Search results for: Anomaly
31 A Framework for SQL Learning: Linking Learning Taxonomy, Cognitive Model and Cross Cutting Factors
Authors: Huda Al Shuaily, Karen Renaud
Abstract:
Databases comprise the foundation of most software systems. System developers inevitably write code to query these databases. The de facto language for querying is SQL and this, consequently, is the default language taught by higher education institutions. There is evidence that learners find it hard to master SQL, harder than mastering other programming languages such as Java. Educators do not agree about explanations for this seeming anomaly. Further investigation may well reveal the reasons. In this paper, we report on our investigations into how novices learn SQL, the actual problems they experience when writing SQL, as well as the differences between expert and novice SQL query writers. We conclude by presenting a model of SQL learning that should inform the instructional material design process better to support the SQL learning process.
Keywords: Pattern, SQL, learning, model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134730 Soft Computing based Retrieval System for Medical Applications
Authors: Pardeep Singh, Sanjay Sharma
Abstract:
With increasing data in medical databases, medical data retrieval is growing in popularity. Some of this analysis including inducing propositional rules from databases using many soft techniques, and then using these rules in an expert system. Diagnostic rules and information on features are extracted from clinical databases on diseases of congenital anomaly. This paper explain the latest soft computing techniques and some of the adaptive techniques encompasses an extensive group of methods that have been applied in the medical domain and that are used for the discovery of data dependencies, importance of features, patterns in sample data, and feature space dimensionality reduction. These approaches pave the way for new and interesting avenues of research in medical imaging and represent an important challenge for researchers.Keywords: CBIR, GA, Rough sets, CBMIR, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174229 Lithium Oxide Effect on the Thermal and Physical Properties of the Ternary System Glasses (Li2O3-B2O3-Al2O3)
Authors: D. Aboutaleb, B. Safi
Abstract:
The borate glasses are known by their structural characterized by existence of unit’s structural composed by triangles and tetrahedrons boron in different configurations depending on the percentage of B2O3 in the glass chemical composition. In this paper, effect of lithium oxide addition on the thermal and physical properties of an alumina borate glass, was investigated. It was found that the boron abnormality has a significant effect in the change of glass properties according to the addition rate of lithium oxide.
Keywords: Borate glasses, triangles and tetrahedrons boron, Lithium oxide, Boron anomaly, thermal properties, physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 293128 Influenza Pattern Analysis System through Mining Weblogs
Authors: Pei Lin Khoo, Yunli Lee
Abstract:
Weblogs are resource of social structure to discover and track the various type of information written by blogger. In this paper, we proposed to use mining weblogs technique for identifying the trends of influenza where blogger had disseminated their opinion for the anomaly disease. In order to identify the trends, web crawler is applied to perform a search and generated a list of visited links based on a set of influenza keywords. This information is used to implement the analytics report system for monitoring and analyzing the pattern and trends of influenza (H1N1). Statistical and graphical analysis reports are generated. Both types of the report have shown satisfactory reports that reflect the awareness of Malaysian on the issue of influenza outbreak through blogs.
Keywords: H1N1, Weblogs, Web Crawler, Analytics Report System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 247227 Imposter Detection Based on Location in Vehicular Ad-Hoc Network
Authors: Sanjoy Das, Akash Arya, Rishi Pal Singh
Abstract:
Vehicular Ad hoc Network is basically the solution of several problems associated while vehicles are plying on the road. In this paper, we have focused on the detection of imposter node while it has stolen the ID's of the authenticated vehicle in the network. The purpose is to harm the network through imposter messages. Here, we have proposed a protocol namely Imposter Detection based on Location (IDBL), which will store the location coordinate of the each vehicle as the key of the authenticity of the message so that imposter node can be detected. The imposter nodes send messages from a stolen ID and show that it is from an authentic node ID. So, to detect this anomaly, the first location is checked and observed different from original vehicle location. This node is known as imposter node. We have implemented the algorithm through JAVA and tested various types of node distribution and observed the detection probability of imposter node.
Keywords: Authentication, detection, IDBL protocol, imposter node, node detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81426 Anomalous Thermal Behavior of CuxMg1-xNb2O6 (x=0,0.4,0.6,1) for LTCC Substrate
Authors: Jyotirmayee Satapathy, M. V. Ramana Reddy
Abstract:
LTCC (Low Temperature Co-fired Ceramics) being the most advantageous technology towards the multilayer substrates for various applications, demands an extensive study of its raw materials. In the present work, a series of CuxMg1-xNb2O6 (x=0,0.4,0.6,1) has been prepared using sol-gel synthesis route and sintered at a temperature of 900°C to study its applicability for LTCC technology as the firing temperature is 900°C in this technology. The phase formation has been confirmed using X-ray Diffraction. Thermal properties like thermal conductivity and thermal expansion being very important aspect as the former defines the heat flow to avoid thermal instability in layers and the later provides the dimensional congruency of the dielectric material and the conductors, are studied here over high temperature up to the firing temperature. Although the values are quite satisfactory from substrate requirement point view, results have shown anomaly over temperature. The anomalous thermal behavior has been further analyzed using TG-DTA.
Keywords: Niobates, LTCC, Thermal conductivity, Thermal expansion, TG-DTA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163625 Intrusion Detection Using a New Particle Swarm Method and Support Vector Machines
Authors: Essam Al Daoud
Abstract:
Intrusion detection is a mechanism used to protect a system and analyse and predict the behaviours of system users. An ideal intrusion detection system is hard to achieve due to nonlinearity, and irrelevant or redundant features. This study introduces a new anomaly-based intrusion detection model. The suggested model is based on particle swarm optimisation and nonlinear, multi-class and multi-kernel support vector machines. Particle swarm optimisation is used for feature selection by applying a new formula to update the position and the velocity of a particle; the support vector machine is used as a classifier. The proposed model is tested and compared with the other methods using the KDD CUP 1999 dataset. The results indicate that this new method achieves better accuracy rates than previous methods.Keywords: Feature selection, Intrusion detection, Support vector machine, Particle swarm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199924 Behavioral Signature Generation using Shadow Honeypot
Authors: Maros Barabas, Michal Drozd, Petr Hanacek
Abstract:
A novel behavioral detection framework is proposed to detect zero day buffer overflow vulnerabilities (based on network behavioral signatures) using zero-day exploits, instead of the signature-based or anomaly-based detection solutions currently available for IDPS techniques. At first we present the detection model that uses shadow honeypot. Our system is used for the online processing of network attacks and generating a behavior detection profile. The detection profile represents the dataset of 112 types of metrics describing the exact behavior of malware in the network. In this paper we present the examples of generating behavioral signatures for two attacks – a buffer overflow exploit on FTP server and well known Conficker worm. We demonstrated the visualization of important aspects by showing the differences between valid behavior and the attacks. Based on these metrics we can detect attacks with a very high probability of success, the process of detection is however very expensive.Keywords: behavioral signatures, metrics, network, security design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206223 Fast and Robust Long-term Tracking with Effective Searching Model
Authors: Thang V. Kieu, Long P. Nguyen
Abstract:
Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.
Keywords: Correlation filter, long-term tracking, random fern, real-time tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79422 Efficient Hardware Realization of Truncated Multipliers using FPGA
Authors: Muhammad H. Rais,
Abstract:
Truncated multiplier is a good candidate for digital signal processing (DSP) applications including finite impulse response (FIR) and discrete cosine transform (DCT). Through truncated multiplier a significant reduction in Field Programmable Gate Array (FPGA) resources can be achieved. This paper presents for the first time a comparison of resource utilization of Spartan-3AN and Virtex-5 implementation of standard and truncated multipliers using Very High Speed Integrated Circuit Hardware Description Language (VHDL). The Virtex-5 FPGA shows significant improvement as compared to Spartan-3AN FPGA device. The Virtex-5 FPGA device shows better performance with a percentage ratio of number of occupied slices for standard to truncated multipliers is increased from 40% to 73.86% as compared to Spartan- 3AN is decreased from 68.75% to 58.78%. Results show that the anomaly in Spartan-3AN FPGA device average connection and maximum pin delay have been efficiently reduced in Virtex-5 FPGA device.Keywords: Digital Signal Processing (DSP), FieldProgrammable Gate Array (FPGA), Spartan-3AN, TruncatedMultiplier, Virtex-5, VHDL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 256821 Unsupervised Clustering Methods for Identifying Rare Events in Anomaly Detection
Authors: Witcha Chimphlee, Abdul Hanan Abdullah, Mohd Noor Md Sap, Siriporn Chimphlee, Surat Srinoy
Abstract:
It is important problems to increase the detection rates and reduce false positive rates in Intrusion Detection System (IDS). Although preventative techniques such as access control and authentication attempt to prevent intruders, these can fail, and as a second line of defence, intrusion detection has been introduced. Rare events are events that occur very infrequently, detection of rare events is a common problem in many domains. In this paper we propose an intrusion detection method that combines Rough set and Fuzzy Clustering. Rough set has to decrease the amount of data and get rid of redundancy. Fuzzy c-means clustering allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect suspicious activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining-(KDDCup 1999) Dataset show that the method is efficient and practical for intrusion detection systems.Keywords: Network and security, intrusion detection, fuzzy cmeans, rough set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 287120 Attacks Classification in Adaptive Intrusion Detection using Decision Tree
Authors: Dewan Md. Farid, Nouria Harbi, Emna Bahri, Mohammad Zahidur Rahman, Chowdhury Mofizur Rahman
Abstract:
Recently, information security has become a key issue in information technology as the number of computer security breaches are exposed to an increasing number of security threats. A variety of intrusion detection systems (IDS) have been employed for protecting computers and networks from malicious network-based or host-based attacks by using traditional statistical methods to new data mining approaches in last decades. However, today's commercially available intrusion detection systems are signature-based that are not capable of detecting unknown attacks. In this paper, we present a new learning algorithm for anomaly based network intrusion detection system using decision tree algorithm that distinguishes attacks from normal behaviors and identifies different types of intrusions. Experimental results on the KDD99 benchmark network intrusion detection dataset demonstrate that the proposed learning algorithm achieved 98% detection rate (DR) in comparison with other existing methods.Keywords: Detection rate, decision tree, intrusion detectionsystem, network security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 364419 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.
Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124818 Underpricing of IPOs during Hot and Cold Market Periods on the South African Stock Exchange (JSE)
Authors: Brownhilder N. Neneh, A. Van Aardt Smit
Abstract:
Underpricing is one anomaly in initial public offerings (IPO) literature that has been widely observed across different stock markets with different trends emerging over different time periods. This study seeks to determine how IPOs on the JSE performed on the first day, first week and first month over the period of 1996-2011. Underpricing trends are documented for both hot and cold market periods in terms of four main sectors (cyclical, defensive, growth stock and interest rate sensitive stocks). Using a sample of 360 listed companies on the JSE, the empirical findings established that IPOs on the JSE are significantly underpriced with an average market adjusted first day return of 62.9%. It is also established that hot market IPOs on the JSE are more underpriced than the cold market IPOs. Also observed is the fact that as the offer price per share increases above the median price for any given period, the level of underpricing decreases substantially. While significant differences exist in the level of underpricing of IPOs in the four different sectors in the hot and cold market periods, interest rates sensitive stocks showed a different trend from the other sectors and thus require further investigation to uncover this pattern.
Keywords: Underpricing, hot and cold markets, South Africa, JSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421117 Scaling up Detection Rates and Reducing False Positives in Intrusion Detection using NBTree
Authors: Dewan Md. Farid, Nguyen Huu Hoa, Jerome Darmont, Nouria Harbi, Mohammad Zahidur Rahman
Abstract:
In this paper, we present a new learning algorithm for anomaly based network intrusion detection using improved self adaptive naïve Bayesian tree (NBTree), which induces a hybrid of decision tree and naïve Bayesian classifier. The proposed approach scales up the balance detections for different attack types and keeps the false positives at acceptable level in intrusion detection. In complex and dynamic large intrusion detection dataset, the detection accuracy of naïve Bayesian classifier does not scale up as well as decision tree. It has been successfully tested in other problem domains that naïve Bayesian tree improves the classification rates in large dataset. In naïve Bayesian tree nodes contain and split as regular decision-trees, but the leaves contain naïve Bayesian classifiers. The experimental results on KDD99 benchmark network intrusion detection dataset demonstrate that this new approach scales up the detection rates for different attack types and reduces false positives in network intrusion detection.Keywords: Detection rates, false positives, network intrusiondetection, naïve Bayesian tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229416 Hybrid Intelligent Intrusion Detection System
Authors: Norbik Bashah, Idris Bharanidharan Shanmugam, Abdul Manan Ahmed
Abstract:
Intrusion Detection Systems are increasingly a key part of systems defense. Various approaches to Intrusion Detection are currently being used, but they are relatively ineffective. Artificial Intelligence plays a driving role in security services. This paper proposes a dynamic model Intelligent Intrusion Detection System, based on specific AI approach for intrusion detection. The techniques that are being investigated includes neural networks and fuzzy logic with network profiling, that uses simple data mining techniques to process the network data. The proposed system is a hybrid system that combines anomaly, misuse and host based detection. Simple Fuzzy rules allow us to construct if-then rules that reflect common ways of describing security attacks. For host based intrusion detection we use neural-networks along with self organizing maps. Suspicious intrusions can be traced back to its original source path and any traffic from that particular source will be redirected back to them in future. Both network traffic and system audit data are used as inputs for both.Keywords: Intrusion Detection, Network Security, Data mining, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214015 Effect of Weathering on the Mineralogy and Geochemistry of Sediments of the Hyper Saline Urmia Salt Lake, Iran
Authors: Samad Alipour, Khadije Mosavi Onlaghi
Abstract:
Urmia Salt Lake (USL) is a hypersaline lake in the northwest of Iran. It contains halite as main dissolved and precipitated mineral and the major mineral mixed with lake bed sediments. Other detrital minerals such as calcite, aragonite, dolomite, quartz, feldspars, augite are forming lake sediments. This study examined the impact of weathering of this sediments collected from 1.5 meters depth and augite placers. The study indicated that weathering of tephritic and adakite rocks of the Islamic Island at the immediate boundary of the lake play a main control of lake bed sediments and has produced a large volume of augite placer along the lake bank. Weathering increases from south to toward north with increasing distance from Islamic Island. Geochemistry of lake sediments demonstrated the enrichment of MgO, CaO, Sr with an elevated anomaly of Eu, possibly due to surface absorbance of Mn and Fe associated Sr elevation originating from adakite volcanic rocks in the vicinity of the lake basin. The study shows the local geology is the major factor in origin of lake sediments than chemical and biochemical produced mineral during diagenetic processes.Keywords: Urmia Lake, weathering, mineralogy, augite, Iran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 129714 Challenging Hegemonic Masculinity in Nigerian Hip Hop: An Evaluation of Gender Representation in Falz the Bahd Guy’s Moral Instruction Album
Authors: Adelaja O. Oriade
Abstract:
The Nigerian hip-hop music genre, like the African American scene where it was adopted from, is riddled with musical lyrics that amplify and normalize hypermasculinity, homophobia, sexism, and objectification of women. Several factors are responsible for this anomaly; however, the greatest factor is the urge of hip-hop musicians to achieve the commercial success that is dependent on selling records and appealing to the established societal accepted norm for hip-hop music. Consequently, this paper presents a counter-narrative of this gender representation within the Nigerian hip-hop industry. This study analyzed the musical lyrics of the ‘Hypocrisy’ track on the 2019 album of famous Nigerian rapper, Falz the Bahd Guy; and argued that Falz in this album challenged the predominant ideas of hegemonic masculinity by singing in favor of LGBT people and women. Also, based on the success of this album, this paper argues that a hip-hop album can achieve commercial success without aligning with predominant hip-hop parameters of gender representation. The study recommends that future studies should evaluate the reactions of Nigerians to these gender presentations by Falz the Bahd guy.
Keywords: Hegemonic Masculinity, hypermasculinity, LGBT, misogyny, sexism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91513 Petrology and Geochemistry of Granitic Rocks in South Sulawesi, Indonesia: Implication for Origin of Magma and Geodynamic Setting
Authors: Adi Maulana, Koichiro Watanabe, Akira Imai, Kotaro Yonezu
Abstract:
Petrology and geochemical characteristics of granitic rocks from South Sulawesi, especially from Polewaliand Masamba area are presented in order to elucidate their origin of magma and geodynamic setting. The granitic rocks in these areas are dominated by granodiorite and granite in composition. Quartz, K-feldspar and plagioclase occur as major phases with hornblende and biotite as major ferromagnesian minerals. All of the samples were plotted in calc-alkaline field, show metaluminous affinity and typical of I-type granitic rock. Harker diagram indicates that granitic rocks experienced fractional crystallization during magmatic evolution. Both groups displayed an extreme enrichment of LILE, LREE and a slight negative Eu anomaly which resemble upper continental crust affinity. They were produced from partial melting of upper continental crust and have close relationship of sources composition within a suite. The geochemical characteristics explained the arc related subduction environment which later give an evidence of continent-continent collision between Australia-derived microcontinent and Sundalandto form continental arc environment.Keywords: Geochemistry, Granitic Rock, Petrology, Sulawesi
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 373512 Increase of Heat Index over Bangladesh: Impact of Climate Change
Authors: Mohammad Adnan Rajib, Md.Rubayet Mortuza, Saranah Selmi, Asif Khan Ankur, Md. Mujibur Rahman
Abstract:
Heat Index describes the combined effect of temperature and humidity on human body. This combined effect is causing a serious threat to the health of people because of the changing climate. With climate change, climate variability and thus the occurrence of heat waves is likely to increase. Evidence is emerging from the analysis of long-term climate records of an increase in the frequency and duration of extreme temperature events in all over Bangladesh particularly during summer. Summer season has prolonged while winters have become short in Bangladesh. Summers have become hotter and thus affecting the lives of the people engaged in outdoor activities during scorching sun hours. In 2003 around 62 people died due to heat wave across the country. In this paper Bangladesh is divided in four regions and heat index has been calculated from 1960 to 2010 in these regions of the country. The aim of this paper is to identify the spots most vulnerable to heat strokes and heat waves due to high heat index. The results show upward trend of heat index in almost all the regions of Bangladesh. The highest increase in heat index value has been observed in areas of South-west region and North-west Region. The highest change in average heat index has been found in Jessore by almost 5.50C.Keywords: Anomaly, Heat index, Relative humidity, Temperature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 304011 Tagging by Combining Rules- Based Method and Memory-Based Learning
Authors: Tlili-Guiassa Yamina
Abstract:
Many natural language expressions are ambiguous, and need to draw on other sources of information to be interpreted. Interpretation of the e word تعاون to be considered as a noun or a verb depends on the presence of contextual cues. To interpret words we need to be able to discriminate between different usages. This paper proposes a hybrid of based- rules and a machine learning method for tagging Arabic words. The particularity of Arabic word that may be composed of stem, plus affixes and clitics, a small number of rules dominate the performance (affixes include inflexional markers for tense, gender and number/ clitics include some prepositions, conjunctions and others). Tagging is closely related to the notion of word class used in syntax. This method is based firstly on rules (that considered the post-position, ending of a word, and patterns), and then the anomaly are corrected by adopting a memory-based learning method (MBL). The memory_based learning is an efficient method to integrate various sources of information, and handling exceptional data in natural language processing tasks. Secondly checking the exceptional cases of rules and more information is made available to the learner for treating those exceptional cases. To evaluate the proposed method a number of experiments has been run, and in order, to improve the importance of the various information in learning.Keywords: Arabic language, Based-rules, exceptions, Memorybased learning, Tagging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163410 On Algebraic Structure of Improved Gauss-Seidel Iteration
Authors: O. M. Bamigbola, A. A. Ibrahim
Abstract:
Analysis of real life problems often results in linear systems of equations for which solutions are sought. The method to employ depends, to some extent, on the properties of the coefficient matrix. It is not always feasible to solve linear systems of equations by direct methods, as such the need to use an iterative method becomes imperative. Before an iterative method can be employed to solve a linear system of equations there must be a guaranty that the process of solution will converge. This guaranty, which must be determined apriori, involve the use of some criterion expressible in terms of the entries of the coefficient matrix. It is, therefore, logical that the convergence criterion should depend implicitly on the algebraic structure of such a method. However, in deference to this view is the practice of conducting convergence analysis for Gauss- Seidel iteration on a criterion formulated based on the algebraic structure of Jacobi iteration. To remedy this anomaly, the Gauss- Seidel iteration was studied for its algebraic structure and contrary to the usual assumption, it was discovered that some property of the iteration matrix of Gauss-Seidel method is only diagonally dominant in its first row while the other rows do not satisfy diagonal dominance. With the aid of this structure we herein fashion out an improved version of Gauss-Seidel iteration with the prospect of enhancing convergence and robustness of the method. A numerical section is included to demonstrate the validity of the theoretical results obtained for the improved Gauss-Seidel method.
Keywords: Linear system of equations, Gauss-Seidel iteration, algebraic structure, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29409 Biological Diagnosis and Physiopathology of von Willebrand-s Disease in a Part of the Algerian Population in the East and the South
Authors: H. Djaara, M. Yahia, H. Bousselsela, N Khelif, A. Zidani, S. Benbia.
Abstract:
Von Willebrand-s disease is the most common inherited bleeding disorder in humans, it caused by qualitative abnormalities of the von Willebrand factor (vWF). Our objective is to determine the prevalence of this disease at part of the Algerian population in the East and the South by a biological diagnosis based on specific biological tests (automated platelet count, the bleeding time (TS), the time of cephalin + activator (TCA), measure of the prothrombin rate (TP), vWF rate and factor VIII rate, Molecular electrophoresis of vWF multimers in agarose gel in the presence of SDS). Four patients of type III or severe Willebrand-s disease were found on 200 suspect cases. All cases are showed a deficit in vWF rate (< 5%), and factor VIII (P<0, 0001), and lengthening very significantly high of the TCA (P<0, 0001) and of the bleeding time (P<0,0001), with a normal blood platelet rate (P=0,7433) and a normal prothrombin rate (P=0,5808), an absence of all the multimers of vWF in plasma patients. The severe Willebrand-s disease is not only one pathology of primary haemostasis, but it can be accompanied by coagulation-s anomaly due to deficit in factor VIII. At this studied population, von Willebrand-s disease is less frequent (2%) than other hemorrhagic syndromes identified by the differential diagnosis like the thrombocytopenia (36%).Keywords: Von Willebrand's disease, differential diagnosis, von Willebrand factor, factor VIII, biological diagnosis, thrombocytopenia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17468 A Rule-based Approach for Anomaly Detection in Subscriber Usage Pattern
Authors: Rupesh K. Gopal, Saroj K. Meher
Abstract:
In this report we present a rule-based approach to detect anomalous telephone calls. The method described here uses subscriber usage CDR (call detail record) data sampled over two observation periods: study period and test period. The study period contains call records of customers- non-anomalous behaviour. Customers are first grouped according to their similar usage behaviour (like, average number of local calls per week, etc). For customers in each group, we develop a probabilistic model to describe their usage. Next, we use maximum likelihood estimation (MLE) to estimate the parameters of the calling behaviour. Then we determine thresholds by calculating acceptable change within a group. MLE is used on the data in the test period to estimate the parameters of the calling behaviour. These parameters are compared against thresholds. Any deviation beyond the threshold is used to raise an alarm. This method has the advantage of identifying local anomalies as compared to techniques which identify global anomalies. The method is tested for 90 days of study data and 10 days of test data of telecom customers. For medium to large deviations in the data in test window, the method is able to identify 90% of anomalous usage with less than 1% false alarm rate.Keywords: Subscription fraud, fraud detection, anomalydetection, maximum likelihood estimation, rule based systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28197 A Study on Abnormal Behavior Detection in BYOD Environment
Authors: Dongwan Kang, Joohyung Oh, Chaetae Im
Abstract:
Advancement of communication technologies and smart devices in the recent times is leading to changes into the integrated wired and wireless communication environments. Since early days, businesses had started introducing environments for mobile device application to their operations in order to improve productivity (efficiency) and the closed corporate environment gradually shifted to an open structure. Recently, individual user's interest in working environment using mobile devices has increased and a new corporate working environment under the concept of BYOD is drawing attention. BYOD (bring your own device) is a concept where individuals bring in and use their own devices in business activities. Through BYOD, businesses can anticipate improved productivity (efficiency) and also a reduction in the cost of purchasing devices. However, as a result of security threats caused by frequent loss and theft of personal devices and corporate data leaks due to low security, companies are reluctant about adopting BYOD system. In addition, without considerations to diverse devices and connection environments, there are limitations in detecting abnormal behaviors, such as information leaks, using the existing network-based security equipment. This study suggests a method to detect abnormal behaviors according to individual behavioral patterns, rather than the existing signature-based malicious behavior detection, and discusses applications of this method in BYOD environment.
Keywords: BYOD, Security, Anomaly Behavior Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20746 Thin Bed Reservoir Delineation Using Spectral Decomposition and Instantaneous Seismic Attributes, Pohokura Field, Taranaki Basin, New Zealand
Authors: P. Sophon, M. Kruachanta, S. Chaisri, G. Leaungvongpaisan, P. Wongpornchai
Abstract:
The thick bed hydrocarbon reservoirs are primarily interested because of the more prolific production. When the amount of petroleum in the thick bed starts decreasing, the thin bed reservoirs are the alternative targets to maintain the reserves. The conventional interpretation of seismic data cannot delineate the thin bed having thickness less than the vertical seismic resolution. Therefore, spectral decomposition and instantaneous seismic attributes were used to delineate the thin bed in this study. Short Window Discrete Fourier Transform (SWDFT) spectral decomposition and instantaneous frequency attributes were used to reveal the thin bed reservoir, while Continuous Wavelet Transform (CWT) spectral decomposition and envelope (instantaneous amplitude) attributes were used to indicate hydrocarbon bearing zone. The study area is located in the Pohokura Field, Taranaki Basin, New Zealand. The thin bed target is the uppermost part of Mangahewa Formation, the most productive in the gas-condensate production in the Pohokura Field. According to the time-frequency analysis, SWDFT spectral decomposition can reveal the thin bed using a 72 Hz SWDFT isofrequency section and map, and that is confirmed by the instantaneous frequency attribute. The envelope attribute showing the high anomaly indicates the hydrocarbon accumulation area at the thin bed target. Moreover, the CWT spectral decomposition shows the low-frequency shadow zone and abnormal seismic attenuation in the higher isofrequencies below the thin bed confirms that the thin bed can be a prospective hydrocarbon zone.
Keywords: Hydrocarbon indication, instantaneous seismic attribute, spectral decomposition, thin bed delineation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6555 Space Telemetry Anomaly Detection Based on Statistical PCA Algorithm
Authors: B. Nassar, W. Hussein, M. Mokhtar
Abstract:
The critical concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission, but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the problem above coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions, and the results show that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.Keywords: Space telemetry monitoring, multivariate analysis, PCA algorithm, space operations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20714 Spatial Clustering Model of Vessel Trajectory to Extract Sailing Routes Based on AIS Data
Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin
Abstract:
The automatic extraction of shipping routes is advantageous for intelligent traffic management systems to identify events and support decision-making in maritime surveillance. At present, there is a high demand for the extraction of maritime traffic networks that resemble the real traffic of vessels accurately, which is valuable for further analytical processing tasks for vessels trajectories (e.g., naval routing and voyage planning, anomaly detection, destination prediction, time of arrival estimation). With the help of big data and processing huge amounts of vessels’ trajectory data, it is possible to learn these shipping routes from the navigation history of past behaviour of other, similar ships that were travelling in a given area. In this paper, we propose a spatial clustering model of vessels’ trajectories (SPTCLUST) to extract spatial representations of sailing routes from historical Automatic Identification System (AIS) data. The whole model consists of three main parts: data preprocessing, path finding, and route extraction, which consists of clustering and representative trajectory extraction. The proposed clustering method provides techniques to overcome the problems of: (i) optimal input parameters selection; (ii) the high complexity of processing a huge volume of multidimensional data; (iii) and the spatial representation of complete representative trajectory detection in the context of trajectory clustering algorithms. The experimental evaluation showed the effectiveness of the proposed model by using a real-world AIS dataset from the Port of Halifax. The results contribute to further understanding of shipping route patterns. This could aid surveillance authorities in stable and sustainable vessel traffic management.
Keywords: Vessel trajectory clustering, trajectory mining, Spatial Clustering, marine intelligent navigation, maritime traffic network extraction, sdailing routes extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4813 Regional Low Gravity Anomalies Influencing High Concentrations of Heavy Minerals on Placer Deposits
Authors: T. B. Karu Jayasundara
Abstract:
Regions of low gravity and gravity anomalies both influence heavy mineral concentrations on placer deposits. Economically imported heavy minerals are likely to have higher levels of deposition in low gravity regions of placer deposits. This can be found in coastal regions of Southern Asia, particularly in Sri Lanka and Peninsula India and areas located in the lowest gravity region of the world. The area about 70 kilometers of the east coast of Sri Lanka is covered by a high percentage of ilmenite deposits, and the southwest coast of the island consists of Monazite placer deposit. These deposits are one of the largest placer deposits in the world. In India, the heavy mineral industry has a good market. On the other hand, based on the coastal placer deposits recorded, the high gravity region located around Papua New Guinea, has no such heavy mineral deposits. In low gravity regions, with the help of other depositional environmental factors, the grains have more time and space to float in the sea, this helps bring high concentrations of heavy mineral deposits to the coast. The effect of low and high gravity can be demonstrated by using heavy mineral separation devices. The Wilfley heavy mineral separating table is one of these; it is extensively used in industries and in laboratories for heavy mineral separation. The horizontally oscillating Wilfley table helps to separate heavy and light mineral grains in to deferent fractions, with the use of water. In this experiment, the low and high angle of the Wilfley table are representing low and high gravity respectively. A sample mixture of grain size <0.85 mm of heavy and light mineral grains has been used for this experiment. The high and low angle of the table was 60 and 20 respectively for this experiment. The separated fractions from the table are again separated into heavy and light minerals, with the use of heavy liquid, which consists of a specific gravity of 2.85. The fractions of separated heavy and light minerals have been used for drawing the two-dimensional graphs. The graphs show that the low gravity stage has a high percentage of heavy minerals collected in the upper area of the table than in the high gravity stage. The results of the experiment can be used for the comparison of regional low gravity and high gravity levels of heavy minerals. If there are any heavy mineral deposits in the high gravity regions, these deposits will take place far away from the coast, within the continental shelf.
Keywords: Anomaly, gravity, influence, mineral.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11042 Climate Related Financial Risk for Automobile Industry and Impact to Financial Institutions
Authors: S. Mahalakshmi, B. Senthil Arasu
Abstract:
As per the recent changes happening in the global policies, climate related changes and the impact it causes across every sector are viewed as green swan events – in essence, climate related changes can happen often and lead to risk and lot of uncertainty, but need to be mitigated instead of considering them as black swan events. This brings about a question on how this risk can be computed, so that the financial institutions can plan to mitigate it. Climate related changes impact all risk types – credit risk, market risk, operational risk, liquidity risk, reputational risk and others. And the models required to compute this have to consider the different industrial needs of the counterparty, as well as the factors that are contributing to this – be it in the form of different risk drivers, or the different transmission channels or the different approaches and the granular form of data availability. This brings out to the suggestion that the climate related changes, though it affects Pillar I risks, will be a Pillar II risk. This has to be modeled specifically based on the financial institution’s actual exposure to different industries, instead of generalizing the risk charge. And this will have to be considered as the additional capital to be met by the financial institution in addition to their Pillar I risks, as well as the existing Pillar II risks. In this paper, we present a risk assessment framework to model and assess climate change risks - for both credit and market risks. This framework helps in assessing the different scenarios, and how the different transition risks affect the risk associated with the different parties. This research paper delves on the topic of increase in concentration of greenhouse gases, that in turn causing global warming. It then considers the various scenarios of having the different risk drivers impacting credit and market risk of an institution, by understanding the transmission channels, and also considering the transition risk. The paper then focuses on the industry that’s fast seeing a disruption: automobile industry. The paper uses the framework to show how the climate changes and the change to the relevant policies have impacted the entire financial institution. Appropriate statistical models for forecasting, anomaly detection and scenario modeling are built to demonstrate how the framework can be used by the relevant agencies to understand their financial risks. The paper also focuses on the climate risk calculation for the Pillar II capital calculations, and how it will make sense for the bank to maintain this in addition to their regular Pillar I and Pillar II capital.
Keywords: Capital calculation, climate risk, credit risk, pillar II risk, scenario modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 438