Search results for: Dynamic system
3865 Bone Generation through Mechanical Loading
Authors: R. S. A. Nesbitt, J. Macione, A. Debroy, S. P. Kotha
Abstract:
Bones are dynamic and responsive organs, they regulate their strength and mass according to the loads which they are subjected. Because, the Wnt/β-catenin pathway has profound effects on the regulation of bone mass, we hypothesized that mechanical loading of bone cells stimulates Wnt/β-catenin signaling, which results in the generation of new bone mass. Mechanical loading triggers the secretion of the Wnt molecule, which after binding to transmembrane proteins, causes GSK-3β (Glycogen synthase kinase 3 beta) to cease the phosphorylation of β-catenin. β-catenin accumulation in the cytoplasm, followed by its transport into the nucleus, binding to transcription factors (TCF/LEF) that initiate transcription of genes related to bone formation. To test this hypothesis, we used TOPGAL (Tcf Optimal Promoter β-galactosidase) mice in an experiment in which cyclic loads were applied to the forearm. TOPGAL mice are reporters for cells effected by the Wnt/β-catenin signaling pathway. TOPGAL mice are genetically engineered mice in which transcriptional activation of β- catenin, results in the production of an enzyme, β-galactosidase. The presence of this enzyme allows us to localize transcriptional activation of β-catenin to individual cells, thereby, allowing us to quantify the effects that mechanical loading has on the Wnt/β-catenin pathway and new bone formation. The ulnae of loaded TOPGAL mice were excised and transverse slices along different parts of the ulnar shaft were assayed for the presence of β-galactosidase. Our results indicate that loading increases β-catenin transcriptional activity in regions where this pathway is already primed (i.e. where basal activity is already higher) in a load magnitude dependent manner. Further experiments are needed to determine the temporal and spatial activation of this signaling in relation to bone formation.Keywords: Bone Resorption and Formation, Mechanical Loading of Bone, Wnt Signaling Pathway & β-catenin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14823864 Experimental Investigation on Freeze-Concentration Process Desalting for Highly Saline Brines
Authors: H. Al-Jabli
Abstract:
Using the freeze-melting process for the disposing of high saline brines was the aim of the paper by confirming the performance estimation of the treatment system. A laboratory bench scale freezing technique test unit was designed, constructed, and tested at Doha Research Plant (DRP) in Kuwait. The principal unit operations that have been considered for the laboratory study are: ice crystallization, separation, washing, and melting. The applied process is characterized as “the secondary-refrigerant indirect freezing”, which is utilizing normal freezing concept. The high saline brine was used as definite feed water, i.e. average TDS of 250,000 ppm. Kuwait desalination plants were carried out in the experimental study to measure the performance of the proposed treatment system. Experimental analysis shows that the freeze-melting process is capable of dropping the TDS of the feed water from 249,482 ppm to 56,880 ppm of the freeze-melting process in the two-phase’s course, whereas overall recovery results of the salt passage and salt rejection are 31.11%, 19.05%, and 80.95%, correspondingly. Therefore, the freeze-melting process is encouraging for the proposed application, as it shows on the results, which approves the process capability of reducing a major amount of the dissolved salts of the high saline brine with reasonable sensible recovery. This process might be reasonable with other brine disposal processes.
Keywords: High saline brine, freeze-melting process, ice crystallization, brine disposal process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10593863 Robot Operating System-Based SLAM for a Gazebo-Simulated Turtlebot2 in 2d Indoor Environment with Cartographer Algorithm
Authors: Wilayat Ali, Li Sheng, Waleed Ahmed
Abstract:
The ability of the robot to make simultaneously map of the environment and localize itself with respect to that environment is the most important element of mobile robots. To solve SLAM many algorithms could be utilized to build up the SLAM process and SLAM is a developing area in Robotics research. Robot Operating System (ROS) is one of the frameworks which provide multiple algorithm nodes to work with and provide a transmission layer to robots. Manyof these algorithms extensively in use are Hector SLAM, Gmapping and Cartographer SLAM. This paper describes a ROS-based Simultaneous localization and mapping (SLAM) library Google Cartographer mapping, which is open-source algorithm. The algorithm was applied to create a map using laser and pose data from 2d Lidar that was placed on a mobile robot. The model robot uses the gazebo package and simulated in Rviz. Our research work's primary goal is to obtain mapping through Cartographer SLAM algorithm in a static indoor environment. From our research, it is shown that for indoor environments cartographer is an applicable algorithm to generate 2d maps with LIDAR placed on mobile robot because it uses both odometry and poses estimation. The algorithm has been evaluated and maps are constructed against the SLAM algorithms presented by Turtlebot2 in the static indoor environment.Keywords: SLAM, ROS, navigation, localization and mapping, Gazebo, Rviz, Turtlebot2, SLAM algorithms, 2d Indoor environment, Cartographer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12323862 A New Approach In Protein Folding Studies Revealed The Potential Site For Nucleation Center
Authors: Nurul Bahiyah Ahmad Khairudin, Habibah A Wahab
Abstract:
A new approach to predict the 3D structures of proteins by combining the knowledge-based method and Molecular Dynamics Simulation is presented on the chicken villin headpiece subdomain (HP-36). Comparative modeling is employed as the knowledge-based method to predict the core region (Ala9-Asn28) of the protein while the remaining residues are built as extended regions (Met1-Lys8; Leu29-Phe36) which then further refined using Molecular Dynamics Simulation for 120 ns. Since the core region is built based on a high sequence identity to the template (65%) resulting in RMSD of 1.39 Å from the native, it is believed that this well-developed core region can act as a 'nucleation center' for subsequent rapid downhill folding. Results also demonstrate that the formation of the non-native contact which tends to hamper folding rate can be avoided. The best 3D model that exhibits most of the native characteristics is identified using clustering method which then further ranked based on the conformational free energies. It is found that the backbone RMSD of the best model compared to the NMR-MDavg is 1.01 Å and 3.53 Å, for the core region and the complete protein, respectively. In addition to this, the conformational free energy of the best model is lower by 5.85 kcal/mol as compared to the NMR-MDavg. This structure prediction protocol is shown to be effective in predicting the 3D structure of small globular protein with a considerable accuracy in much shorter time compared to the conventional Molecular Dynamics simulation alone.
Keywords: 3D model, Chicken villin headpiece subdomain, Molecular dynamic simulation NMR-MDavg, RMSD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15493861 Accurate Visualization of Graphs of Functions of Two Real Variables
Authors: Zeitoun D. G., Thierry Dana-Picard
Abstract:
The study of a real function of two real variables can be supported by visualization using a Computer Algebra System (CAS). One type of constraints of the system is due to the algorithms implemented, yielding continuous approximations of the given function by interpolation. This often masks discontinuities of the function and can provide strange plots, not compatible with the mathematics. In recent years, point based geometry has gained increasing attention as an alternative surface representation, both for efficient rendering and for flexible geometry processing of complex surfaces. In this paper we present different artifacts created by mesh surfaces near discontinuities and propose a point based method that controls and reduces these artifacts. A least squares penalty method for an automatic generation of the mesh that controls the behavior of the chosen function is presented. The special feature of this method is the ability to improve the accuracy of the surface visualization near a set of interior points where the function may be discontinuous. The present method is formulated as a minimax problem and the non uniform mesh is generated using an iterative algorithm. Results show that for large poorly conditioned matrices, the new algorithm gives more accurate results than the classical preconditioned conjugate algorithm.
Keywords: Function singularities, mesh generation, point allocation, visualization, collocation least squares method, Augmented Lagrangian method, Uzawa's Algorithm, Preconditioned Conjugate Gradien
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17083860 Probabilistic Method of Wind Generation Placement for Congestion Management
Authors: S. Z. Moussavi, A. Badri, F. Rastegar Kashkooli
Abstract:
Wind farms (WFs) with high level of penetration are being established in power systems worldwide more rapidly than other renewable resources. The Independent System Operator (ISO), as a policy maker, should propose appropriate places for WF installation in order to maximize the benefits for the investors. There is also a possibility of congestion relief using the new installation of WFs which should be taken into account by the ISO when proposing the locations for WF installation. In this context, efficient wind farm (WF) placement method is proposed in order to reduce burdens on congested lines. Since the wind speed is a random variable and load forecasts also contain uncertainties, probabilistic approaches are used for this type of study. AC probabilistic optimal power flow (P-OPF) is formulated and solved using Monte Carlo Simulations (MCS). In order to reduce computation time, point estimate methods (PEM) are introduced as efficient alternative for time-demanding MCS. Subsequently, WF optimal placement is determined using generation shift distribution factors (GSDF) considering a new parameter entitled, wind availability factor (WAF). In order to obtain more realistic results, N-1 contingency analysis is employed to find the optimal size of WF, by means of line outage distribution factors (LODF). The IEEE 30-bus test system is used to show and compare the accuracy of proposed methodology.Keywords: Probabilistic optimal power flow, Wind power, Pointestimate methods, Congestion management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18883859 Effect of Soil Tillage System upon the Soil Properties, Weed Control, Quality and Quantity Yield in Some Arable Crops
Authors: T Rusu, P I Moraru, I Bogdan, A I Pop, M L Sopterean
Abstract:
The paper presents the influence of the conventional ploughing tillage technology in comparison with the minimum tillage, upon the soil properties, weed control and yield in the case of maize (Zea mays L.), soya-bean (Glycine hispida L.) and winter wheat (Triticum aestivum L.) in a three years crop rotation. A research has been conducted at the University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Romania. The use of minimum soil tillage systems within a three years rotation: maize, soya-bean, wheat favorites the rise of the aggregates hydro stability with 5.6-7.5% on a 0-20 cm depth and 5-11% on 20-30 cm depth. The minimum soil tillage systems – paraplow, chisel or rotary grape – are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. The soil tillage system influences the productivity elements of cultivated species and finally the productions thus obtained. Thus, related to conventional working system, the productions registered in minimum tillage working represented 89- 97% in maize, 103-112% in soya-bean, 93-99% in winter-wheat. The results of investigations showed that the yield is a conclusion soil tillage systems influence on soil properties, plant density assurance and on weed control. Under minimum tillage systems in the case of winter weat as an option for replacing classic ploughing, the best results in terms of quality indices were obtained from version worked with paraplow, followed by rotary harrow and chisel. At variants worked with paraplow were obtained quality indices close to those of the variant worked with plow, and protein and gluten content was even higher. At Ariesan variety, highest protein content, 12.50% and gluten, 28.6% was obtained for the variant paraplow.Keywords: Minimum tillage, soil properties, yields quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19193858 UF as Pretreatment of RO for Tertiary Treatment of Biologically Treated Distillery Spentwash
Authors: Pinki Sharma, Himanshu Joshi
Abstract:
Distillery spentwash contains high chemical oxygen demand (COD), biological oxygen demand (BOD), color, total dissolved solids (TDS) and other contaminants even after biological treatment. The effluent can’t be discharged as such in the surface water bodies or land without further treatment. Reverse osmosis (RO) treatment plants have been installed in many of the distilleries at tertiary level in many of the distilleries in India, but are not properly working due to fouling problem which is caused by the presence of high concentration of organic matter and other contaminants in biologically treated spentwash. In order to make the membrane treatment a proven and reliable technology, proper pre-treatment is mandatory. In the present study, ultra-filtration (UF) for pretreatment of RO at tertiary stage has been performed. Operating parameters namely initial pH (pHo: 2–10), trans-membrane pressure (TMP: 4-20 bars) and temperature (T: 15-43°C) were used for conducting experiments with UF system. Experiments were optimized at different operating parameters in terms of COD, color, TDS and TOC removal by using response surface methodology (RSM) with central composite design. The results showed that removal of COD, color and TDS was 62%, 93.5% and 75.5% respectively, with UF, at optimized conditions with increased permeate flux from 17.5 l/m2/h (RO) to 38 l/m2/h (UF-RO). The performance of the RO system was greatly improved both in term of pollutant removal as well as water recovery.Keywords: Bio-digested distillery spentwash, reverse osmosis, Response surface methodology, ultra-filtration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25903857 Influence of Organizational Culture on Frequency of Disputes in Commercial Projects in Egypt: A Contractor’s Perspective
Authors: Omneya N. Mekhaimer, Elkhayam M. Dorra, A. Samer Ezeldin
Abstract:
Over the recent decades, studies on organizational culture have gained global attention in the business management literature, where it has been established that the cultural factors embedded in the organization have an implicit yet significant influence on the organization’s success. Unlike other industries, the construction industry is widely known to be operating in a dynamic and adversarial nature; considering the unique characteristics it denotes, thereby the level of disputes has propagated in the construction industry throughout the years. To that end, this paper aims to study the influence of organizational culture in the contractor’s organization on the frequency of disputes caused between the owner and the contractor in commercial projects based in Egypt. This objective is achieved by using a quantitative approach through a survey questionnaire to explore the dominant cultural attributes that exist in the contractor’s organization based on the Competing Value Framework (CVF) theory, which classifies organizational culture into four main cultural types: (1) clan, (2) adhocracy, (3) market, and (4) hierarchy. Accordingly, the collected data are statistically analyzed using Statistical Package for Social Sciences (SPSS 28) software, whereby a correlation analysis using Pearson Correlation is carried out to assess the relationship between these variables and their statistical significance using the p-value. The results show that there is an influence of organizational culture attributes on the frequency of disputes whereby market culture is identified to be the most dominant organizational culture that is currently practiced in contractor’s organization, which consequently contributes to increasing the frequency of disputes in commercial projects. These findings suggest that alternative management practices should be adopted rather than the existing ones with an aim to minimize dispute occurrence.
Keywords: Construction projects, correlation analysis, disputes, Egypt, organizational culture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603856 The Applicability of the Zipper Strut to Seismic Rehabilitation of Steel Structures
Authors: G. R. Nouri, H. Imani Kalesar, Zahra Ameli
Abstract:
Chevron frames (Inverted-V-braced frames or Vbraced frames) have seismic disadvantages, such as not good exhibit force redistribution capability and compression brace buckles immediately. Researchers developed new design provisions on increasing both the ductility and lateral resistance of these structures in seismic areas. One of these new methods is adding zipper columns, as proposed by Khatib et al. (1988) [2]. Zipper columns are vertical members connecting the intersection points of the braces above the first floor. In this paper applicability of the suspended zipper system to Seismic Rehabilitation of Steel Structures is investigated. The models are 3-, 6-, 9-, and 12-story Inverted-V-braced frames. In this case, it is assumed that the structures must be rehabilitated. For rehabilitation of structures, zipper column is used. The result of researches showed that the suspended zipper system is effective in case of 3-, 6-, and 9-story Inverted-V-braced frames and it would increase lateral resistance of structure up to life safety level. But in case of high-rise buildings (such as 12 story frame), it doesn-t show good performance. For solving this problem, the braced bay can consist of small “units" over the height of the entire structure, which each of them is a zipper-braced bay with a few stories. By using this method the lateral resistance of 12 story Inverted-V-braced frames is increased up to safety life level.Keywords: chevron-braced frames, suspended zipper frames, zipper frames, zipper columns
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22223855 Investigation of Seismic T-Resisting Frame with Shear and Flexural Yield of Horizontal Plate Girders
Authors: Helia Barzegar Sedigh, Farzaneh Hamedi, Payam Ashtari
Abstract:
There are some limitations in common structural systems, such as providing appropriate lateral stiffness, adequate ductility, and architectural openings at the same time. Consequently, the concept of T-Resisting Frame (TRF) has been introduced to overcome all these deficiencies. The configuration of TRF in this study is a Vertical Plate Girder (VPG) which is placed within the span and two Horizontal Plate Girders (HPGs) connect VPG to side columns at each story level by the use of rigid connections. System performance is improved by utilizing rigid connections in side columns base joint. Shear yield of HPGs causes energy dissipation in TRF; therefore, high plastic deformation in web of HPGs and VPG affects the ductility of system. Moreover, in order to prevent shear buckling in web of TRF’s members and appropriate criteria for placement of web stiffeners are applied. In this paper, an experimental study is conducted by applying cyclic loading and using finite element models and numerical studies such as push over method are assessed on shear and flexural yielding of HPGs. As a result, seismic parameters indicate adequate lateral stiffness, and high ductility factor of 6.73, and HPGs’ shear yielding achieved as a proof of TRF’s better performance.
Keywords: Experimental study, finite element model, flexural and shear yielding, T-resisting frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7343854 Evaluation of Heat Transfer and Entropy Generation by Al2O3-Water Nanofluid
Authors: Houda Jalali, Hassan Abbassi
Abstract:
In this numerical work, natural convection and entropy generation of Al2O3–water nanofluid in square cavity have been studied. A two-dimensional steady laminar natural convection in a differentially heated square cavity of length L, filled with a nanofluid is investigated numerically. The horizontal walls are considered adiabatic. Vertical walls corresponding to x=0 and x=L are respectively maintained at hot temperature, Th and cold temperature, Tc. The resolution is performed by the CFD code "FLUENT" in combination with GAMBIT as mesh generator. These simulations are performed by maintaining the Rayleigh numbers varied as 103 ≤ Ra ≤ 106, while the solid volume fraction varied from 1% to 5%, the particle size is fixed at dp=33 nm and a range of the temperature from 20 to 70 °C. We used models of thermophysical nanofluids properties based on experimental measurements for studying the effect of adding solid particle into water in natural convection heat transfer and entropy generation of nanofluid. Such as models of thermal conductivity and dynamic viscosity which are dependent on solid volume fraction, particle size and temperature. The average Nusselt number is calculated at the hot wall of the cavity in a different solid volume fraction. The most important results is that at low temperatures (less than 40 °C), the addition of nanosolids Al2O3 into water leads to a decrease in heat transfer and entropy generation instead of the expected increase, whereas at high temperature, heat transfer and entropy generation increase with the addition of nanosolids. This behavior is due to the contradictory effects of viscosity and thermal conductivity of the nanofluid. These effects are discussed in this work.
Keywords: Entropy generation, heat transfer, nanofluid, natural convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12573853 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network
Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir
Abstract:
The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.Keywords: MPPT, active power filter, PV array, perturb and observe algorithm, PWM-control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7543852 Tele-Operated Anthropomorphic Arm and Hand Design
Authors: Namal A. Senanayake, Khoo B. How, Quah W. Wai
Abstract:
In this project, a tele-operated anthropomorphic robotic arm and hand is designed and built as a versatile robotic arm system. The robot has the ability to manipulate objects such as pick and place operations. It is also able to function by itself, in standalone mode. Firstly, the robotic arm is built in order to interface with a personal computer via a serial servo controller circuit board. The circuit board enables user to completely control the robotic arm and moreover, enables feedbacks from user. The control circuit board uses a powerful integrated microcontroller, a PIC (Programmable Interface Controller). The PIC is firstly programmed using BASIC (Beginner-s All-purpose Symbolic Instruction Code) and it is used as the 'brain' of the robot. In addition a user friendly Graphical User Interface (GUI) is developed as the serial servo interface software using Microsoft-s Visual Basic 6. The second part of the project is to use speech recognition control on the robotic arm. A speech recognition circuit board is constructed with onboard components such as PIC and other integrated circuits. It replaces the computers- Graphical User Interface. The robotic arm is able to receive instructions as spoken commands through a microphone and perform operations with respect to the commands such as picking and placing operations.Keywords: Tele-operated Anthropomorphic Robotic Arm and Hand, Robot Motion System, Serial Servo Controller, Speech Recognition Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17663851 Assessing the Effect of the Position of the Cavities on the Inner Plate of the Steel Shear Wall under Time History Dynamic Analysis
Authors: Masoud Mahdavi, Mojtaba Farzaneh Moghadam
Abstract:
The seismic forces caused by the waves created in the depths of the earth during the earthquake hit the structure and cause the building to vibrate. Creating large seismic forces will cause low-strength sections in the structure to suffer extensive surface damage. The use of new steel shear walls in steel structures has caused the strength of the building and its main members (columns) to increase due to the reduction and depreciation of seismic forces during earthquakes. In the present study, an attempt was made to evaluate a type of steel shear wall that has regular holes in the inner sheet by modeling the finite element model with Abacus software. The shear wall of the steel plate, measuring 6000 × 3000 mm (one floor) and 3 mm thickness, was modeled with four different pores with a cross-sectional area. The shear wall was dynamically subjected to a time history of 5 seconds by three accelerators, El Centro, Imperial Valley and Kobe. The results showed that increasing the distance between the geometric center of the hole and the geometric center of the inner plate in the steel shear wall (increasing the RCS index) caused the total maximum acceleration to be transferred from the perimeter of the hole to horizontal and vertical beams. The results also show that there is no direct relationship between RCS index and total acceleration in steel shear wall and RCS index is separate from the peak ground acceleration value of earthquake.
Keywords: Hollow Steel plate shear wall, time history analysis, finite element method, Abaqus Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5763850 Biodiversity and Climate Change: Consequences for Norway Spruce Mountain Forests in Slovakia
Authors: Jozef Mindas, Jaroslav Skvarenina, Jana Skvareninova
Abstract:
Study of the effects of climate change on Norway Spruce (Picea abies) forests has mainly focused on the diversity of tree species diversity of tree species as a result of the ability of species to tolerate temperature and moisture changes as well as some effects of disturbance regime changes. The tree species’ diversity changes in spruce forests due to climate change have been analyzed via gap model. Forest gap model is a dynamic model for calculation basic characteristics of individual forest trees. Input ecological data for model calculations have been taken from the permanent research plots located in primeval forests in mountainous regions in Slovakia. The results of regional scenarios of the climatic change for the territory of Slovakia have been used, from which the values are according to the CGCM3.1 (global) model, KNMI and MPI (regional) models. Model results for conditions of the climate change scenarios suggest a shift of the upper forest limit to the region of the present subalpine zone, in supramontane zone. N. spruce representation will decrease at the expense of beech and precious broadleaved species (Acer sp., Sorbus sp., Fraxinus sp.). The most significant tree species diversity changes have been identified for the upper tree line and current belt of dwarf pine (Pinus mugo) occurrence. The results have been also discussed in relation to most important disturbances (wind storms, snow and ice storms) and phenological changes which consequences are little known. Special discussion is focused on biomass production changes in relation to carbon storage diversity in different carbon pools.Keywords: Biodiversity, climate change, Norway spruce forests, gap model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16443849 Precision Control of Single-Phase PWM Inverter Using M68HC11E Microcontroller
Authors: Khaled A. Madi
Abstract:
Induction motors are being used in greater numbers throughout a wide variety of industrial and commercial applications because it provides many benefits and reliable device to convert the electrical energy into mechanical motion. In some application it-s desired to control the speed of the induction motor. Because of the physics of the induction motor the preferred method of controlling its speed is to vary the frequency of the AC voltage driving the motor. In recent years, with the microcontroller incorporated into an appliance it becomes possible to use it to generate the variable frequency AC voltage to control the speed of the induction motor. This study investigates the microcontroller based variable frequency power inverter. the microcontroller is provide the variable frequency pulse width modulation (PWM) signal that control the applied voltage on the gate drive, which is provides the required PWM frequency with less harmonics at the output of the power inverter. The fully controlled bridge voltage source inverter has been implemented with semiconductors power devices isolated gate bipolar transistor (IGBT), and the PWM technique has been employed in this inverter to supply the motor with AC voltage. The proposed drive system for three & single phase power inverter is simulated using Matlab/Simulink. The Matlab Simulation Results for the proposed system were achieved with different SPWM. From the result a stable variable frequency inverter over wide range has been obtained and a good agreement has been found between the simulation and hardware of a microcontroller based single phase inverter.Keywords: Power, inverter, PWM, microcontroller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44363848 Markov Chain Based QoS Support for Wireless Body Area Network Communication in Health Monitoring Services
Authors: R. A. Isabel, E. Baburaj
Abstract:
Wireless Body Area Networks (WBANs) are essential for real-time health monitoring of patients and in diagnosing of many diseases. WBANs comprise many sensors to monitor a large range of ambient conditions. Quality of Service (QoS) is a key challenge in WBAN, because the different state information of the neighboring nodes has to be monitored in an accurate manner. However, energy consumption gets increased while predicting and maintaining the exact information in highly dynamic environments. In order to reduce energy consumption and end to end delay, Markov Chain Based Quality of Service Support (MC-QoSS) method is designed in the health monitoring services of WBAN communication. The energy consumption gets reduced by forming a Markov chain with high energy nodes in the sensor networks communication path. The low energy level sensor nodes are removed using transitional probability in order to reduce end to end delay. High energy nodes are formed in the chain structure of its corresponding path to enhance communication. After choosing the communication path through high energy nodes, the packets are sent to the sink node from the source node with a higher Packet Delivery Ratio. The simulation result shows that MC-QoSS method improves the packet delivery ratio and reduces energy consumption with minimum end to end delay, compared to existing methods.
Keywords: Wireless body area networks, quality of service, Markov chain, health monitoring services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14393847 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks
Authors: T. Sattarpour, D. Nazarpour
Abstract:
This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.
Keywords: Active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17703846 Describing the Fine Electronic Structure and Predicting Properties of Materials with ATOMIC MATTERS Computation System
Authors: Rafal Michalski, Jakub Zygadlo
Abstract:
We present the concept and scientific methods and algorithms of our computation system called ATOMIC MATTERS. This is the first presentation of the new computer package, that allows its user to describe physical properties of atomic localized electron systems subject to electromagnetic interactions. Our solution applies to situations where an unclosed electron 2p/3p/3d/4d/5d/4f/5f subshell interacts with an electrostatic potential of definable symmetry and external magnetic field. Our methods are based on Crystal Electric Field (CEF) approach, which takes into consideration the electrostatic ligands field as well as the magnetic Zeeman effect. The application allowed us to predict macroscopic properties of materials such as: Magnetic, spectral and calorimetric as a result of physical properties of their fine electronic structure. We emphasize the importance of symmetry of charge surroundings of atom/ion, spin-orbit interactions (spin-orbit coupling) and the use of complex number matrices in the definition of the Hamiltonian. Calculation methods, algorithms and convention recalculation tools collected in ATOMIC MATTERS were chosen to permit the prediction of magnetic and spectral properties of materials in isostructural series.Keywords: Atomic matters, crystal electric field, spin-orbit coupling, localized states, electron subshell, fine electronic structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12083845 Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture
Authors: M. Amrita, R. R. Srikant, A. V. Sita Rama Raju
Abstract:
Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nanocutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.
Keywords: Economic analysis, Machining, Minimum Quantity lubrication, nanofluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22793844 Factors of Non-Conformity Behavior and the Emergence of a Ponzi Game in the Riba-Free (Interest-Free) Banking System of Iran
Authors: Amir Hossein Ghaffari Nejad, Forouhar Ferdowsi, Reza Mashhadi
Abstract:
In the interest-free banking system of Iran, the savings of society are in the form of bank deposits, and banks using the Islamic contracts, allocate the resources to applicants for obtaining facilities and credit. In the meantime, the central bank, with the aim of introducing monetary policy, determines the maximum interest rate on bank deposits in terms of macroeconomic requirements. But in recent years, the country's economic constraints with the stagflation and the consequence of the institutional weaknesses of the financial market of Iran have resulted in massive disturbances in the balance sheet of the banking system, resulting in a period of mismatch maturity in the banks' assets and liabilities and the implementation of a Ponzi game. This issue caused determination of the interest rate in long-term bank deposit contracts to be associated with non-observance of the maximum rate set by the central bank. The result of this condition was in the allocation of new sources of equipment to meet past commitments towards the old depositors and, as a result, a significant part of the supply of equipment was leaked out of the facilitating cycle and credit crunch emerged. The purpose of this study is to identify the most important factors affecting the occurrence of non-confirmatory financial banking behavior using data from 19 public and private banks of Iran. For this purpose, the causes of this non-confirmatory behavior of banks have been investigated using the panel vector autoregression method (PVAR) for the period of 2007-2015. Granger's causality test results suggest that the return of parallel markets for bank deposits, non-performing loans and the high share of the ratio of facilities to banks' deposits are all a cause of the formation of non-confirmatory behavior. Also, according to the results of impulse response functions and variance decomposition, NPL and the ratio of facilities to deposits have the highest long-term effect and also have a high contribution to explaining the changes in banks' non-confirmatory behavior in determining the interest rate on deposits.
Keywords: Non-conformity behavior, Ponzi game, panel vector autoregression, nonperforming loans.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8653843 Simulating Flow Transients in Conveying Pipeline Systems by Rigid Column and Full Elastic Methods: Pump Combined with Air Chamber
Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar, A. A. Saber
Abstract:
In water pipeline systems, the flow control is an integrated part of the operation, for instance, opening and closing the valves, starting and stopping the pumps, when these operations very quickly performed, they shall cause the hydraulic transient phenomena, which may cause pump and, valve failures and catastrophic pipe ruptures. Fluid transient analysis is one of the more challenging and complicated flow problems in the design and the operation of water pipeline systems. Transient control has become an essential requirement for ensuring safe operation of water pipeline systems. An accurate analysis and suitable protection devices should be used to protect water pipeline systems. The fourth-order Runge-Kutta method has been used to solve the dynamic and continuity equations in the rigid column method, while the characteristics method used to solve these equations in the full elastic methods. This paper presents the problem of modeling and simulating of transient phenomena in conveying pipeline systems based on the rigid column and full elastic methods. Also, it provides the influence of using the protection devices to protect the pipeline systems from damaging due to the gain pressure which occur in the transient state. The results obtained provide that the model is an efficient tool for flow transient analysis and provide approximately identical results by using these two methods. Moreover; using the closed surge tank reduces the unfavorable effects of transients.
Keywords: Flow transient, Pipeline, Air chamber, Numerical model, Protection devices, Elastic method, Rigid column method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44073842 Distributed Coordination of Connected and Automated Vehicles at Multiple Interconnected Intersections
Authors: Zhiyuan Du, Baisravan Hom Chaudhuri, Pierluigi Pisu
Abstract:
In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.
Keywords: Connected vehicles, automated vehicles, intersection coordination systems, multiple interconnected intersections, model predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18483841 Study on the Effect of Weight Percentage Variation and Size Variation of Magnesium Ferrosilicon Added, Gating System Design and Reaction Chamber Design on Inmold Process
Authors: A. Miss May Thu Zar Myint, B. Dr. Kay Thi Lwin
Abstract:
This research focuses on the effect of weight percentage variation and size variation of MgFeSi added, gating system design and reaction chamber design on inmold process. By using inmold process, well-known problem of fading is avoided because the liquid iron reacts with magnesium in the mold and not, as usual, in the ladle. During the pouring operation, liquid metal passes through the chamber containing the magnesium, where the reaction of the metal with magnesium proceeds in the absence of atmospheric oxygen [1].In this paper, the results of microstructural characteristic of ductile iron on this parameters are mentioned. The mechanisms of the inmold process are also described [2]. The data obtained from this research will assist in producing the vehicle parts and other machinery parts for different industrial zones and government industries and in transferring the technology to all industrial zones in Myanmar. Therefore, the inmold technology offers many advantages over traditional treatment methods both from a technical and environmental, as well as an economical point of view. The main objective of this research is to produce ductile iron castings in all industrial sectors in Myanmar more easily with lower costs. It will also assist the sharing of knowledge and experience related to the ductile iron production.Keywords: ductile iron, inmold process, magnesiumtreatment, microstructural characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16223840 Optimal Sliding Mode Controller for Knee Flexion During Walking
Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem
Abstract:
This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.
Keywords: Optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823839 Device for 3D Analysis of Basic Movements of the Lower Extremity
Authors: Jiménez Villanueva Mayra Alejandra, Ortíz Casallas Diana Carolina, Luengas Contreras Lely Adriana
Abstract:
This document details the process of developing a wireless device that captures the basic movements of the foot (plantar flexion, dorsal flexion, abduction, adduction.), and the knee movement (flexion). It implements a motion capture system by using a hardware based on optical fiber sensors, due to the advantages in terms of scope, noise immunity and speed of data transmission and reception. The operating principle used by this system is the detection and transmission of joint movement by mechanical elements and their respective measurement by optical ones (in this case infrared). Likewise, Visual Basic software is used for reception, analysis and signal processing of data acquired by the device, generating a 3D graphical representation in real time of each movement. The result is a boot in charge of capturing the movement, a transmission module (Implementing Xbee Technology) and a receiver module for receiving information and sending it to the PC for their respective processing. The main idea with this device is to help on topics such as bioengineering and medicine, by helping to improve the quality of life and movement analysis.Keywords: abduction, adduction, A / D converter, Autodesk 3DMax, Infrared Diode, Driver, extension, flexion, Infrared LEDs, Interface, Modeling OPENGL, Optical Fiber, USB CDC(Communications Device Class), Virtual Reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16943838 Design, Modeling and Fabrication of a Tactile Sensor and Display System for Application in Laparoscopic Surgery
Authors: M. Ramezanifard, J. Dargahi, S. Najarian, N. Narayanan
Abstract:
One of the major disadvantages of the minimally invasive surgery (MIS) is the lack of tactile feedback to the surgeon. In order to identify and avoid any damage to the grasped complex tissue by endoscopic graspers, it is important to measure the local softness of tissue during MIS. One way to display the measured softness to the surgeon is a graphical method. In this paper, a new tactile sensor has been reported. The tactile sensor consists of an array of four softness sensors, which are integrated into the jaws of a modified commercial endoscopic grasper. Each individual softness sensor consists of two piezoelectric polymer Polyvinylidene Fluoride (PVDF) films, which are positioned below a rigid and a compliant cylinder. The compliant cylinder is fabricated using a micro molding technique. The combination of output voltages from PVDF films is used to determine the softness of the grasped object. The theoretical analysis of the sensor is also presented. A method has been developed with the aim of reproducing the tactile softness to the surgeon by using a graphical method. In this approach, the proposed system, including the interfacing and the data acquisition card, receives signals from the array of softness sensors. After the signals are processed, the tactile information is displayed by means of a color coding method. It is shown that the degrees of softness of the grasped objects/tissues can be visually differentiated and displayed on a monitor.Keywords: Minimally invasive surgery, Robotic surgery, Sensor, Softness, Tactile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17113837 Two Dimensionnal Model for Extraction Packed Column Simulation using Finite Element Method
Authors: N. Outili, A-H. Meniai
Abstract:
Modeling transfer phenomena in several chemical engineering operations leads to the resolution of partial differential equations systems. According to the complexity of the operations mechanisms, the equations present a nonlinear form and analytical solution became difficult, we have then to use numerical methods which are based on approximations in order to transform a differential system to an algebraic one.Finite element method is one of numerical methods which can be used to obtain an accurate solution in many complex cases of chemical engineering.The packed columns find a large application like contactor for liquid-liquid systems such solvent extraction. In the literature, the modeling of this type of equipment received less attention in comparison with the plate columns.A mathematical bidimensionnal model with radial and axial dispersion, simulating packed tower extraction behavior was developed and a partial differential equation was solved using the finite element method by adopting the Galerkine model. We developed a Mathcad program, which can be used for a similar equations and concentration profiles are obtained along the column. The influence of radial dispersion was prooved and it can-t be neglected, the results were compared with experimental concentration at the top of the column in the extraction system: acetone/toluene/water.Keywords: finite element method, Galerkine method, liquidliquid extraction modelling, packed column simulation, two dimensional model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16903836 Financial Regulations in the Process of Global Financial Crisis and Macroeconomics Impact of Basel III
Authors: M. Okan Tasar
Abstract:
Basel III (or the Third Basel Accord) is a global regulatory standard on bank capital adequacy, stress testing and market liquidity risk agreed upon by the members of the Basel Committee on Banking Supervision in 2010-2011, and scheduled to be introduced from 2013 until 2018. Basel III is a comprehensive set of reform measures. These measures aim to; (1) improve the banking sector-s ability to absorb shocks arising from financial and economic stress, whatever the source, (2) improve risk management and governance, (3) strengthen banks- transparency and disclosures. Similarly the reform target; (1) bank level or micro-prudential, regulation, which will help raise the resilience of individual banking institutions to periods of stress. (2) Macro-prudential regulations, system wide risk that can build up across the banking sector as well as the pro-cyclical implication of these risks over time. These two approaches to supervision are complementary as greater resilience at the individual bank level reduces the risk system wide shocks. Macroeconomic impact of Basel III; OECD estimates that the medium-term impact of Basel III implementation on GDP growth is in the range -0,05 percent to -0,15 percent per year. On the other hand economic output is mainly affected by an increase in bank lending spreads as banks pass a rise in banking funding costs, due to higher capital requirements, to their customers. Consequently the estimated effects on GDP growth assume no active response from monetary policy. Basel III impact on economic output could be offset by a reduction (or delayed increase) in monetary policy rates by about 30 to 80 basis points. The aim of this paper is to create a framework based on the recent regulations in order to prevent financial crises. Thus the need to overcome the global financial crisis will contribute to financial crises that may occur in the future periods. In the first part of the paper, the effects of the global crisis on the banking system examine the concept of financial regulations. In the second part; especially in the financial regulations and Basel III are analyzed. The last section in this paper explored the possible consequences of the macroeconomic impacts of Basel III.Keywords: Banking Systems, Basel III, Financial regulation, Global Financial Crisis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287