Search results for: Axial Projection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 413

Search results for: Axial Projection

383 Impedance Matching of Axial Mode Helical Antennas

Authors: Hossein Mardani, Neil Buchanan, Robert Cahill, Vincent Fusco

Abstract:

In this paper, we study the input impedance characteristics of axial mode helical antennas to find an effective way for matching it to 50 Ω. The study is done on the important matching parameters such as like wire diameter and helix to the ground plane gap. It is intended that these parameters control the matching without detrimentally affecting the radiation pattern. Using transmission line theory, a simple broadband technique is proposed, which is applicable for perfect matching of antennas with similar design parameters. We provide design curves to help to choose the proper dimensions of the matching section based on the antenna’s unmatched input impedance. Finally, using the proposed technique, a 4-turn axial mode helix is designed at 2.5 GHz center frequency and the measurement results of the manufactured antenna will be included. This parametric study gives a good insight into the input impedance characteristics of axial mode helical antennas and the proposed impedance matching approach provides a simple, useful method for matching these types of antennas.

Keywords: Antenna, helix, helical, axial mode, wireless power transfer, impedance matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
382 Lateral Behavior of Concrete

Authors: Ali Khajeh Samani, Mario M. Attard

Abstract:

Lateral expansion is a factor defining the level of confinement in reinforced concrete columns. Therefore, predicting the lateral strain relationship with axial strain becomes an important issue. Measuring lateral strains in experiments is difficult and only few report experimental lateral strains. Among the existing analytical formulations, two recent models are compared with available test results in this paper with shortcomings highlighted. A new analytical model is proposed here for lateral strain axial strain relationship and is based on the supposition that the concrete behaves linear elastic in the early stages of loading and then nonlinear hardening up to the peak stress and then volumetric expansion. The proposal for the lateral strain axial strain relationship after the peak stress is mainly based on the hypothesis that the plastic lateral strain varies linearly with the plastic axial strain and it is shown that this is related to the lateral confinement level.

Keywords: Confined Concrete, Lateral Strain, Triaxial test, Postpeak behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
381 Movement of Location of Tip Vortex Cavitation along Blade Edge due to Reduction of Flow Rate in an Axial Pump

Authors: Mohammad T. Shervani-Tabar, Navid Shervani-Tabar

Abstract:

Tip vortex cavitation is one of well known patterns of cavitation phenomenon which occurs in axial pumps. This pattern of cavitation occurs due to pressure difference between the pressure and suction sides of blades of an axial pump. Since the pressure in the pressure side of the blade is higher than the pressure in its suction side, thus a very small portion of liquid flow flows back from pressure side to the suction side. This fact is cause of tip vortex cavitation and gap cavitation that may occur in axial pumps. In this paper the results of our experimental investigation about movement of tip vortex cavitation along blade edge due to reduction of pump flow rate in an axial pump is reported. Results show that reduction of pump flow rate in conjunction with increasing of outlet pressure causes movement of tip vortex cavitation along blade edge towards the blade tip. Results also show that by approaching tip vortex cavitation to the blade tip, vortex tip pattern of cavitation replaces with a cavitation phenomenon on the blade tip. Furthermore by further reduction of pump flow rate and increasing of outlet pressure, an unstable cavitation phenomenon occurs between each blade leading edge and the next blade trailing edge.

Keywords: Axial Flow Pump, Cavitation, Gap Cavitation, Tip Vortex Cavitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
380 Probabilistic Center Voting Method for Subsequent Object Tracking and Segmentation

Authors: Suryanto, Hyo-Kak Kim, Sang-Hee Park, Dae-Hwan Kim, Sung-Jea Ko

Abstract:

In this paper, we introduce a novel algorithm for object tracking in video sequence. In order to represent the object to be tracked, we propose a spatial color histogram model which encodes both the color distribution and spatial information. The object tracking from frame to frame is accomplished via center voting and back projection method. The center voting method has every pixel in the new frame to cast a vote on whereabouts the object center is. The back projection method segments the object from the background. The segmented foreground provides information on object size and orientation, omitting the need to estimate them separately. We do not put any assumption on camera motion; the proposed algorithm works equally well for object tracking in both static and moving camera videos.

Keywords: center voting, back projection, object tracking, size adaptation, non-stationary camera tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
379 How the Kinematic Swimming of European Eel Anguilla Anguilla Changes from Axial to Non-axial Velocity Flow

Authors: Younes Matar, Fabien Candelier, Camille Solliec

Abstract:

The aim of this study is to investigate the kinematics of undulatory elongated fish swimming against a velocity flow. We perform the experiments on European eel Anguilla Anguilla swimming in a hydrodynamic re-circulating tank with the velocity flow fixed at 0.2 m/s. We find that the undulating shape of overall eel body changes when it swims slantwise from the flow direction, by comparison to axial undulation shape. We examine this kinematics and we propose a general equation describing the lateral position of undulation body taking into account the direction of the eel-s swimming.

Keywords: Undulatory swimming, maneuver, eel Anguilla Anguilla, biomechanic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
378 Shape Optimization of Impeller Blades for a Bidirectional Axial Flow Pump using Polynomial Surrogate Model

Authors: I. S. Jung, W. H. Jung, S. H. Baek, S. Kang

Abstract:

This paper describes the shape optimization of impeller blades for a anti-heeling bidirectional axial flow pump used in ships. In general, a bidirectional axial pump has an efficiency much lower than the classical unidirectional pump because of the symmetry of the blade type. In this paper, by focusing on a pump impeller, the shape of blades is redesigned to reach a higher efficiency in a bidirectional axial pump. The commercial code employed in this simulation is CFX v.13. CFD result of pump torque, head, and hydraulic efficiency was compared. The orthogonal array (OA) and analysis of variance (ANOVA) techniques and surrogate model based optimization using orthogonal polynomial, are employed to determine the main effects and their optimal design variables. According to the optimal design, we confirm an effective design variable in impeller blades and explain the optimal solution, the usefulness for satisfying the constraints of pump torque and head.

Keywords: Bidirectional axial flow pump, Impeller blade, CFD, Analysis of variance, Polynomial surrogate model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3767
377 On the Exact Solution of Non-Uniform Torsion for Beams with Axial Symmetric Cross-Section

Authors: A.Campanile, M. Mandarino, V. Piscopo, A. Pranzitelli

Abstract:

In the traditional theory of non-uniform torsion the axial displacement field is expressed as the product of the unit twist angle and the warping function. The first one, variable along the beam axis, is obtained by a global congruence condition; the second one, instead, defined over the cross-section, is determined by solving a Neumann problem associated to the Laplace equation, as well as for the uniform torsion problem. So, as in the classical theory the warping function doesn-t punctually satisfy the first indefinite equilibrium equation, the principal aim of this work is to develop a new theory for non-uniform torsion of beams with axial symmetric cross-section, fully restrained on both ends and loaded by a constant torque, that permits to punctually satisfy the previous equation, by means of a trigonometric expansion of the axial displacement and unit twist angle functions. Furthermore, as the classical theory is generally applied with good results to the global and local analysis of ship structures, two beams having the first one an open profile, the second one a closed section, have been analyzed, in order to compare the two theories.

Keywords: Non-uniform torsion, Axial symmetric cross-section, Fourier series, Helmholtz equation, FE method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
376 The Modified Eigenface Method using Two Thresholds

Authors: Yan Ma, ShunBao Li

Abstract:

A new approach is adopted in this paper based on Turk and Pentland-s eigenface method. It was found that the probability density function of the distance between the projection vector of the input face image and the average projection vector of the subject in the face database, follows Rayleigh distribution. In order to decrease the false acceptance rate and increase the recognition rate, the input face image has been recognized using two thresholds including the acceptance threshold and the rejection threshold. We also find out that the value of two thresholds will be close to each other as number of trials increases. During the training, in order to reduce the number of trials, the projection vectors for each subject has been averaged. The recognition experiments using the proposed algorithm show that the recognition rate achieves to 92.875% whilst the average number of judgment is only 2.56 times.

Keywords: Eigenface, Face Recognition, Threshold, Rayleigh Distribution, Feature Extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
375 A Descent-projection Method for Solving Monotone Structured Variational Inequalities

Authors: Min Sun, Zhenyu Liu

Abstract:

In this paper, a new descent-projection method with a new search direction for monotone structured variational inequalities is proposed. The method is simple, which needs only projections and some function evaluations, so its computational load is very tiny. Under mild conditions on the problem-s data, the method is proved to converges globally. Some preliminary computational results are also reported to illustrate the efficiency of the method.

Keywords: variational inequalities, monotone function, global convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
374 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics

Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari

Abstract:

This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.

Keywords: Axial loading, energy absorption performance, computational mechanics, crashworthiness behavior, deformation mode, thin-walled tubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
373 Air flow and Heat Transfer Modeling of an Axial Flux Permanent Magnet Generator

Authors: Airoldi G., Bumby J. R., Dominy C., G.L. Ingram, Lim C. H., Mahkamov K., N. L. Brown, A. Mebarki, M. Shanel

Abstract:

Axial Flux Permanent Magnet (AFPM) Machines require effective cooling due to their high power density. The detrimental effects of overheating such as degradation of the insulation materials, magnets demagnetization, and increase of Joule losses are well known. This paper describes the CFD simulations performed on a test rig model of an air cooled Axial Flux Permanent Magnet (AFPM) generator built at Durham University to identify the temperatures and heat transfer coefficient on the stator. The Reynolds Averaged Navier-Stokes and the Energy equations are solved and the flow pattern and heat transfer developing inside the machine are described. The Nusselt number on the stator surfaces has been found. The dependency of the heat transfer on the flow field is described temperature field obtained. Tests on an experimental are undergoing in order to validate the CFD results.

Keywords: Axial flux permanent magnet machines, thermal modeling, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
372 Development of New Cooling System using Nacelle Duct

Authors: Minho Ha, SeungHeo, Cheolung Cheong, Park K. Y.

Abstract:

In this paper, a new cooling system using a nacelle duct is proposed for the mechanical room in the household refrigerator. The conventional mechanical room consists of a condenser, a compressor and an axial fan. The axial fan is mainly responsible for cooling the condenser and the compressor. The new cooling system is developed by replacing the axial fan with the nacelle duct including the small centrifugal fan. The parametric study is carried out to find the optimum designs of the nacelle duct in terms of performance and efficiency. Through this study, it is revealed that the new system can reduce the space, electrical power and noise compared with the conventional system

Keywords: Centrifugal Fan, Cooling Fan, Nacelle Duct, Refrigerator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
371 The Effect of Main Factors on Forces during FSJ Processing of AA2024 Aluminum

Authors: Dunwen Zuo, Yongfang Deng, Bo Song

Abstract:

An attempt is made here to measure the forces of three directions, under conditions of different feed speeds, different tilt angles of tool and without or with the pin on the tool, by using octagonal ring dynamometer in the AA2024 aluminum FSJ (Friction Stir Joining) process, and investigate how four main factors influence forces in the FSJ process. It is found that, high feed speed lead to small feed force and small lateral force, but high feed speed leads to large feed force in the stable joining stage of process. As the rotational speed increasing, the time of axial force drop from the maximum to the minimum required increased in the push-up process. In the stable joining stage, the rotational speed has little effect on the feed force; large rotational speed leads to small lateral force and axial force. The maximum axial force increases as the tilt angle of tool increases at the downward movement stage. At the moment of start feeding, as tilt angle of tool increases, the amplitudes of the axial force increasing become large. In the stable joining stage, with the increase of tilt angle of tool, the axial force is increased, the lateral force is decreased, and the feed force almost unchanged. The tool with pin will decrease axial force in the downward movement stage. The feed force and lateral force will increase, but the axial force will reduced in the stable joining stage by using the tool with pin compare to by using the tool without pin.

Keywords: FSJ, force factor, AA2024, friction stir joining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1132
370 Effect of Non-Crimp Fabric Structure on Mechanical Properties of Laminates

Authors: Hireni R. Mankodi, D. J. Chudasama

Abstract:

The textile preforms play a key role in providing the mechanical properties and gives the idea about selection parameter of preforms to improve the quality and performance of laminates. The main objectives of this work are to study the effect of non-crimp fabric preform structure in final properties of laminates. It has been observed that the multi-axial preform give better mechanical properties of laminates as compared to woven and biaxial fabrics. This study investigated the effect of different non-crimp glass preform structure on tensile strength, bending and compression properties of glass laminates. The different woven, bi-axial and multi-axial fabrics with similar GSM used to manufacture the laminates using polyester resin. The structural and mechanical properties of preform and laminates were studied using standard methods. It has been observed that the glass fabric geometry, including type of weaves, warps and filling density and number of layer plays significant role in deciding mechanical properties of laminates.

Keywords: Preform, non-crimp, laminates, bi-axial, multiaxial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160
369 An Experimental Study of Tip Vortex Cavitation Inception in an Axial Flow Pump

Authors: Mohammad Taghi Shervani Tabar, Zahra Poursharifi

Abstract:

The interaction of the blade tip with the casing boundary layer and the leakage flow may lead to a kind of cavitation namely tip vortex cavitation. In this study, the onset of tip vortex cavitation was experimentally investigated in an axial flow pump. For a constant speed and a fixed angle of attack and by changing the flow rate, the pump head, input power, output power and efficiency were calculated and the pump characteristic curves were obtained. The cavitation phenomenon was observed with a camera and a stroboscope. Finally, the critical flow region, which tip vortex cavitation might have occurred, was identified. The results show that just by adjusting the flow rate, out of the specified region, the possibility of occurring tip vortex cavitation, decreases to a great extent.

Keywords: Axial flow pump, Gap cavitation, Leakage vortex, Tip vortex cavitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
368 Design and Simulation of Low Speed Axial Flux Permanent Magnet (AFPM) Machine

Authors: Ahmad Darabi, Hassan Moradi, Hossein Azarinfar

Abstract:

In this paper presented initial design of Low Speed Axial Flux Permanent Magnet (AFPM) Machine with Non-Slotted TORUS topology type by use of certain algorithm (Appendix). Validation of design algorithm studied by means of selected data of an initial prototype machine. Analytically design calculation carried out by means of design algorithm and obtained results compared with results of Finite Element Method (FEM).

Keywords: Axial Flux Permanent Magnet (AFPM) Machine, Design Algorithm, Finite Element Method (FEM), TORUS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3291
367 Evaluation of Stiffness and Damping Coefficients of Multiple Axial Groove Water Lubricated Bearing Using Computational Fluid Dynamics

Authors: Neville Fernandes, Satish Shenoy B., Raghuvir Pai B., Rammohan S. Pai B, Shrikanth Rao.D

Abstract:

This research details a Computational Fluid Dynamics (CFD) approach to model fluid flow in a journal bearing with 8 equispaced semi-circular axial grooves. Water is used as the lubricant and is fed from one end of the bearing to the other, under pressure. The geometry of the bearing is modeled using a commercially available modeling software GAMBIT and the flow analysis is performed using a dedicated CFD analysis software FLUENT. The pressure distribution in the bearing clearance is obtained from FLUENT for various whirl ratios and is used to calculate the hydrodynamic force components in the radial and tangential direction of the bearing. These values along with the various whirl speeds can be used to do a regression analysis to determine the stiffness and damping coefficients. The values obtained are then compared with the stiffness and damping coefficients of a 3 Axial groove water lubricated journal bearing and those obtained from a FORTRAN code for a similar bearing.

Keywords: CFD, multiple axial groove, Water lubricated, Stiffness and Damping Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3126
366 Genetic Programming Based Data Projections for Classification Tasks

Authors: César Estébanez, Ricardo Aler, José M. Valls

Abstract:

In this paper we present a GP-based method for automatically evolve projections, so that data can be more easily classified in the projected spaces. At the same time, our approach can reduce dimensionality by constructing more relevant attributes. Fitness of each projection measures how easy is to classify the dataset after applying the projection. This is quickly computed by a Simple Linear Perceptron. We have tested our approach in three domains. The experiments show that it obtains good results, compared to other Machine Learning approaches, while reducing dimensionality in many cases.

Keywords: Classification, genetic programming, projections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
365 Flow Characteristics Impeller Change of an Axial Turbo Fan

Authors: Young-Kyun Kim, Tae-Gu Lee, Jin-Huek Hur, Sung-Jae Moon, Jae-Heon Lee

Abstract:

In this paper, three dimensional flow characteristic was presented by a revision of an impeller of an axial turbo fan for improving the airflow rate and the static pressure. TO consider an incompressible steady three-dimensional flow, the RANS equations are used as the governing equations, and the standard k-ε turbulence model is chosen. The pitch angles of 44°, 54°, 59°, and 64° are implemented for the numerical model. The numerical results show that airflow rates of each pitch angle are 1,175 CMH, 1,270 CMH, 1,340 CMH, and 800 CMH, respectively. The difference of the static pressure at impeller inlet and outlet are 120 Pa, 214 Pa, 242 Pa, and 60 Pa according to respective pitch angles. It means that the 59° of the impeller pitch angle is optimal to improve the airflow rate and the static pressure.

Keywords: Axial turbo fan, Impeller, Blade, Pitch angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2687
364 Experimental Investigation of the Maximum Axial Force in the Folding Process of Aluminum Square Columns

Authors: A. Niknejad, G. H. Liaghat, A. H. Behravesh, H. Moslemi Naeini

Abstract:

In this paper, a semi empirical formula is presented based on the experimental results to predict the first pick (maximum force) value in the instantaneous folding force- axial distance diagram of a square column. To achieve this purpose, the maximum value of the folding force was assumed to be a function of the average folding force. Using the experimental results, the maximum value of the force necessary to initiate the first fold in a square column was obtained with respect to the geometrical quantities and material properties. Finally, the results obtained from the semi empirical relation in this paper, were compared to the experimental results which showed a good correlation.

Keywords: Honeycomb, folding force, square column, aluminum, axial loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
363 On Stability of Stiffened Cylindrical Shells with Varying Material Properties

Authors: M. Karami Khorramabadi, P. Khazaeinejad

Abstract:

The static stability analysis of stiffened functionally graded cylindrical shells by isotropic rings and stringers subjected to axial compression is presented in this paper. The Young's modulus of the shell is taken to be function of the thickness coordinate. The fundamental relations, the equilibrium and stability equations are derived using the Sander's assumption. Resulting equations are employed to obtain the closed-form solution for the critical axial loads. The effects of material properties, geometric size and different material coefficient on the critical axial loads are examined. The analytical results are compared and validated using the finite element model.

Keywords: Functionally graded material, Stability, Stiffened cylindrical shell, Finite element analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
362 Limiting Fiber Extensibility as Parameter for Damage in Venous Wall

Authors: Lukas Horny, Rudolf Zitny, Hynek Chlup, Tomas Adamek, Michal Sara

Abstract:

An inflation–extension test with human vena cava inferior was performed with the aim to fit a material model. The vein was modeled as a thick–walled tube loaded by internal pressure and axial force. The material was assumed to be an incompressible hyperelastic fiber reinforced continuum. Fibers are supposed to be arranged in two families of anti–symmetric helices. Considered anisotropy corresponds to local orthotropy. Used strain energy density function was based on a concept of limiting strain extensibility. The pressurization was comprised by four pre–cycles under physiological venous loading (0 – 4kPa) and four cycles under nonphysiological loading (0 – 21kPa). Each overloading cycle was performed with different value of axial weight. Overloading data were used in regression analysis to fit material model. Considered model did not fit experimental data so good. Especially predictions of axial force failed. It was hypothesized that due to nonphysiological values of loading pressure and different values of axial weight the material was not preconditioned enough and some damage occurred inside the wall. A limiting fiber extensibility parameter Jm was assumed to be in relation to supposed damage. Each of overloading cycles was fitted separately with different values of Jm. Other parameters were held the same. This approach turned out to be successful. Variable value of Jm can describe changes in the axial force – axial stretch response and satisfy pressure – radius dependence simultaneously.

Keywords: Constitutive model, damage, fiber reinforcedcomposite, limiting fiber extensibility, preconditioning, vena cavainferior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
361 FEA- Aided Design, Optimization and Development of an Axial Flux Motor for Implantable Ventricular Assist Device

Authors: Neethu S., Shinoy K.S., A.S. Shajilal

Abstract:

This paper presents the optimal design and development of an axial flux motor for blood pump application. With the design objective of maximizing the motor efficiency and torque, different topologies of AFPM machine has been examined. Selection of optimal magnet fraction, Halbach arrangement of rotor magnets and the use of Soft Magnetic Composite (SMC) material for the stator core results in a novel motor with improved efficiency and torque profile. The results of the 3D Finite element analysis for the novel motor have been shown.

Keywords: Axial flux motor, Finite Element Methods, Halbach array, Left Ventricular Assist Device, Soft magnetic composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
360 Control Technology for a Daily Load-following Operation in a Nuclear Power Plant

Authors: Keuk Jong Yu, Sang Hee Kang, Sung Chang You

Abstract:

In Korea, the technology of a load fo nuclear power plant has been being developed. automatic controller which is able to control temperature and axial power distribution was developed. identification algorithm and a model predictive contact former transforms the nuclear reactor status into numerically. And the latter uses them and ge manipulated values such as two kinds of control ro this automatic controller, the performance of a coperation was evaluated. As a result, the automatic generated model parameters of a nuclear react to nuclear reactor average temperature and axial power the desired targets during a daily load follow.

Keywords: axial power distribution, model reactor temperature, system identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161
359 High Precision Draw Bending of Asymmetric Channel Section with Restriction Dies and Axial Tension

Authors: Y. Okude, S. Sakaki, S. Yoshihara, B. J. MacDonald

Abstract:

In recent years asymmetric cross section aluminum alloy stock has been finding increasing use in various industrial manufacturing areas such as general structures and automotive components. In these areas, components are generally required to have complex curved configuration and, as such, a bending process is required during manufacture. Undesirable deformation in bending processes such as flattening or wrinkling can easily occur when thin-walled sections are bent. Hence, a thorough understanding of the bending behavior of such sections is needed to prevent these undesirable deformations. In this study, the bending behavior of asymmetric channel section was examined using finite element analysis (FEA). Typical methods of preventing undesirable deformation, such as asymmetric laminated elastic mandrels were included in FEA model of draw bending. Additionally, axial tension was applied to prevent wrinkling. By utilizing the FE simulations effect of restriction dies and axial tension on undesirable deformation during the process was clarified.

Keywords: bending, draw bending, asymmetric channel section, restriction dies, axial tension, FEA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
358 Journals Subheadlines Text Extraction Using Wavelet Thresholding and New Projection Profile

Authors: Davod Zaravi, Habib Rostami, Alireza Malahzaheh, S. S. Mortazavi

Abstract:

In this paper a new robust and efficient algorithm to automatic text extraction from colored book and journal cover sheets is proposed. First, we perform wavelet transform. Next for edge detecting from detail wavelet coefficient, we use dynamic threshold. By blurring approximate coefficients with alternative heuristic thresholding, achieve effective edge,. Afterward, with ROI technique get binary image. Finally text boxes would be extracted with new projection profile.

Keywords: Text extraction, colored cover sheet, wavelet threshold, region of interest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
357 A Multiple Inlet Swirler for Gas Turbine Combustors

Authors: Yehia A. Eldrainy, Hossam S. Aly, Khalid M. Saqr, Mohammad Nazri Mohd Jaafar

Abstract:

The central recirculation zone (CRZ) in a swirl stabilized gas turbine combustor has a dominant effect on the fuel air mixing process and flame stability. Most of state of the art swirlers share one disadvantage; the fixed swirl number for the same swirler configuration. Thus, in a mathematical sense, Reynolds number becomes the sole parameter for controlling the flow characteristics inside the combustor. As a result, at low load operation, the generated swirl is more likely to become feeble affecting the flame stabilization and mixing process. This paper introduces a new swirler concept which overcomes the mentioned weakness of the modern configurations. The new swirler introduces air tangentially and axially to the combustor through tangential vanes and an axial vanes respectively. Therefore, it provides different swirl numbers for the same configuration by regulating the ratio between the axial and tangential flow momenta. The swirler aerodynamic performance was investigated using four CFD simulations in order to demonstrate the impact of tangential to axial flow rate ratio on the CRZ. It was found that the length of the CRZ is directly proportional to the tangential to axial air flow rate ratio.

Keywords: Swirler, Gas turbine, CFD, Numerical simulation, Recirculation zone, Swirl number

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2986
356 Tomographic Images Reconstruction Simulation for Defects Detection in Specimen

Authors: Kedit J.

Abstract:

This paper is the tomographic images reconstruction simulation for defects detection in specimen. The specimen is the thin cylindrical steel contained with low density materials. The defects in material are simulated in three shapes.The specimen image function will be transformed to projection data. Radon transform and its inverse provide the mathematical for reconstructing tomographic images from projection data. The result of the simulation show that the reconstruction images is complete for defect detection.

Keywords: Tomography, Tomography Reconstruction, Radon Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
355 Restarted Generalized Second-Order Krylov Subspace Methods for Solving Quadratic Eigenvalue Problems

Authors: Liping Zhou, Liang Bao, Yiqin Lin, Yimin Wei, Qinghua Wu

Abstract:

This article is devoted to the numerical solution of large-scale quadratic eigenvalue problems. Such problems arise in a wide variety of applications, such as the dynamic analysis of structural mechanical systems, acoustic systems, fluid mechanics, and signal processing. We first introduce a generalized second-order Krylov subspace based on a pair of square matrices and two initial vectors and present a generalized second-order Arnoldi process for constructing an orthonormal basis of the generalized second-order Krylov subspace. Then, by using the projection technique and the refined projection technique, we propose a restarted generalized second-order Arnoldi method and a restarted refined generalized second-order Arnoldi method for computing some eigenpairs of largescale quadratic eigenvalue problems. Some theoretical results are also presented. Some numerical examples are presented to illustrate the effectiveness of the proposed methods.

Keywords: Quadratic eigenvalue problem, Generalized secondorder Krylov subspace, Generalized second-order Arnoldi process, Projection technique, Refined technique, Restarting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
354 The Implementation of the Javanese Lettered-Manuscript Image Preprocessing Stage Model on the Batak Lettered-Manuscript Image

Authors: Anastasia Rita Widiarti, Agus Harjoko, Marsono, Sri Hartati

Abstract:

This paper presents the results of a study to test whether the Javanese character manuscript image preprocessing model that have been more widely applied, can also be applied to segment of the Batak characters manuscripts. The treatment process begins by converting the input image into a binary image. After the binary image is cleaned of noise, then the segmentation lines using projection profile is conducted. If unclear histogram projection is found, then the smoothing process before production indexes line segments is conducted. For each line image which has been produced, then the segmentation scripts in the line is applied, with regard of the connectivity between pixels which making up the letters that there is no characters are truncated. From the results of manuscript preprocessing system prototype testing, it is obtained the information about the system truth percentage value on pieces of Pustaka Batak Podani Ma AjiMamisinon manuscript ranged from 65% to 87.68% with a confidence level of 95%. The value indicates the truth percentage shown the initial processing model in Javanese characters manuscript image can be applied also to the image of the Batak characters manuscript.

Keywords: Connected component, preprocessing manuscript image, projection profiles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918