i.e. the internal capacitances and the transconductance of a diode-connected NMOS, (ii) a simple negative resistance RN formed by a resistor load RL of a current mirror. Neither external capacitances nor inductances are required. As a particular example, a 1.9-GHz, 0.45-mW, 2-V CMOS low-pass-filter-based all-current-mirror sinusoidal quadrature oscillator is demonstrated. The oscillation frequency (f0) is 1.9 GHz and is current-tunable over a range of 370 MHz or 21.6 %. The power consumption is at approximately 0.45 mW. The amplitude matching and the quadrature phase matching are better than 0.05 dB and 0.15°, respectively. Total harmonic distortions (THD) are less than 0.3 %. At 2 MHz offset from the 1.9 GHz, the carrier to noise ratio (CNR) is 90.01 dBc/Hz whilst the figure of merit called a normalized carrier-to-noise ratio (CNRnorm) is 153.03 dBc/Hz. The ratio of the oscillation frequency (f0) to the unity-gain frequency (fT) of a transistor is 0.25. Comparisons to other approaches are also included.Keywords: Sinusoidal quadrature oscillator, low-pass-filterbased, current-mirror bilinear transfer function, all-current-mirror, negative resistance, low power, high frequency, low distortion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070600 Investigation of Layer Thickness and Surface Roughness on Aerodynamic Coefficients of Wind Tunnel RP Models
Authors: S. Daneshmand, A. Ahmadi Nadooshan, C. Aghanajafi
Abstract:
Traditional wind tunnel models are meticulously machined from metal in a process that can take several months. While very precise, the manufacturing process is too slow to assess a new design's feasibility quickly. Rapid prototyping technology makes this concurrent study of air vehicle concepts via computer simulation and in the wind tunnel possible. This paper described the Affects layer thickness models product with rapid prototyping on Aerodynamic Coefficients for Constructed wind tunnel testing models. Three models were evaluated. The first model was a 0.05mm layer thickness and Horizontal plane 0.1μm (Ra) second model was a 0.125mm layer thickness and Horizontal plane 0.22μm (Ra) third model was a 0.15mm layer thickness and Horizontal plane 4.6μm (Ra). These models were fabricated from somos 18420 by a stereolithography (SLA). A wing-body-tail configuration was chosen for the actual study. Testing covered the Mach range of Mach 0.3 to Mach 0.9 at an angle-of-attack range of -2° to +12° at zero sideslip. Coefficients of normal force, axial force, pitching moment, and lift over drag are shown at each of these Mach numbers. Results from this study show that layer thickness does have an effect on the aerodynamic characteristics in general; the data differ between the three models by fewer than 5%. The layer thickness does have more effect on the aerodynamic characteristics when Mach number is decreased and had most effect on the aerodynamic characteristics of axial force and its derivative coefficients.
Keywords: Aerodynamic characteristics, stereolithography, layer thickness, Rapid prototyping, surface finish.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2932599 Vibration Attenuation in Layered and Welded Beams with Unequal Thickness
Authors: B. Singh, K. K. Agrawal, B. K. Nanda
Abstract:
In built-up structures, one of the effective ways of dissipating unwanted vibration is to exploit the occurrence of slip at the interfaces of structural laminates. The present work focuses on the dynamic analysis of welded structures. A mathematical formulation has been developed for the mechanism of slip damping in layered and welded mild steel beams with unequal thickness subjected to both periodic and non-periodic forces. It is observed that a number of vital parameters such as; thickness ratio, pressure distribution characteristics, relative slip and kinematic co-efficient of friction at the interfaces, nature of exciting forces, length and thickness of the beam specimen govern the damping characteristics of these structures. Experimental verification has been carried out to validate the analysis and study the effect of these parameters. The developed damping model for the structure is found to be in fairly good agreement with the measured data. Finally, the results of the analysis are discussed and rationalized.Keywords: Slip damping, tack welded joint, thickness ratio, inplane bending stress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495598 Characteristics of Wall Thickness Increase in Pipe Reduction Process using Planetary Rolls
Authors: Yuji Kotani, Shunsuke Kanai, Hisaki Watari
Abstract:
In recent years, global warming has become a worldwide problem. The reduction of carbon dioxide emissions is a top priority for many companies in the manufacturing industry. In the automobile industry as well, the reduction of carbon dioxide emissions is one of the most important issues. Technology to reduce the weight of automotive parts improves the fuel economy of automobiles, and is an important technology for reducing carbon dioxide. Also, even if this weight reduction technology is applied to electric automobiles rather than gasoline automobiles, reducing energy consumption remains an important issue. Plastic processing of hollow pipes is one important technology for realizing the weight reduction of automotive parts. Ohashi et al. [1],[2] present an example of research on pipe formation in which a process was carried out to enlarge a pipe diameter using a lost core, achieving the suppression of wall thickness reduction and greater pipe expansion than hydroforming. In this study, we investigated a method to increase the wall thickness of a pipe through pipe compression using planetary rolls. The establishment of a technology whereby the wall thickness of a pipe can be controlled without buckling the pipe is an important technology for the weight reduction of products. Using the finite element analysis method, we predicted that it would be possible to increase the compression of an aluminum pipe with a 3mm wall thickness by approximately 20%, and wall thickness by approximately 20% by pressing the hollow pipe with planetary rolls.Keywords: Pipe-Forming, Wall Thickness, Finite-element-method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2985597 Effect of Tube Thickness on the Face Bending for Blind-Bolted Connection to Concrete Filled Tubular Structures
Authors: Mohammed Mahmood, Walid Tizani, Carlo Sansour
Abstract:
In this paper, experimental testing and numerical analysis were used to investigate the effect of tube thickness on the face bending for concrete filled hollow sections connected to other structural members using Extended Hollobolts. Six samples were tested experimentally by applying pull-out load on the bolts. These samples were designed to fail by column face bending. The main variable in all tests is the column face thickness. Finite element analyses were also performed using ABAQUS 6.11 to extend the experimental results and to quantify the effect of column face thickness. Results show that, the column face thickness has a clear impact on the connection strength and stiffness. However, the amount of improvement in the connection stiffness by changing the column face thickness from 5mm to 6.3mm seems to be higher than that when increasing it from 6.3mm to 8mm. The displacement at which the bolts start pulling-out from their holes increased with the use of thinner column face due to the high flexibility of the section. At the ultimate strength, the yielding of the column face propagated to the column corner and there was no yielding in its walls. After the ultimate resistance is reached, the propagation of the yielding was mainly in the column face with a miner yielding in the walls.
Keywords: Anchored bolted connection, Extended Hollobolt, Column faces bending and concrete filled hollow sections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552596 Experimental Investigation on the Effect of Bond Thickness on the Interface Behaviour of Fibre Reinforced Polymer Sheet Bonded to Timber
Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews
Abstract:
The bond mechanism between timber and fibre reinforced polymer (FRP) is relatively complex and is influenced by a number of variables including bond thickness, bond width, bond length, material properties, and geometries. This study investigates the influence of bond thickness on the behaviour of interface, failure mode, and bond strength of externally bonded FRP-to-timber interface. In the present study, 106 single shear joint specimens have been investigated. Experiment results showed that higher layers of FRP increase the ultimate load carrying capacity of interface; conversely, such increase led to decrease the slip of interface. Moreover, samples with more layers of FRPs may fail in a brittle manner without noticeable warning that collapse is imminent.Keywords: FRP, single shear test, bond thickness, bond strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757595 Role of Oxide Scale Thickness Measurements in Boiler Conditions Assessment
Authors: M. Alardhi, A. Almazrouee, S. Alsaleh
Abstract:
Oxide scale thickness measurements are used in assessing the life of different components operating at high temperature environment. Such measurements provide an approximation for the temperature inside components such as reheater and superheater tubes. A number of failures were encountered in one of the boilers in one of Kuwaiti power plants. These failure were mainly in the first row of the primary super heater tubes, therefore, the specialized engineer decide to replace them during the annual shutdown. As a tool for failure analysis, oxide scale thickness measurement were used to investigate the temperature distribution in these tubes. In this paper, the oxide scale thickness of these tubes were measured and used for analysis. The measurements provide an illustration of the distribution of heat transfer of the primary superheater tubes in the boiler system. Remarks and analysis about the design of the boiler are also provided.
Keywords: Super heater tubes, oxide scale measurements, overheating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3730594 Effects of Mo Thickness on the Properties of AZO/Mo/AZO Multilayer Thin Films
Authors: Hung-Wei Wu, Chien-Hsun Chu, Ru-Yuan Yang, Chin-Min Hsiung
Abstract:
In this paper, we proposed the effects of Mo thickness on the properties of AZO/Mo/AZO multilayer thin films for opto-electronics applications. The structural, optical and electrical properties of AZO/Mo/AZO thin films were investigated. Optimization of the thin films coatings resulted with low resistivity of 9.98 × 10-5 )-cm, mobility of 12.75 cm2/V-s, carrier concentration of 1.05 × 1022 cm-3, maximum transmittance of 79.13% over visible spectrum of 380 – 780 nm and Haacke figure of merit (FOM) are 5.95 × 10-2 )-1 under Mo layer thickness of 15 nm. These results indicate an alternative candidate for use as a transparent electrode in solar cells and various displays applications.Keywords: Aluminum-doped zinc oxide, AZO, multilayer, RF magnetron sputtering, AZO/Mo/AZO, thin film, transparent conductive oxides.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2716593 Advanced Model for Calculation of the Neutral Axis Shifting and the Wall Thickness Distribution in Rotary Draw Bending Processes
Abstract:
Rotary draw bending is a method which is being used in tube forming. In the tube bending process, the neutral axis moves towards the inner arc and the wall thickness distribution changes for tube’s cross section. Thinning takes place in the outer arc of the tube (extrados) due to the stretching of the material, whereas thickening occurs in the inner arc of the tube (intrados) due to the comparison of the material. The calculations of the wall thickness distribution, neutral axis shifting, and strain distribution have not been accurate enough, so far. The previous model (the geometrical model) describes the neutral axis shifting and wall thickness distribution. The geometrical of the tube, bending radius and bending angle are considered in the geometrical model, while the influence of the material properties of the tube forming are ignored. The advanced model is a modification of the previous model using material properties that depends on the correction factor. The correction factor is a purely empirically determined factor. The advanced model was compared with the Finite element simulation (FE simulation) using a different bending factor (Bf =bending radius/ diameter of the tube), wall thickness (Wf = diameter of the tube/ wall thickness), and material properties (strain hardening exponent). Finite element model of rotary draw bending has been performed in PAM-TUBE program (version: 2012). Results from the advanced model resemble the FE simulation and the experimental test.
Keywords: Rotary draw bending, material properties, neutral axis shifting, wall thickness distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3917592 Effect of Thickness on Structural and Electrical Properties of CuAlS2 Thin Films Grown by Two Stage Vacuum Thermal Evaporation Technique
Authors: A. U. Moreh, M. Momoh, H. N. Yahya, B. Hamza, I. G. Saidu, S. Abdullahi
Abstract:
This work studies the effect of thickness on structural and electrical properties of CuAlS2 thin films grown by two stage vacuum thermal evaporation technique. CuAlS2 thin films of thicknesses 50nm, 100nm and 200nm were deposited on suitably cleaned corning 7059 glass substrate at room temperature (RT). In the first stage Cu-Al precursors were grown at room temperature by thermal evaporation and in the second stage Cu-Al precursors were converted to CuAlS2 thin films by sulfurisation under sulfur atmosphere at the temperature of 673K. The structural properties of the films were examined by X-ray diffraction (XRD) technique while electrical properties of the specimens were studied using four point probe method. The XRD studies revealed that the films are of crystalline in nature having tetragonal structure. The variations of the micro-structural parameters, such as crystallite size (D), dislocation density ( ), and micro-strain ( ), with film thickness were investigated. The results showed that the crystallite sizes increase as the thickness of the film increases. The dislocation density and micro-strain decreases as the thickness increases. The resistivity ( ) of CuAlS2 film is found to decrease with increase in film thickness, which is related to the increase of carrier concentration with film thickness. Thus thicker films exhibit the lowest resistivity and high carrier concentration, implying these are the most conductive films. Low electrical resistivity and high carrier concentration are widely used as the essential components in various optoelectronic devices such as light-emitting diode and photovoltaic cells.Keywords: Crystalline, CuAlS2, evaporation, resistivity, sulfurisation, thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656591 Process Parameter Optimization in Resistance Spot Welding of Dissimilar Thickness Materials
Authors: Pradeep M., N. S. Mahesh, Raja Hussain
Abstract:
Resistance spot welding (RSW) has been used widely to join sheet metals. It has been a challenge to get required weld quality in spot welding of dissimilar thickness materials. Weld parameters are not generally available in standards for thickness beyond 4mm. This paper presents the welding process design and parameter optimization of RSW used in joining of low carbon steel sheet of thickness 0.8 mm and metal strips of cross section 10 x 5mm for electrical motor applications. Taguchi quality design was adopted for weld current and time optimization using L9 orthogonal array. Optimum process parameters (current- 3.5kA and time- 10 cycles) were obtained from the Taguchi analysis and shear test results. Confirmation experiment result revealed that the weld quality was within acceptable interval. Further, numerical simulation of RSW process was carried out with selected weld parameters to quantify the temperature at faying surface and check for formation of appropriate nugget. The nugget geometry measured after peel test and predicted from numerical validation method were similar and in accordance with the standards.
Keywords: Resistance spot welding, dissimilar thickness, weld parameters, Taguchi method, numerical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5189590 Dynamic Analysis of Viscoelastic Plates with Variable Thickness
Authors: Gülçin Tekin, Fethi Kadıoğlu
Abstract:
In this study, the dynamic analysis of viscoelastic plates with variable thickness is examined. The solutions of dynamic response of viscoelastic thin plates with variable thickness have been obtained by using the functional analysis method in the conjunction with the Gâteaux differential. The four-node serendipity element with four degrees of freedom such as deflection, bending, and twisting moments at each node is used. Additionally, boundary condition terms are included in the functional by using a systematic way. In viscoelastic modeling, Three-parameter Kelvin solid model is employed. The solutions obtained in the Laplace-Carson domain are transformed to the real time domain by using MDOP, Dubner & Abate, and Durbin inverse transform techniques. To test the performance of the proposed mixed finite element formulation, numerical examples are treated.
Keywords: Dynamic analysis, inverse Laplace transform techniques, mixed finite element formulation, viscoelastic plate with variable thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031589 Study of the Appropriate Factors for Laminated Bamboo Bending by Design of Experiments
Authors: Vanchai Laemlaksakul, Sompoap Talabgaew
Abstract:
This research studied the appropriate factors and conditions for laminated bamboo bending by Design of Experiments (DOE). The interested factors affecting the spring back in laminates bamboo were (1) time, (2) thickness, and (3) frequency. This experiment tested the specimen by using high frequency machine and measured its spring back immediately and next 24 hours for comparing the spring back ratio. Results from the experiments showed that significant factors having major influence to bending of laminates bamboo were thickness and frequency. The appropriate conditions of thickness and frequency were 4 mm. and 1.5 respectively.
Keywords: Bamboo, bending, spring back, design of experiments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788588 The Surface Adsorption of Nano-pore Template
Authors: M. J. Kao, S.F. Chang, C.C. Chen, C.G. Kuo
Abstract:
This paper aims to fabricated high quality anodic aluminum oxide (AAO) film by anodization method. AAO pore size, pore density, and film thickness can be controlled in 10~500 nm, 108~1011 pore.cm-2, and 1~100 μm. AAO volume and surface area can be computed based on structural parameters such as thickness, pore size, pore density, and sample size. Base on the thetorical calculation, AAO has 100 μm thickness with 15 nm, 60 nm, and 500 nm pore diameters AAO surface areas are 1225.2 cm2, 3204.4 cm2, and 549.7 cm2, respectively. The large unit surface area which is useful for adsorption application. When AAO adsorbed pH indictor of bromphenol blue presented a sensitive pH detection of solution change. This testing method can further be used for the precise measurement of biotechnology, convenience measurement of industrial engineering.Keywords: AAO, Pore, Surface area, Adsorption, Indicator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134587 The Free Vibration Analysis of Honeycomb Sandwich Beam Using 3D and Continuum Model
Authors: G. Sakar, F. Ç. Bolat
Abstract:
In this study free vibration analysis of aluminum honeycomb sandwich structures were carried out experimentally and numerically. The natural frequencies and mode shapes of sandwich structures fabricated with different configurations for clamped-free boundary condition were determined. The effects of lower and upper face sheet thickness, the core material thickness, cell diameter, cell angle and foil thickness on the vibration characteristics were examined. The numerical studies were performed with ANSYS package. While the sandwich structures were modeled in ANSYS the continuum model was used. Later, the numerical results were compared with the experimental findings.Keywords: Sandwich structure, free vibration, numeric analysis, 3D model, continuum model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2988586 A Study on Numerical Modelling of Rigid Pavement: Temperature and Thickness Effect
Authors: Amin Chegenizadeh, Mahdi Keramatikerman, Hamid Nikraz
Abstract:
Pavement engineering plays a significant role to develop cost effective and efficient highway and road networks. In general, pavement regarding structure is categorized in two core group namely flexible and rigid pavements. There are various benefits in application of rigid pavement. For instance, they have a longer life and lower maintenance costs in compare with the flexible pavement. In rigid pavement designs, temperature and thickness are two effective parameters that could widely affect the total cost of the project. In this study, a numerical modeling using Kenpave-Kenslab was performed to investigate the effect of these two important parameters in the rigid pavement.Keywords: Rigid pavement, Kenpave, Kenslab, thickness, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369585 Rheological Modeling for Production of High Quality Polymeric
Authors: H.Hosseini, A.A. Azemati
Abstract:
The fundamental defect inherent to the thermoforming technology is wall-thickness variation of the products due to inadequate thermal processing during production of polymer. A nonlinear viscoelastic rheological model is implemented for developing the process model. This model describes deformation process of a sheet in thermoforming process. Because of relaxation pause after plug-assist stage and also implementation of two stage thermoforming process have minor wall-thickness variation and consequently better mechanical properties of polymeric articles. For model validation, a comparative analysis of the theoretical and experimental data is presented.Keywords: High-quality polymeric article, Thermal Processing, Rheological model, Minor wall-thickness variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614584 Impact of Gate Insulation Material and Thickness on Pocket Implanted MOS Device
Authors: Muhibul Haque Bhuyan
Abstract:
This paper reports on the impact study with the variation of the gate insulation material and thickness on different models of pocket implanted sub-100 nm n-MOS device. The gate materials used here are silicon dioxide (SiO2), aluminum silicate (Al2SiO5), silicon nitride (Si3N4), alumina (Al2O3), hafnium silicate (HfSiO4), tantalum pentoxide (Ta2O5), hafnium dioxide (HfO2), zirconium dioxide (ZrO2), and lanthanum oxide (La2O3) upon a p-type silicon substrate material. The gate insulation thickness was varied from 2.0 nm to 3.5 nm for a 50 nm channel length pocket implanted n-MOSFET. There are several models available for this device. We have studied and simulated threshold voltage model incorporating drain and substrate bias effects, surface potential, inversion layer charge, pinch-off voltage, effective electric field, inversion layer mobility, and subthreshold drain current models based on two linear symmetric pocket doping profiles. We have changed the values of the two parameters, viz. gate insulation material and thickness gradually fixing the other parameter at their typical values. Then we compared and analyzed the simulation results. This study would be helpful for the nano-scaled MOS device designers for various applications to predict the device behavior.Keywords: Linear symmetric pocket profile, pocket implanted n-MOS Device, model, impact of gate material, insulator thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389583 The Effect of Size, Thickness, and Type of the Bonding Interlayer on Bullet Proof Glass as per EN 1063
Authors: Rabinder Singh Bharj, Sandeep Kumar
Abstract:
This investigation presents preparation of sample and analysis of results of ballistic impact test as per EN 1063 on the size, thickness, number, position, and type of the bonding interlayer Polyvinyl Butyral, Poly Carbonate and Poly Urethane on bullet proof glass. It was observed that impact energy absorbed by bullet proof glass increases with the increase of the total thickness from 33mm to 42mm to 51mm for all the three samples respectively. Absorption impact energy is greater for samples with more number of bonding interlayers than with the number of glass layers for uniform increase in total sample thickness. There is no effect on the absorption impact energy with the change in position of the bonding interlayer.
Keywords: Absorbed energy, bullet proof glass, laminated glass, safety glass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5073582 Mechanical Properties of Die-Cast Nonflammable Mg Alloy
Authors: Myoung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha
Abstract:
Tensile specimens of nonflammable AZ91D Mg alloy were fabricated in this study via cold chamber die-casting process. Dimensions of tensile specimens were 25mm in length, 4mm in width, and 0.8 or 3.0mm in thickness. Microstructure observation was conducted before and after tensile tests at room temperature. In the die casting process, various injection distances from 150 to 260mm were employed to obtain optimum process conditions. Distribution of Al12Mg17 phase was the key factor to determine the mechanical properties of die-cast Mg alloy. Specimens with 3mm of thickness showed superior mechanical properties to those with 0.8mm of thickness. Closed networking of Al12Mg17 phase along grain boundary was found to be detrimental to mechanical properties of die-cast Mg alloy.
Keywords: Non-flammable magnesium alloy, AZ91D, die-casting, microstructure, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2567581 New Exact Solutions for the (3+1)-Dimensional Breaking Soliton Equation
Authors: Mohammad Taghi Darvishi, Maliheh Najafi, Mohammad Najafi
Abstract:
In this work, we obtain some analytic solutions for the (3+1)-dimensional breaking soliton after obtaining its Hirota-s bilinear form. Our calculations show that, three-wave method is very easy and straightforward to solve nonlinear partial differential equations.
Keywords: (3+1)-dimensional breaking soliton equation, Hirota'sbilinear form.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672580 Automated Thickness Measurement of Retinal Blood Vessels for Implementation of Clinical Decision Support Systems in Diagnostic Diabetic Retinopathy
Authors: S.Jerald Jeba Kumar, M.Madheswaran
Abstract:
The structure of retinal vessels is a prominent feature, that reveals information on the state of disease that are reflected in the form of measurable abnormalities in thickness and colour. Vascular structures of retina, for implementation of clinical diabetic retinopathy decision making system is presented in this paper. Retinal Vascular structure is with thin blood vessel, whose accuracy is highly dependent upon the vessel segmentation. In this paper the blood vessel thickness is automatically detected using preprocessing techniques and vessel segmentation algorithm. First the capture image is binarized to get the blood vessel structure clearly, then it is skeletonised to get the overall structure of all the terminal and branching nodes of the blood vessels. By identifying the terminal node and the branching points automatically, the main and branching blood vessel thickness is estimated. Results are presented and compared with those provided by clinical classification on 50 vessels collected from Bejan Singh Eye hospital..Keywords: Diabetic retinopathy, Binarization, SegmentationClinical Decision Support Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043579 Elastic Stress Analysis of Annular Bi-Material Discs with Variable Thickness under Mechanical and Thermomechanical Loads
Authors: E. Çetin, A. Kurşun, Ş. Aksoy, M. Tunay Çetin
Abstract:
The closed form study deals with elastic stress analysis of annular bi-material discs with variable thickness subjected to the mechanical and thermomechanical loads. Those discs have many applications in the aerospace industry, such as gas turbines and gears. Those discs normally work under thermal and mechanical loads. Their life cycle can increase when stress components are minimized. Each material property is assumed to be isotropic. The results show that material combinations and thickness of profiles play an important role in determining the responses of bi-material discs and an optimal design of those structures. Stress distribution is investigated and results are shown as graphs.
Keywords: Bi-material discs, elastic stress analysis, mechanical loads, rotating discs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2429578 Thermal and Starvation Effects on Lubricated Elliptical Contacts at High Rolling/Sliding Speeds
Authors: Vinod Kumar, Surjit Angra
Abstract:
The objective of this theoretical study is to develop simple design formulas for the prediction of minimum film thickness and maximum mean film temperature rise in lightly loaded high-speed rolling/sliding lubricated elliptical contacts incorporating starvation effect. Herein, the reported numerical analysis focuses on thermoelastohydrodynamically lubricated rolling/sliding elliptical contacts, considering the Newtonian rheology of lubricant for wide range of operating parameters, namely load characterized by Hertzian pressure (PH = 0.01 GPa to 0.10 GPa), rolling speed (>10 m/s), slip parameter (S varies up to 1.0), and ellipticity ratio (k = 1 to 5). Starvation is simulated by systematically reducing the inlet supply. This analysis reveals that influences of load, rolling speed, and level of starvation are significant on the minimum film thickness. However, the maximum mean film temperature rise is strongly influenced by slip in addition to load, rolling speed, and level of starvation. In the presence of starvation, reduction in minimum film thickness and increase in maximum mean film temperature are observed. Based on the results of this study, empirical relations are developed for the prediction of dimensionless minimum film thickness and dimensionless maximum mean film temperature rise at the contacts in terms of various operating parameters.
Keywords: Starvation, lubrication, elliptical contact, traction, minimum film thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487577 Simulation of Reflection Loss for Carbon and Nickel-Carbon Thin Films
Authors: M. Emami, R. Tarighi, R. Goodarzi
Abstract:
Maximal radar wave absorbing cannot be achieved by shaping alone. We have to focus on the parameters of absorbing materials such as permittivity, permeability, and thickness so that best absorbing according to our necessity can happen. The real and imaginary parts of the relative complex permittivity (εr' and εr") and permeability (µr' and µr") were obtained by simulation. The microwave absorbing property of carbon and Ni(C) is simulated in this study by MATLAB software; the simulation was in the frequency range between 2 to 12 GHz for carbon black (C), and carbon coated nickel (Ni(C)) with different thicknesses. In fact, we draw reflection loss (RL) for C and Ni-C via frequency. We have compared their absorption for 3-mm thickness and predicted for other thicknesses by using of electromagnetic wave transmission theory. The results showed that reflection loss position changes in low frequency with increasing of thickness. We found out that, in all cases, using nanocomposites as absorbance cannot get better results relative to pure nanoparticles. The frequency where absorption is maximum can determine the best choice between nanocomposites and pure nanoparticles. Also, we could find an optimal thickness for long wavelength absorbing in order to utilize them in protecting shields and covering.
Keywords: Absorbing, carbon, carbon nickel, frequency, thicknesses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895576 Some Complexiton Type Solutions of the (3+1)-Dimensional Jimbo-Miwa Equation
Authors: Mohammad Taghi Darvishi, Mohammad Najafi
Abstract:
By means of the extended homoclinic test approach (shortly EHTA) with the aid of a symbolic computation system such as Maple, some complexiton type solutions for the (3+1)-dimensional Jimbo-Miwa equation are presented.
Keywords: Jimbo-Miwa equation, painleve analysis, Hirota's bilinear form, computerized symbolic computation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894575 ILMI Approach for Robust Output Feedback Control of Induction Machine
Authors: Abdelwahed Echchatbi, Adil Rizki, Ali Haddi, Nabil Mrani, Noureddine Elalami
Abstract:
In this note, the robust static output feedback stabilisation of an induction machine is addressed. The machine is described by a non homogenous bilinear model with structural uncertainties, and the feedback gain is computed via an iterative LMI (ILMI) algorithm.Keywords: Induction machine, Static output feedback, robust stabilisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878574 Physical and Electrical Characterization of ZnO Thin Films Prepared by Sol-Gel Method
Authors: Mohammad Reza Tabatabaei, Ali Vaseghi Ardekani
Abstract:
In this paper, Zinc Oxide (ZnO) thin films are deposited on glass substrate by sol-gel method. The ZnO thin films with well defined orientation were acquired by spin coating of zinc acetate dehydrate monoethanolamine (MEA), de-ionized water and isopropanol alcohol. These films were pre-heated at 275°C for 10 min and then annealed at 350°C, 450°C and 550°C for 80 min. The effect of annealing temperature and different thickness on structure and surface morphology of the thin films were verified by Atomic Force Microscopy (AFM). It was found that there was a significant effect of annealing temperature on the structural parameters of the films such as roughness exponent, fractal dimension and interface width. Thin films also were characterizied by X-ray Diffractometery (XRD) method. XRD analysis revealed that the annealed ZnO thin films consist of single phase ZnO with wurtzite structure and show the c-axis grain orientation. Increasing annealing temperature increased the crystallite size and the c-axis orientation of the film after 450°C. Also In this study, ZnO thin films in different thickness have been prepared by sol-gel method on the glass substrate at room temperature. The thicknesses of films are 100, 150 and 250 nm. Using fractal analysis, morphological characteristics of surface films thickness in amorphous state were investigated. The results show that with increasing thickness, surface roughness (RMS) and lateral correlation length (ξ) are decreased. Also, the roughness exponent (α) and growth exponent (β) were determined to be 0.74±0.02 and 0.11±0.02, respectively.
Keywords: ZnO, Thin film, Fractal analysis, Morphology, AFM, annealing temperature, different thickness, XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3488573 Surface Roughness Effects in Pure Sliding EHL Line Contacts with Carreau-Type Shear-Thinning Lubricants
Authors: Punit Kumar, Niraj Kumar
Abstract:
The influence of transverse surface roughness on EHL characteristics has been investigated numerically using an extensive set of full EHL line contact simulations for shear-thinning lubricants under pure sliding condition. The shear-thinning behavior of lubricant is modeled using Carreau viscosity equation along with Doolittle-Tait equation for lubricant compressibility. The surface roughness is assumed to be sinusoidal and it is present on the stationary surface. It is found that surface roughness causes sharp pressure peaks along with reduction in central and minimum film thickness. With increasing amplitude of surface roughness, the minimum film thickness decreases much more rapidly as compared to the central film thickness.
Keywords: EHL, Carreau, Shear-thinning, Surface Roughness, Amplitude, Wavelength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335