Search results for: Artificial illumination.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1005

Search results for: Artificial illumination.

975 Analyzing the Relationship between the Systems Decisions Process and Artificial Intelligence: A Machine Vision Case Study

Authors: Mitchell J. McHugh, John J. Case

Abstract:

Systems engineering is a holistic discipline that seeks to organize and optimize complex, interdisciplinary systems. With the growth of artificial intelligence, systems engineers must face the challenge of leveraging artificial intelligence systems to solve complex problems. This paper analyzes the integration of systems engineering and artificial intelligence and discusses how artificial intelligence systems embody the systems decision process (SDP). The SDP is a four-stage problem-solving framework that outlines how systems engineers can design and implement solutions using value-focused thinking. This paper argues that artificial intelligence models can replicate the SDP, thus validating its flexible, value-focused foundation. The authors demonstrate this by developing a machine vision mobile application that can classify weapons to augment the decision-making role of an Army subject matter expert. This practical application was an end-to-end design challenge that highlights how artificial intelligence systems embody systems engineering principles. The impact of this research demonstrates that the SDP is a dynamic tool that systems engineers should leverage when incorporating artificial intelligence within the systems that they develop.

Keywords: Computer vision, machine learning, mobile application, systems engineering, systems decision process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
974 Improved Artificial Immune System Algorithm with Local Search

Authors: Ramin Javadzadeh., Zahra Afsahi, MohammadReza Meybodi

Abstract:

The Artificial immune systems algorithms are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Artificial Immune System Algorithm is introduced for the first time to overcome its problems of artificial immune system. That use of the small size of a local search around the memory antibodies is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the standard artificial immune system algorithms

Keywords: Artificial immune system, Cellular Automata, Cellular learning automata, Cellular learning automata, , Local search, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
973 Using Fuzzy Controller in Induction Motor Speed Control with Constant Flux

Authors: Hassan Baghgar Bostan Abad, Ali Yazdian Varjani, Taheri Asghar

Abstract:

Variable speed drives are growing and varying. Drives expanse depend on progress in different part of science like power system, microelectronic, control methods, and so on. Artificial intelligent contains hard computation and soft computation. Artificial intelligent has found high application in most nonlinear systems same as motors drive. Because it has intelligence like human but there are no sentimental against human like angriness and.... Artificial intelligent is used for various points like approximation, control, and monitoring. Because artificial intelligent techniques can use as controller for any system without requirement to system mathematical model, it has been used in electrical drive control. With this manner, efficiency and reliability of drives increase and volume, weight and cost of them decrease.

Keywords: Artificial intelligent, electrical motor, intelligent drive and control,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
972 Using Information Theory to Observe Natural Intelligence and Artificial Intelligence

Authors: Lipeng Zhang, Limei Li, Yanming Pearl Zhang

Abstract:

This paper takes a philosophical view as axiom, and reveals the relationship between information theory and Natural Intelligence and Artificial Intelligence under real world conditions. This paper also derives the relationship between natural intelligence and nature. According to communication principle of information theory, Natural Intelligence can be divided into real part and virtual part. Based on information theory principle that Information does not increase, the restriction mechanism of Natural Intelligence creativity is conducted. The restriction mechanism of creativity reveals the limit of natural intelligence and artificial intelligence. The paper provides a new angle to observe natural intelligence and artificial intelligence.

Keywords: Natural intelligence, artificial intelligence, creativity, information theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
971 Influence of UV Treatment on the Electrooptical Properties of Indium Tin Oxide Films Used in Flexible Displays

Authors: Mariya P. Aleksandrova, Ivelina N. Cholakova, Georgy K. Bodurov, Georgy D. Kolev, Georgy H. Dobrikov

Abstract:

Indium-tin oxide films are deposited by low plasma temperature RF sputtering on highly flexible modification of glycol polyethyleneterephtalate substrates. The produced layers are characterized with transparency over 82 % and sheet resistance of 86.9 Ω/square. The film’s conductivity was further improved by additional UV illumination from light source (365 nm), having power of 250 W. The influence of the UV exposure dose on the structural and electro-optical properties of ITO was investigated. It was established that the optimum time of illumination is 10 minutes and further UV treatment leads to polymer substrates degradation. Structural and bonds type analysis show that at longer treatment carbon atoms release and diffuse into ITO films, which worsen their electrical behavior. For the optimum UV dose the minimum sheet resistance was measured to be 19.2 Ω/square, and the maximum transparency remained almost unchanged – above 82 %.

Keywords: Flexible displays, indium tin oxide, RF sputtering, UV treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
970 A New Biologically Inspired Pattern Recognition Spproach for Face Recognition

Authors: V. Kabeer, N.K.Narayanan

Abstract:

This paper reports a new pattern recognition approach for face recognition. The biological model of light receptors - cones and rods in human eyes and the way they are associated with pattern vision in human vision forms the basis of this approach. The functional model is simulated using CWD and WPD. The paper also discusses the experiments performed for face recognition using the features extracted from images in the AT & T face database. Artificial Neural Network and k- Nearest Neighbour classifier algorithms are employed for the recognition purpose. A feature vector is formed for each of the face images in the database and recognition accuracies are computed and compared using the classifiers. Simulation results show that the proposed method outperforms traditional way of feature extraction methods prevailing for pattern recognition in terms of recognition accuracy for face images with pose and illumination variations.

Keywords: Face recognition, Image analysis, Wavelet feature extraction, Pattern recognition, Classifier algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
969 LED Lighting Interviews and Assessment in Forest Machines

Authors: Rauno Pääkkönen, Fabriziomaria Gobba, Leena Korpinen

Abstract:

The objective of the study is to assess the implementation of LED lighting into forest machine work in the dark. In addition, the paper includes a wide variety of important and relevant safety and health parameters. In modern, computerized work in the cab of forest machines, artificial illumination is a demanding task when performing duties, such as the visual inspections of wood and computer calculations. We interviewed entrepreneurs and gathered the following as the most pertinent themes: (1) safety, (2) practical problems, and (3) work with LED lighting. The most important comments were in regards to the practical problems of LED lighting. We found indications of technical problems in implementing LED lighting, like snow and dirt on the surfaces of lamps that dim the emission of light. Moreover, service work in the dark forest is dangerous and increases the risks of on-site accidents. We also concluded that the amount of blue light to the eyes should be assessed, especially, when the drivers are working in a semi-dark cab.

Keywords: Forest machines, health, LED, safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
968 Communicative and Artistic Machines: A Survey of Models and Experiments on Artificial Agents

Authors: Artur Matuck, Guilherme F. Nobre

Abstract:

Machines can be either tool, media, or social agents. Advances in technology have been delivering machines capable of autonomous expression, both through communication and art. This paper deals with models (theoretical approach) and experiments (applied approach) related to artificial agents. On one hand it traces how social sciences' scholars have worked with topics such as text automatization, man-machine writing cooperation, and communication. On the other hand it covers how computer sciences' scholars have built communicative and artistic machines, including the programming of creativity. The aim is to present a brief survey on artificially intelligent communicators and artificially creative writers, and provide the basis to understand the meta-authorship and also to new and further man-machine co-authorship.

Keywords: Artificial communication, artificial creativity, artificial writers, meta-authorship, robotic art.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312
967 Video-based Face Recognition: A Survey

Authors: Huafeng Wang, Yunhong Wang, Yuan Cao

Abstract:

During the past several years, face recognition in video has received significant attention. Not only the wide range of commercial and law enforcement applications, but also the availability of feasible technologies after several decades of research contributes to the trend. Although current face recognition systems have reached a certain level of maturity, their development is still limited by the conditions brought about by many real applications. For example, recognition images of video sequence acquired in an open environment with changes in illumination and/or pose and/or facial occlusion and/or low resolution of acquired image remains a largely unsolved problem. In other words, current algorithms are yet to be developed. This paper provides an up-to-date survey of video-based face recognition research. To present a comprehensive survey, we categorize existing video based recognition approaches and present detailed descriptions of representative methods within each category. In addition, relevant topics such as real time detection, real time tracking for video, issues such as illumination, pose, 3D and low resolution are covered.

Keywords: Face recognition, video-based, survey

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4121
966 Kinematic Analysis of 2-DOF Planer Robot Using Artificial Neural Network

Authors: Jolly Shah, S.S.Rattan, B.C.Nakra

Abstract:

Automatic control of the robotic manipulator involves study of kinematics and dynamics as a major issue. This paper involves the forward and inverse kinematics of 2-DOF robotic manipulator with revolute joints. In this study the Denavit- Hartenberg (D-H) model is used to model robot links and joints. Also forward and inverse kinematics solution has been achieved using Artificial Neural Networks for 2-DOF robotic manipulator. It shows that by using artificial neural network the solution we get is faster, acceptable and has zero error.

Keywords: Artificial Neural Network, Forward Kinematics, Inverse Kinematics, Robotic Manipulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4364
965 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
964 Advances in Artificial Intelligence Using Speech Recognition

Authors: Khaled M. Alhawiti

Abstract:

This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.

Keywords: Speech recognition, acoustic phonetic, artificial intelligence, Hidden Markov Models (HMM), statistical models of speech recognition, human machine performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7978
963 Potential of Energy Conservation of Daylight Linked Lighting System in India

Authors: Biswajit Biswas

Abstract:

Demand of energy is increasing faster than the generation. It leads shortage of power in all sectors of society. At peak hours this shortage is higher. Unless we utilize energy efficient technology, it is very difficult to minimize the shortage of energy. So energy efficiency program and energy conservation has an important role. Energy efficient technologies are cost intensive hence it is always not possible to implement in country like India. In the recent study, an educational building with operating hours from 10:00 a.m. to 05:00 p.m. has been selected to quantify the possibility of lighting energy conservation. As the operating hour is in daytime, integration of daylight with artificial lighting system will definitely reduce the lighting energy consumption. Moreover the initial investment has been given priority and hence the existing lighting installation was unaltered. An automatic controller has been designed which will be operated as a function of daylight through windows and the lighting system of the room will function accordingly. The result of the study of integrating daylight gave quite satisfactory for visual comfort as well as energy conservation.

Keywords: Lighting energy, energy efficiency, daylight, illumination, energy conservation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
962 Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers

Authors: K. A. Laptinskiy, S. A. Burikov, A. M. Vervald, S. A. Dolenko, T. A. Dolenko

Abstract:

The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml.

Keywords: Artificial neural networks, fluorescence, data aggregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
961 Study on the Self-Location Estimate by the Evolutional Triangle Similarity Matching Using Artificial Bee Colony Algorithm

Authors: Yuji Kageyama, Shin Nagata, Tatsuya Takino, Izuru Nomura, Hiroyuki Kamata

Abstract:

In previous study, technique to estimate a self-location by using a lunar image is proposed.We consider the improvement of the conventional method in consideration of FPGA implementationin this paper. Specifically, we introduce Artificial Bee Colony algorithm for reduction of search time.In addition, we use fixed point arithmetic to enable high-speed operation on FPGA.

Keywords: SLIM, Artificial Bee Colony Algorithm, Location Estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
960 The Design of Self-evolving Artificial Immune System II for Permutation Flow-shop Problem

Authors: Meng-Hui Chen, Pei-Chann Chang, Wei-Hsiu Huang

Abstract:

Artificial Immune System is adopted as a Heuristic Algorithm to solve the combinatorial problems for decades. Nevertheless, many of these applications took advantage of the benefit for applications but seldom proposed approaches for enhancing the efficiency. In this paper, we continue the previous research to develop a Self-evolving Artificial Immune System II via coordinating the T and B cell in Immune System and built a block-based artificial chromosome for speeding up the computation time and better performance for different complexities of problems. Through the design of Plasma cell and clonal selection which are relative the function of the Immune Response. The Immune Response will help the AIS have the global and local searching ability and preventing trapped in local optima. From the experimental result, the significant performance validates the SEAIS II is effective when solving the permutation flows-hop problems.

Keywords: Artificial Immune System, Clonal Selection, Immune Response, Permutation Flow-shop Scheduling Problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
959 Prediction of Kinematic Viscosity of Binary Mixture of Poly (Ethylene Glycol) in Water using Artificial Neural Networks

Authors: M. Mohagheghian, A. M. Ghaedi, A. Vafaei

Abstract:

An artificial neural network (ANN) model is presented for the prediction of kinematic viscosity of binary mixtures of poly (ethylene glycol) (PEG) in water as a function of temperature, number-average molecular weight and mass fraction. Kinematic viscosities data of aqueous solutions for PEG (0.55419×10-6 – 9.875×10-6 m2/s) were obtained from the literature for a wide range of temperatures (277.15 - 338.15 K), number-average molecular weight (200 -10000), and mass fraction (0.0 – 1.0). A three layer feed-forward artificial neural network was employed. This model predicts the kinematic viscosity with a mean square error (MSE) of 0.281 and the coefficient of determination (R2) of 0.983. The results show that the kinematic viscosity of binary mixture of PEG in water could be successfully predicted using an artificial neural network model.

Keywords: Artificial neural network, kinematic viscosity, poly ethylene glycol (PEG)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530
958 Physico-Chemical Characteristics of Cement Manufactured with Artificial Pozzolan (Waste Brick)

Authors: A. Naceri, M. Chikouche Hamina, P. Grosseau

Abstract:

The effect of artificial pozzolan (waste brick) on the physico-chemical properties of cement manufactured was investigated. The waste brick is generated by the manufacture of bricks. It was used in the proportions of 0%, 5%, 10%, 15% and 20% by mass of cement to study its effect on the physico-chemical properties of cement incorporating artificial pozzolan. The physicochemical properties of cement at anhydrous state and the hydrated state (chemical composition, specific weight, fineness, consistency of the cement paste and setting times) were studied. The experimental results obtained show that the quantity of pozzolanic admixture (waste brick) of cement manufactured is the principal parameter who influences on the variation of the physico-chemical properties of the cement tested.

Keywords: Artificial pozzolan, waste brick, cement, physicochemicalcharacteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
957 Artificial Neural Network with Steepest Descent Backpropagation Training Algorithm for Modeling Inverse Kinematics of Manipulator

Authors: Thiang, Handry Khoswanto, Rendy Pangaldus

Abstract:

Inverse kinematics analysis plays an important role in developing a robot manipulator. But it is not too easy to derive the inverse kinematic equation of a robot manipulator especially robot manipulator which has numerous degree of freedom. This paper describes an application of Artificial Neural Network for modeling the inverse kinematics equation of a robot manipulator. In this case, the robot has three degree of freedoms and the robot was implemented for drilling a printed circuit board. The artificial neural network architecture used for modeling is a multilayer perceptron networks with steepest descent backpropagation training algorithm. The designed artificial neural network has 2 inputs, 2 outputs and varies in number of hidden layer. Experiments were done in variation of number of hidden layer and learning rate. Experimental results show that the best architecture of artificial neural network used for modeling inverse kinematics of is multilayer perceptron with 1 hidden layer and 38 neurons per hidden layer. This network resulted a RMSE value of 0.01474.

Keywords: Artificial neural network, back propagation, inverse kinematics, manipulator, robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
956 Artificial Neural Networks for Cognitive Radio Network: A Survey

Authors: Vishnu Pratap Singh Kirar

Abstract:

The main aim of a communication system is to achieve maximum performance. In Cognitive Radio any user or transceiver has ability to sense best suitable channel, while channel is not in use. It means an unlicensed user can share the spectrum of a licensed user without any interference. Though, the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision making capacity of CRN without affecting bandwidth, cost and signal rate.

Keywords: Artificial Neural Network, Cognitive Radio, Cognitive Radio Networks, Back Propagation, Spectrum Sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4106
955 Forecasting e-Learning Efficiency by Using Artificial Neural Networks and a Balanced Score Card

Authors: Petar Halachev

Abstract:

Forecasting the values of the indicators, which characterize the effectiveness of performance of organizations is of great importance for their successful development. Such forecasting is necessary in order to assess the current state and to foresee future developments, so that measures to improve the organization-s activity could be undertaken in time. The article presents an overview of the applied mathematical and statistical methods for developing forecasts. Special attention is paid to artificial neural networks as a forecasting tool. Their strengths and weaknesses are analyzed and a synopsis is made of the application of artificial neural networks in the field of forecasting of the values of different education efficiency indicators. A method of evaluation of the activity of universities using the Balanced Scorecard is proposed and Key Performance Indicators for assessment of e-learning are selected. Resulting indicators for the evaluation of efficiency of the activity are proposed. An artificial neural network is constructed and applied in the forecasting of the values of indicators for e-learning efficiency on the basis of the KPI values.

Keywords: artificial neural network, balanced scorecard, e-learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
954 Quantity and Quality Aware Artificial Bee Colony Algorithm for Clustering

Authors: U. Idachaba, F. Z. Wang, A. Qi, N. Helian

Abstract:

Artificial Bee Colony (ABC) algorithm is a relatively new swarm intelligence technique for clustering. It produces higher quality clusters compared to other population-based algorithms but with poor energy efficiency, cluster quality consistency and typically slower in convergence speed. Inspired by energy saving foraging behavior of natural honey bees this paper presents a Quality and Quantity Aware Artificial Bee Colony (Q2ABC) algorithm to improve quality of cluster identification, energy efficiency and convergence speed of the original ABC. To evaluate the performance of Q2ABC algorithm, experiments were conducted on a suite of ten benchmark UCI datasets. The results demonstrate Q2ABC outperformed ABC and K-means algorithm in the quality of clusters delivered.

Keywords: Artificial bee colony algorithm, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
953 Modified Functional Link Artificial Neural Network

Authors: Ashok Kumar Goel, Suresh Chandra Saxena, Surekha Bhanot

Abstract:

In this work, a Modified Functional Link Artificial Neural Network (M-FLANN) is proposed which is simpler than a Multilayer Perceptron (MLP) and improves upon the universal approximation capability of Functional Link Artificial Neural Network (FLANN). MLP and its variants: Direct Linear Feedthrough Artificial Neural Network (DLFANN), FLANN and M-FLANN have been implemented to model a simulated Water Bath System and a Continually Stirred Tank Heater (CSTH). Their convergence speed and generalization ability have been compared. The networks have been tested for their interpolation and extrapolation capability using noise-free and noisy data. The results show that M-FLANN which is computationally cheap, performs better and has greater generalization ability than other networks considered in the work.

Keywords: DLFANN, FLANN, M-FLANN, MLP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
952 A New Approach to Face Recognition Using Dual Dimension Reduction

Authors: M. Almas Anjum, M. Younus Javed, A. Basit

Abstract:

In this paper a new approach to face recognition is presented that achieves double dimension reduction, making the system computationally efficient with better recognition results and out perform common DCT technique of face recognition. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results change with change in face image resolution and provide optimal results when arriving at a certain resolution level. In the proposed model of face recognition, initially image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to increased computational speed and feature extraction potential of Discrete Cosine Transform (DCT), it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A tradeoff between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL , Yale and EME color database.

Keywords: Biometrics, DCT, Face Recognition, Illumination, Computation, Feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
951 Increase Energy Savings with Lighting Automation Using Light Pipes and Power LEDs

Authors: İ. Kıyak, G. Gökmen

Abstract:

Using of natural lighting has come into prominence in constructed buildings, especially in last ten years, under scope of energy efficiency. Natural lighting methods are one of the methods that aim to take advantage of day light in maximum level and decrease using of artificial lighting. Increasing of day light amount in buildings by using suitable methods will give optimum result in terms of comfort and energy saving when the daylight-artificial light integration is ensured with a suitable control system. Using of natural light in places that require lighting will ensure energy saving in great extent. With this study, it is aimed to save energy used for purpose of lighting. Under this scope, lighting of a scanning laboratory of a hospital was realized by using a lighting automation containing natural and artificial lighting. In natural lighting, light pipes were used and in artificial lighting, dimmable power LED modules were used. Necessity of lighting was followed with motion sensors. The lighting automation containing natural and artificial light was ensured with fuzzy logic control. At the scanning laboratory where this application was realized, energy saving in lighting was obtained.

Keywords: Daylight transfer, fuzzy logic controller, light pipe, Power LED.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
950 Application of Artificial Intelligence Techniques for Dissolved Gas Analysis of Transformers-A Review

Authors: Deepika Bhalla, Raj Kumar Bansal, Hari Om Gupta

Abstract:

The gases generated in oil filled transformers can be used for qualitative determination of incipient faults. The Dissolved Gas Analysis has been widely used by utilities throughout the world as the primarily diagnostic tool for transformer maintenance. In this paper, various Artificial Intelligence Techniques that have been used by the researchers in the past have been reviewed, some conclusions have been drawn and a sequential hybrid system has been proposed. The synergy of ANN and FIS can be a good solution for reliable results for predicting faults because one should not rely on a single technology when dealing with real–life applications.

Keywords: Dissolved Gas Analysis, Artificial IntelligenceTechniques, Incipient Faults, Transformer Fault Diagnosis, andHybrid Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4065
949 Artificial Neural Network Application on Ti/Al Joint Using Laser Beam Welding – A Review

Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan

Abstract:

Today automobile and aerospace industries realise Laser Beam Welding for a clean and non contact source of heating and fusion for joining of sheets. The welding performance is mainly based on by the laser welding parameters. Some concepts related to Artificial Neural Networks and how can be applied to model weld bead geometry and mechanical properties in terms of equipment parameters are reported in order to evaluate the accuracy and compare it with traditional modeling schemes. This review reveals the output features of Titanium and Aluminium weld bead geometry and mechanical properties such as ultimate tensile strength, yield strength, elongation and reduction of the area of the weld using Artificial Neural Network.

Keywords: Laser Beam Welding (LBW), Artificial Neural Networks (ANN), Optimization, Titanium and Aluminium sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
948 A Structural Support Vector Machine Approach for Biometric Recognition

Authors: Vishal Awasthi, Atul Kumar Agnihotri

Abstract:

Face is a non-intrusive strong biometrics for identification of original and dummy facial by different artificial means. Face recognition is extremely important in the contexts of computer vision, psychology, surveillance, pattern recognition, neural network, content based video processing. The availability of a widespread face database is crucial to test the performance of these face recognition algorithms. The openly available face databases include face images with a wide range of poses, illumination, gestures and face occlusions but there is no dummy face database accessible in public domain. This paper presents a face detection algorithm based on the image segmentation in terms of distance from a fixed point and template matching methods. This proposed work is having the most appropriate number of nodal points resulting in most appropriate outcomes in terms of face recognition and detection. The time taken to identify and extract distinctive facial features is improved in the range of 90 to 110 sec. with the increment of efficiency by 3%.

Keywords: Face recognition, Principal Component Analysis, PCA, Linear Discriminant Analysis, LDA, Improved Support Vector Machine, iSVM, elastic bunch mapping technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493
947 Forecasting the Istanbul Stock Exchange National 100 Index Using an Artificial Neural Network

Authors: Birol Yildiz, Abdullah Yalama, Metin Coskun

Abstract:

Many studies have shown that Artificial Neural Networks (ANN) have been widely used for forecasting financial markets, because of many financial and economic variables are nonlinear, and an ANN can model flexible linear or non-linear relationship among variables. The purpose of the study was to employ an ANN models to predict the direction of the Istanbul Stock Exchange National 100 Indices (ISE National-100). As a result of this study, the model forecast the direction of the ISE National-100 to an accuracy of 74, 51%.

Keywords: Artificial Neural Networks, Istanbul StockExchange, Non-linear Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
946 Mixed Convection Enhancement in a 3D Lid-Driven Cavity Containing a Rotating Cylinder by Applying an Artificial Roughness

Authors: Ali Khaleel Kareem, Shian Gao, Ahmed Qasim Ahmed

Abstract:

A numerical investigation of unsteady mixed convection heat transfer in a 3D moving top wall enclosure, which has a central rotating cylinder and uses either artificial roughness on the bottom hot plate or smooth bottom hot plate to study the heat transfer enhancement, is completed for fixed circular cylinder, and anticlockwise and clockwise rotational speeds, -1 ≤ Ω ≤ 1, at Reynolds number of 5000. The top lid-driven wall was cooled, while the other remaining walls that completed obstructed cubic were kept insulated and motionless. A standard k-ε model of Unsteady Reynolds-Averaged Navier-Stokes (URANS) method is involved to deal with turbulent flow. It has been clearly noted that artificial roughness can strongly control the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving artificial roughness on the heated bottom wall in the presence of rotating cylinder.

Keywords: Artificial roughness, Lid-driven cavity, Mixed convection heat transfer, Rotating cylinder, URANS method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155