Search results for: Parallel Machine
1228 Cognition of Driving Context for Driving Assistance
Authors: Manolo Dulva Hina, Clement Thierry, Assia Soukane, Amar Ramdane-Cherif
Abstract:
In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation.Keywords: Cognitive driving, intelligent transportation system, multimodal system, ontology, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14591227 Fast Painting with Different Colors Using Cross Correlation in the Frequency Domain
Authors: Hazem M. El-Bakry
Abstract:
In this paper, a new technique for fast painting with different colors is presented. The idea of painting relies on applying masks with different colors to the background. Fast painting is achieved by applying these masks in the frequency domain instead of spatial (time) domain. New colors can be generated automatically as a result from the cross correlation operation. This idea was applied successfully for faster specific data (face, object, pattern, and code) detection using neural algorithms. Here, instead of performing cross correlation between the input input data (e.g., image, or a stream of sequential data) and the weights of neural networks, the cross correlation is performed between the colored masks and the background. Furthermore, this approach is developed to reduce the computation steps required by the painting operation. The principle of divide and conquer strategy is applied through background decomposition. Each background is divided into small in size subbackgrounds and then each sub-background is processed separately by using a single faster painting algorithm. Moreover, the fastest painting is achieved by using parallel processing techniques to paint the resulting sub-backgrounds using the same number of faster painting algorithms. In contrast to using only faster painting algorithm, the speed up ratio is increased with the size of the background when using faster painting algorithm and background decomposition. Simulation results show that painting in the frequency domain is faster than that in the spatial domain.Keywords: Fast Painting, Cross Correlation, Frequency Domain, Parallel Processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17951226 Application New Approach with Two Networks Slow and Fast on the Asynchronous Machine
Authors: Samia Salah, M’hamed Hadj Sadok, Abderrezak Guessoum
Abstract:
In this paper, we propose a new modular approach called neuroglial consisting of two neural networks slow and fast which emulates a biological reality recently discovered. The implementation is based on complex multi-time scale systems; validation is performed on the model of the asynchronous machine. We applied the geometric approach based on the Gerschgorin circles for the decoupling of fast and slow variables, and the method of singular perturbations for the development of reductions models.
This new architecture allows for smaller networks with less complexity and better performance in terms of mean square error and convergence than the single network model.
Keywords: Gerschgorin’s Circles, Neuroglial Network, Multi time scales systems, Singular perturbation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16051225 Effectiveness Evaluation of a Machine Design Process Based on the Computation of the Specific Output
Authors: Barenten Suciu
Abstract:
In this paper, effectiveness of a machine design process is evaluated on the basis of the specific output calculus. Concretely, a screw-worm gear mechanical transmission is designed by using the classical and the 3D-CAD methods. Strength analysis and drawing of the designed parts is substantially aided by employing the SolidWorks software. Quality of the design process is assessed by manufacturing (printing) the parts, and by computing the efficiency, specific load, as well as the specific output (work) of the mechanical transmission. Influence of the stroke, travelling velocity and load on the mechanical output, is emphasized. Optimal design of the mechanical transmission becomes possible by the appropriate usage of the acquired results.
Keywords: Mechanical transmission, design, screw, worm-gear, efficiency, specific output, 3D-printing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9361224 Experimental Investigation of Plane Jets Exiting Five Parallel Channels with Large Aspect Ratio
Authors: Laurentiu Moruz, Jens Kitzhofer, Mircea Dinulescu
Abstract:
The paper aims to extend the knowledge about jet behavior and jet interaction between five plane unventilated jets with large aspect ratio (AR). The distance between the single plane jets is two times the channel height. The experimental investigation applies 2D Particle Image Velocimetry (PIV) and static pressure measurements. Our study focuses on the influence of two different outlet nozzle geometries (triangular shape with 2 x 7.5° and blunt geometry) with respect to variation of Reynolds number from 5500 - 12000. It is shown that the outlet geometry has a major influence on the jet formation in terms of uniformity of velocity profiles downstream of the sudden expansion. Furthermore, we describe characteristic regions like converging region, merging region and combined region. The triangular outlet geometry generates most uniform velocity distributions in comparison to a blunt outlet nozzle geometry. The blunt outlet geometry shows an unstable behavior where the jets tend to attach to one side of the walls (ceiling) generating a large recirculation region on the opposite side. Static pressure measurements confirm the observation and indicate that the recirculation region is connected to larger pressure drop.
Keywords: 2D particle image velocimetry, parallel jet interaction, pressure drop, sudden expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8771223 Optimal Current Control of Externally Excited Synchronous Machines in Automotive Traction Drive Applications
Authors: Oliver Haala, Bernhard Wagner, Maximilian Hofmann, Martin Marz
Abstract:
The excellent suitability of the externally excited synchronous machine (EESM) in automotive traction drive applications is justified by its high efficiency over the whole operation range and the high availability of materials. Usually, maximum efficiency is obtained by modelling each single loss and minimizing the sum of all losses. As a result, the quality of the optimization highly depends on the precision of the model. Moreover, it requires accurate knowledge of the saturation dependent machine inductances. Therefore, the present contribution proposes a method to minimize the overall losses of a salient pole EESM and its inverter in steady state operation based on measurement data only. Since this method does not require any manufacturer data, it is well suited for an automated measurement data evaluation and inverter parametrization. The field oriented control (FOC) of an EESM provides three current components resp. three degrees of freedom (DOF). An analytic minimization of the copper losses in the stator and the rotor (assuming constant inductances) is performed and serves as a first approximation of how to choose the optimal current reference values. After a numeric offline minimization of the overall losses based on measurement data the results are compared to a control strategy that satisfies cos (ϕ) = 1.
Keywords: Current control, efficiency, externally excited synchronous machine, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43951222 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets
Authors: Najmeh Abedzadeh, Matthew Jacobs
Abstract:
An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.
Keywords: IDS, intrusion detection system, imbalanced datasets, sampling algorithms, big data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11251221 Automatic Tuning for a Systemic Model of Banking Originated Losses (SYMBOL) Tool on Multicore
Authors: Ronal Muresano, Andrea Pagano
Abstract:
Nowadays, the mathematical/statistical applications are developed with more complexity and accuracy. However, these precisions and complexities have brought as result that applications need more computational power in order to be executed faster. In this sense, the multicore environments are playing an important role to improve and to optimize the execution time of these applications. These environments allow us the inclusion of more parallelism inside the node. However, to take advantage of this parallelism is not an easy task, because we have to deal with some problems such as: cores communications, data locality, memory sizes (cache and RAM), synchronizations, data dependencies on the model, etc. These issues are becoming more important when we wish to improve the application’s performance and scalability. Hence, this paper describes an optimization method developed for Systemic Model of Banking Originated Losses (SYMBOL) tool developed by the European Commission, which is based on analyzing the application's weakness in order to exploit the advantages of the multicore. All these improvements are done in an automatic and transparent manner with the aim of improving the performance metrics of our tool. Finally, experimental evaluations show the effectiveness of our new optimized version, in which we have achieved a considerable improvement on the execution time. The time has been reduced around 96% for the best case tested, between the original serial version and the automatic parallel version.
Keywords: Algorithm optimization, Bank Failures, OpenMP, Parallel Techniques, Statistical tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19001220 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE.
Keywords: IDS, DDoS, MLP, KDD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7271219 The Slant Helices According to Bishop Frame
Authors: Bahaddin Bukcu, Murat Kemal Karacan
Abstract:
In this study, we have defined slant helix according to Bishop frame in Euclidean 3-Space. Furthermore, we have given some necassary and sufficient conditons for the slant helix.Keywords: Slant helix, Bishop frame, Parallel transport frame
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18281218 Coordinated Q–V Controller for Multi-machine Steam Power Plant: Design and Validation
Authors: Jasna Dragosavac, Žarko Janda, J.V. Milanović, Dušan Arnautović
Abstract:
This paper discusses coordinated reactive power - voltage (Q-V) control in a multi machine steam power plant. The drawbacks of manual Q-V control are briefly listed, and the design requirements for coordinated Q-V controller are specified. Theoretical background and mathematical model of the new controller are presented next followed by validation of developed Matlab/Simulink model through comparison with recorded responses in real steam power plant and description of practical realisation of the controller. Finally, the performance of commissioned controller is illustrated on several examples of coordinated Q-V control in real steam power plant and compared with manual control.Keywords: Coordinated Voltage Control, Power Plant Control, Reactive Power Control, Sensitivity Matrix
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21861217 Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model
Authors: J. Hey, D. A. Howey, R. Martinez-Botas, M. Lamperth
Abstract:
This paper presents the development of a hybrid thermal model for the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine as used in hybrid and electric vehicles. The adopted approach is based on a hybrid lumped parameter and finite difference method. The proposed method divides each motor component into regular elements which are connected together in a thermal resistance network representing all the physical connections in all three dimensions. The element shape and size are chosen according to the component geometry to ensure consistency. The fluid domain is lumped into one region with averaged heat transfer parameters connecting it to the solid domain. Some model parameters are obtained from Computation Fluid Dynamic (CFD) simulation and empirical data. The hybrid thermal model is described by a set of coupled linear first order differential equations which is discretised and solved iteratively to obtain the temperature profile. The computation involved is low and thus the model is suitable for transient temperature predictions. The maximum error in temperature prediction is 3.4% and the mean error is consistently lower than the mean error due to uncertainty in measurements. The details of the model development, temperature predictions and suggestions for design improvements are presented in this paper.Keywords: Electric vehicle, hybrid thermal model, transient temperature prediction, Axial Flux Permanent Magnet machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21581216 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.
Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3211215 Design, Fabrication and Performance Evaluation of Mobile Engine-Driven Pneumatic Paddy Collector
Authors: Sony P. Aquino, Helen F. Gavino, Victorino T. Taylan, Teresito G. Aguinaldo
Abstract:
A simple mobile engine-driven pneumatic paddy collector made of locally available materials using local manufacturing technology was designed, fabricated, and tested for collecting and bagging of paddy dried on concrete pavement. The pneumatic paddy collector had the following major components: radial flat bladed type centrifugal fan, power transmission system, bagging area, frame and the conveyance system. Results showed significant differences on the collecting capacity, noise level, and fuel consumption when rotational speed of the air mover shaft was varied. Other parameters such as collecting efficiency, air velocity, augmented cracked grain percentage, and germination rate were not significantly affected by varying rotational speed of the air mover shaft. The pneumatic paddy collector had a collecting efficiency of 99.33 % with a collecting capacity of 2685.00 kg/h at maximum rotational speed of centrifugal fan shaft of about 4200 rpm. The machine entailed an investment cost of P 62,829.25. The break-even weight of paddy was 510,606.75 kg/yr at a collecting cost of 0.11 P/kg of paddy. Utilizing the machine for 400 hours per year generated an income of P 23,887.73. The projected time needed to recover cost of the machine based on 2685 kg/h collecting capacity was 2.63 year.
Keywords: Mobile engine-driven pneumatic paddy collector, collecting capacity and efficiency, simple cost analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55341214 Stable Tending Control of Complex Power Systems: An Example of Localized Design of Power System Stabilizers
Authors: Wenjuan Du
Abstract:
The phase compensation method was proposed based on the concept of the damping torque analysis (DTA). It is a method for the design of a PSS (power system stabilizer) to suppress local-mode power oscillations in a single-machine infinite-bus power system. This paper presents the application of the phase compensation method for the design of a PSS in a multi-machine power system. The application is achieved by examining the direct damping contribution of the stabilizer to the power oscillations. By using linearized equal area criterion, a theoretical proof to the application for the PSS design is presented. Hence PSS design in the paper is an example of stable tending control by localized method.
Keywords: Phase compensation method, power system small-signal stability, power system stabilizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9791213 Vision-based Network System for Industrial Applications
Authors: Taweepol Suesut, Arjin Numsomran, Vittaya Tipsuwanporn
Abstract:
This paper presents the communication network for machine vision system to implement to control systems and logistics applications in industrial environment. The real-time distributed over the network is very important for communication among vision node, image processing and control as well as the distributed I/O node. A robust implementation both with respect to camera packaging and data transmission has been accounted. This network consists of a gigabit Ethernet network and a switch with integrated fire-wall is used to distribute the data and provide connection to the imaging control station and IEC-61131 conform signal integration comprising the Modbus TCP protocol. The real-time and delay time properties each part on the network were considered and worked out in this paper.Keywords: Distributed Real-Time Automation, Machine Visionand Ethernet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16631212 Tongue Diagnosis System Based on PCA and SVM
Authors: Jin-Woong Park, Sun-Kyung Kang, Sung-Tae Jung
Abstract:
In this study, we propose a tongue diagnosis method which detects the tongue from face image and divides the tongue area into six areas, and finally generates tongue coating ratio of each area. To detect the tongue area from face image, we use ASM as one of the active shape models. Detected tongue area is divided into six areas widely used in the Korean traditional medicine and the distribution of tongue coating of the six areas is examined by SVM(Support Vector Machine). For SVM, we use a 3-dimensional vector calculated by PCA(Principal Component Analysis) from a 12-dimentional vector consisting of RGB, HIS, Lab, and Luv. As a result, we detected the tongue area stably using ASM and found that PCA and SVM helped raise the ratio of tongue coating detection.Keywords: Active Shape Model, Principal Component Analysis, Support Vector Machine, Tongue diagnosis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18671211 Low cost Nano-membrane Fabrication and Electro-polishing System
Authors: Ajab Khan Kasi, Muhammad Waseem Ashraf, Jafar Khan Kasi, Shahzadi Tayyaba, NitinAfzulpurkar
Abstract:
This paper presents the development of low cost Nano membrane fabrication system. The system is specially designed for anodic aluminum oxide membrane. This system is capable to perform the processes such as anodization and electro-polishing. The designed machine was successfully tested for 'mild anodization' (MA) for 48 hours and 'hard anodization' (HA) for 3 hours at constant 0oC. The system is digitally controlled and guided for temperature maintenance during anodization and electro-polishing. The total cost of the developed machine is 20 times less than the multi-cooling systems available in the market which are generally used for this purpose.
Keywords: Anodic aluminum oxide, Nano-membrane, hardanodization, mild anodization, electro-polishing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21211210 Determination of Surface Deformations with Global Navigation Satellite System Time Series
Authors: I. Tiryakioglu, M. A. Ugur, C. Ozkaymak
Abstract:
The development of Global Navigation Satellite System (GNSS) technology has led to increasingly widely and successful applications of GNSS surveys for monitoring crustal movements. Instead of the multi-period GNSS solutions, this study utilizes GNSS time series that are required to more precisely determine the vertical deformations in the study area. In recent years, the surface deformations that are parallel and semi-parallel to Bolvadin fault have occurred in Western Anatolia. These surface deformations have continued to occur in Bolvadin settlement area that is located mostly on alluvium ground. Due to these surface deformations, a number of cracks in the buildings located in the residential areas and breaks in underground water and sewage systems have been observed. In order to determine the amount of vertical surface deformations, two continuous GNSS stations have been established in the region. The stations have been operating since 2015 and 2017, respectively. In this study, GNSS observations from the mentioned two GNSS stations were processed with GAMIT/GLOBK (GNSS Analysis Massachusetts Institute of Technology/GLOBal Kalman) program package to create coordinate time series. With the time series analyses, the GNSS stations’ behaviour models (linear, periodical, etc.), the causes of these behaviours, and mathematical models were determined. The study results from the time series analysis of these two 2 GNSS stations show approximately 50-90 mm/yr vertical movement.
Keywords: Bolvadin fault, GAMIT, GNSS time series, surface deformations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8141209 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.
Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14651208 A Survey on Ambient Intelligence in Agricultural Technology
Abstract:
Despite the advances made in various new technologies, application of these technologies for agriculture still remains a formidable task, as it involves integration of diverse domains for monitoring the different process involved in agricultural management. Advances in ambient intelligence technology represents one of the most powerful technology for increasing the yield of agricultural crops and to mitigate the impact of water scarcity, climatic change and methods for managing pests, weeds and diseases. This paper proposes a GPS-assisted, machine to machine solutions that combine information collected by multiple sensors for the automated management of paddy crops. To maintain the economic viability of paddy cultivation, the various techniques used in agriculture are discussed and a novel system which uses ambient intelligence technique is proposed in this paper. The ambient intelligence based agricultural system gives a great scope.Keywords: Ambient Intelligence, Agricultural technology, smart agriculture, precise farming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22081207 Analysis and Measuring Surface Roughness of Nonwovens Using Machine Vision Method
Authors: Dariush Semnani, Javad Yekrang, Hossein Ghayoor
Abstract:
Concerning the measurement of friction properties of textiles and fabrics using Kawabata Evaluation System (KES), whose output is constrained to the surface friction factor of fabric, and no other data would be generated; this research has been conducted to gain information about surface roughness regarding its surface friction factor. To assess roughness properties of light nonwovens, a 3-dimensional model of a surface has been simulated with regular sinuous waves through it as an ideal surface. A new factor was defined, namely Surface Roughness Factor, through comparing roughness properties of simulated surface and real specimens. The relation between the proposed factor and friction factor of specimens has been analyzed by regression, and results showed a meaningful correlation between them. It can be inferred that the new presented factor can be used as an acceptable criterion for evaluating the roughness properties of light nonwoven fabrics.Keywords: Surface roughness, Nonwoven, Machine vision, Image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30931206 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem
Authors: E. Koyuncu
Abstract:
The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.
Keywords: Fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12831205 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection
Authors: Yaojun Wang, Yaoqing Wang
Abstract:
Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.Keywords: Case-based reasoning, decision tree, stock selection, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17051204 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model
Authors: Youngjae Jin, Daeshik Kim
Abstract:
This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in VerilogHDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.
Keywords: Auto-encoder, Behavior model simulation, Digital hardware design, Pre-route simulation, Unsupervised feature learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26901203 Study of the Cryogenically Cooled Electrode Shape in Electric Discharge Machining Process
Authors: Vineet Srivastava, Pulak M. Pandey
Abstract:
Electrical discharge machining (EDM) is well established machining technique mainly used to machine complex geometries on difficult-to-machine materials and high strength temperature resistant alloys. In the present research, the objective is to study the shape of the electrode and establish the application of liquid nitrogen in reducing distortion of the electrode during electrical discharge machining of M2 grade high speed steel using copper electrodes. Study of roundness was performed on the electrode to observe the shape of the electrode for both conventional EDM and EDM with cryogenically cooled electrode. Scanning Electron Microscope (SEM) has been used to study the shape of electrode tip. The effect of various parameters such as discharge current and pulse on time has been studied to understand the behavior of distortion of electrode. It has been concluded that the shape retention is better in case of liquid nitrogen cooled electrode.Keywords: cryogenic cooling, EDM, electrode shape, out of roundness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23671202 Application of Artificial Neural Network in the Investigation of Bearing Defects
Authors: S. Sendhil Kumar, M. Senthil Kumar
Abstract:
Maintenance and design engineers have great concern for the functioning of rotating machineries due to the vibration phenomenon. Improper functioning in rotating machinery originates from the damage to rolling element bearings. The status of rolling element bearings require advanced technologies to monitor their health status efficiently and effectively. Avoiding vibration during machine running conditions is a complicated process. Vibration simulation should be carried out using suitable sensors/ transducers to recognize the level of damage on bearing during machine operating conditions. Various issues arising in rotating systems are interlinked with bearing faults. This paper presents an approach for fault diagnosis of bearings using neural networks and time/frequencydomain vibration analysis.Keywords: Bearing vibration, Condition monitoring, Fault diagnosis, Frequency domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25191201 Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner
Authors: Guy Leshem, Ya'acov Ritov
Abstract:
Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.Keywords: Machine Learning, Boosting, Classification, TrafficCongestion, Data Collecting, Magnetic Loop Detectors, SignalizedIntersections, Traffic Signal Timing Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39101200 A Comparison of YOLO Family for Apple Detection and Counting in Orchards
Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long
Abstract:
In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.
Keywords: Agricultural object detection, Deep learning, machine vision, YOLO family.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10991199 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems
Authors: Bruno Trstenjak, Dzenana Donko
Abstract:
Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.
Keywords: Case based reasoning, classification, expert's knowledge, hybrid model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419